AUTHOR=Yu Huang , Zhong Qiuping , Peng Yisheng , Zheng Xiafei , Xiao Fanshu , Wu Bo , Yu Xiaoli , Luo Zhiwen , Shu Longfei , Wang Cheng , Yan Qingyun , He Zhili TITLE=Environmental Filtering by pH and Salinity Jointly Drives Prokaryotic Community Assembly in Coastal Wetland Sediments JOURNAL=Frontiers in Marine Science VOLUME=8 YEAR=2022 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.792294 DOI=10.3389/fmars.2021.792294 ISSN=2296-7745 ABSTRACT=

Understanding the microbial community assembly is an essential topic in microbial ecology. Coastal wetlands are an important blue carbon sink, where microbes play a key role in biogeochemical cycling of nutrients and energy transformation. However, the drivers controlling the distribution patterns and assembly of bacterial and archaeal communities in coastal wetland are unclear. Here we examined the diversity, co-occurrence network, assembly processes and environmental drivers of bacterial and archaeal communities from inshore to offshore sediments by the sequencing of 16S rRNA gene amplicons. The value of α- and β-diversity of bacterial and archaeal communities generally did not change significantly (P > 0.05) between offshore sites, but changed significantly (P < 0.05) among inshore sites. Sediment pH and salinity showed significant effects on the diversity and keystone taxa of bacterial and archaeal communities. The bacterial and archaeal co-occurrence networks were inextricably linked with pH and salinity to formed the large network nodes, suggesting that they were the key factors to drive the prokaryotic community. We also identified that heterogeneous and homogeneous selection drove the bacterial and archaeal community assembly, while the two selections became weaker from offshore sites to inshore sites, suggesting that deterministic processes were more important in offshore sites. Overall, these results suggested that the environmental filtering of pH and salinity jointly governed the assembly of prokaryotic community in offshore sediments. This study advances our understanding of microbial community assembly in coastal wetland ecosystems.