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Okadaic acid (OA), produced by dinoflagellates during harmful algal blooms, is a
principal diarrhetic shellfish poisoning toxin. This toxin poses a potential threat to bivalves
with economic values. To better understand the toxicity mechanism of OA to bivalves,
in this study, oxidative stress biomarkers (superoxide dismutase, SOD; catalase,
CAT; glutathione S-transferase, GST; malondialdehyde, MDA) and the expression of
detoxification genes (heat shock protein 70, HSP70; heat shock protein 90, HSP90;
cytochrome P450, CYP450) were assessed in the gills of scallops Chlamys farreri
after 24 h, 48 h and 96 h exposure to OA. In addition, the digestive glands of
scallops exposed to OA for 96 h were dissected for an iTRAQ based quantitative
proteomic analysis. The results of OA exposure experiments showed that OA induces
oxidative stress and significant enhancement of the expression of detoxification genes
in scallops. The proteomics analysis revealed that 159 proteins altered remarkably in
OA-treated scallops, and these proteins were involved in phagosomes, regulation of
actin cytoskeleton, adherens junction, tight junction, and focal adhesion. Amino acid
biosynthesis, carbon metabolism, pentose phosphate pathway, fructose and mannose
metabolism in the digestive glands were also significantly impacted. Our data shed new
insights on the molecular responses and toxicity mechanisms of C. farreri to OA.

Keywords: okadaic acid, Chlamys farreri, oxidative stress, detoxification genes, iTRAQ

INTRODUCTION

In recent years, harmful algal blooms (HABs) have occurred widespread in the ocean, with higher
frequency and longer periods than that in the past (Dolah, 2000; Anderson et al., 2012; Gobler
et al., 2017). The emergence of HABs poses a major threat to human health, fisheries resources,
and marine ecosystems worldwide (Van Dolah and Ramsdell, 2001; Hoagland and Scatasta, 2006;
Hallegraeff et al., 2021). One main hazard of HABs is the release of a variety of shellfish toxins,
including diarrhetic shellfish toxins (DST), neurotoxic shellfish toxins (NST), paralytic shellfish
toxins (PST), and forgetful shellfish toxins (AST) (Christian and Luckas, 2008).
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Diarrhetic shellfish toxins (DST) is one of the most threatening
shellfish toxins in the world. The lipophilicity allows DST to
accumulate in animal tissues and to be biomagnified in the
food web (Gerssen et al., 2010; Lloyd et al., 2013; Valdiglesias
et al., 2013; Liu et al., 2019). Numerous reports have referred to
public safety and health incidents caused by diarrheal shellfish
poisoning (DSP) around the world (Yasumoto et al., 1978; de
Carvalho et al., 2019; Young et al., 2019). Okadaic acid (OA)
and its analogs, a typical DST, are responsible for DSP in
humans (Garcia et al., 2005). Studies on mammalian or in vitro
mammalian cell lines have shown that OA inhibits the serine
and threonine phosphatases PP1 and PP2A (Bialojan and Takai,
1988; Honkanan et al., 1994; Maynes et al., 2001), leads to
oxidative damage (Kamat et al., 2013; Vieira et al., 2013) and
cytoskeleton destruction (Kreienbuhl et al., 1992; Fiorentini et al.,
1996; Opsahl et al., 2013), affects the cell cycle (Messner et al.,
2001; Valdiglesias et al., 2010a,b), neurotoxicity (Kamat et al.,
2013) and apoptosis (Jayaraj et al., 2009; Ferron et al., 2014;
Fu et al., 2019). In bivalves, laboratory exposure experiments
have also shown that OA cause DNA damage in clams Ruditapes
decussatus (Braga et al., 2021), lead to oxidative stress in oysters
Crassostrea gigas and mussels Mytilus galloprovincesis (Romero-
Geraldo and Hernandez-Saavedra, 2014; Prego-Faraldo et al.,
2017), and decrease the immunity of oysters C. gigas, mussels
Perna perna and clams Anomalocardia brasiliana (Mello et al.,
2010; Prado-Alvarez et al., 2013). Overall, although the mode and
mechanism of action of OA on mammals have been well studied,
current studies on the impacts of OA on bivalves are limited and
mostly confined to the physiological level.

The scallops Chlamys farreri is an important fishery and
aquaculture species widely distributed in the subtropical western
Pacific, playing an important role in the coastal ecosystem
(Smaal et al., 2001). Moreover, C. farreri can accumulate shellfish
toxins and therefore is widely used in algal toxin research
(Li et al., 2017). As little is known about the toxic effects
and the molecular mechanisms underlying the effects of OA
on bivalves, it is necessary to carry out studies using omics
for more global information. In this study, we combined
traditional physiology and iTRAQ proteomics to (1) determine
the physiological responses of C. farreri to OA and (2) elucidate
the potential mechanisms of OA toxicity on C. farreri from the
molecular perspective.

MATERIALS AND METHODS

Reagent
Okadaic acid (OA) (NRC CRM-OA-d) was obtained from the
Institute for Marine Biosciences (National Research Centre,
Halifax Regional Municipality, NS, Canada), and stored in the
dark at 4◦C until the experiment. Stock solutions (20 µg/L) were
prepared in dimethyl sulfoxide (DMSO, Sinopharm Chemical
Reagent, China).

Experimental Conditions
Experimental scallops, C. farreri (shell length: 4–6 cm) were
collected from a local farm (Yantai, Shandong, China). After

cleaning shells, the scallops were transported to the Muping
Coastal Environmental Research Station and acclimated in filter-
sterilized seawater (temperature 15.3 ± 0.2◦C, pH 8.12 ± 0.07,
salinity 31.2 ± 0.5h, mean ± SD) for 14 days. The scallops
were fed daily with commercial algal blends during the
acclimation period.

After acclimation, three treatment groups, including blank
control [filter-sterilized seawater (FSSW)], solvent control
(dimethyl sulfoxide, DMSO, 0.01%, v/v), and exposure groups
(OA at nominal concentrations of approximately 10–20 µg
OA eq. 100 g−1 shellfish meat) were conducted. The exposure
concentration of OA used in this study is close to the European
Food Safety Authority (EFSA) regulation limit for human
consumption of shellfish (16 µg OA eq.100 g−1 shellfish meat)
(Authority, 2008). The experiment was carried out in an 80L
aquarium with 40 organisms in each aquarium. Three duplicate
aquariums were used in each treatment (a total of 120 individuals
in each treatment). In the OA treatment, the scallops were
directly injected with 100 µL of 20 µg/L OA. The scallops
in the blank control and solvent control were injected with
100 µL FSSW and DMSO, respectively. After injection, scallops
were put back into the corresponding aquarium and sampled
at 24 h, 48 h, and 96 h. No scallop mortality was observed
during the experiment. Sampling time points were set according
to the standardized method proposed by USEPA (2002). it can be
proved that Chlamys farreri is a potential indicator organism that
can respond quickly in environmental monitoring events.

At each sampled time point, the gills and digestive glands of
the scallops were carefully cut off on the ice and immediately
frozen in liquid nitrogen and stored at –80◦C for subsequent
analysis. The gills of the bivalves are more closely exposed to the
environment, more susceptible to exogenous substances (Regoli
and Principato, 1995; Magara et al., 2018). In addition, the
digestive gland is one of the most important tissues for assessing
the health status of bivalves and can be associated with functional
damage to cells (Teng et al., 2021).

Oxidative Stress Biomarkers
To measure oxidative stress biomarkers, 10-15 individuals (gills)
were dissected at each time point and pooled into 5 independent
replicates to minimize biological variation. After sampling, the
gills were used to prepare a tissue homogenate as follows: the
gills were homogenized in phosphate buffer (50 mM potassium
dihydrogen phosphate; 50 mM potassium phosphate dibasic;
1 mM EDTA; pH 7.0) using an IKA homogenizer (Ultra Turrax
IKA T10 basic, Staufen, Germany). The homogenates were then
centrifuged at 10,000 g for 20 min at 4◦C to obtain supernatants.
To investigate oxidative stress in scallops, superoxide dismutase
(SOD), catalase (CAT), and glutathione S-transferase (GST)
activities were determined using the commercial kits from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
Malondialdehyde content was measured also using commercial
kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,
China). Subsequently, protein concentrations were determined
according to the Bradford method using bovine γ-globulin as a
standard (Bradford, 1976).
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Real-Time Quantitative PCR
A total of 6–9 individual samples (gills) were dissected and pooled
into 3 independent samples for real-time quantitative polymerase
chain reaction (PCR) analysis (qRT-PCR). In this study, the
genes heat shock protein 70 (HSP70), heat shock protein 90
(HSP90), and cytochrome P450 (CYP450) were selected for qRT-
PCR. In addition, β-actin was used as an internal control to
quantify the expression of selected genes in scallops. The primers
designed for qRT-PCR are listed in Supplementary Table 1. Total
RNA was extracted from gills of scallops using TRIzol reagent
(Invitrogen, United States) according to the manufacturer’s
instructions. The cDNA was synthesized from DNase I-treated
(Promega, United States) RNA and then combined with 10 µL
of 2 × Master Mix (Applied Biosystems, United States), 4.8 µL
of DEPC-treated H2O, and 0.4 µL (0.2 µM) of each forward
and reverse primer to a final volume of 20 µL. The qRT-PCR
was performed on the Applied Biosystems 7500 Fast Real-Time
PCR System (Applied Biosystems, United States) using standard
protocols. The specificity of the qPCR products was analyzed by
a dissociation curve analysis of the amplification products. The
expression of selected genes was analyzed using the comparative
2−11CT method (Livak and Schmittgen, 2001).

iTRAQ-Based Quantitative Proteomic
Analysis
After 96 h exposure, six samples of digestive glands in solvent
control and OA treatment with three biological replicates
per treatment were used in the proteomic analysis with
an equal mass (300 mg wet weight). Protein extraction,
iTRAQ labeling, and LC-MS/MS analysis were conducted based
on standard proteomics methods (Han et al., 2013). More
detailed information about the quantitative proteomic analysis is
described in the Supplementary Material.

Protein Pilot Software v. 5.0 (AB SCIEX R©, United States)
was used to analyze the acquired MS/MS raw data, and protein
identification was performed using the Paragon algorithm (Shilov
et al., 2007). Functional annotations of the differentially expressed
proteins (DEPs) were conducted using the Blast2GO program.
Differentially expressed proteins were annotated into three
categories based on Gene Ontology (GO) terms: biological
process (BP), molecular function (MF), and cellular component
(CC). The protein pathway was annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database. Then,
the GO enrichment terms and pathways of DEPs in the
background of identified proteins were determined via a
hypergeometric test (p < 0.05). To gain a deeper understanding of
the pathways significantly enriched after OA treatment, protein-
protein network analysis was performed using Cytoscape 3.7.1

Statistical Analysis
Experimental data are represented as the means ± standard
error of mean and were analyzed using Graphpad prism 7.0.
The normality of the data was verified by the Shapiro-Wilk test,
and the homogeneity of the variances was analyzed by Levene’s

1http://www.cytoscape.org/

test. One-way ANOVA and Tukey’s post hoc test was performed
to analyze whether the differences between each group were
significant. P < 0.05 was considered significant difference.

RESULTS

No significant difference was detected in the physiological
indexes between the solvent control group and the control group,
thus only experimental results derived from the control group
were analyzed and discussed.

Oxidative Stress Biomarkers
In the scallops, SOD and CAT activities were significantly
stimulated by OA treatment at 96 h, increasing by 1.55-fold and
1.3-fold compared to the control, respectively (Figures 1A,C).
Meanwhile, GST activity was enhanced by 1.13-fold after the
48 h exposure to OA (Figure 1B). A significant increase in MDA
content was also observed in the OA group in the 48 h and 96 h
treatments (Figure 1D).

Real-Time Quantitative PCR Analyses
Among OA treatments, a significant increase in mRNA
expression of HSP70 was observed in the scallops at 48 h and
96 h compared to those at 24 h (Figure 2A). Unexpectedly, the
mRNA expression of HSP70 is significantly suppressed by OA
in the 24 h treatment (Figure 2A). Although with no statistical
difference, the expression of HSP90 transcripts showed a similar
temporal trend to HSP70 after OA injection (Figure 2B). In
addition, the expression of CYP450 increased significantly at 96 h
in the OA-treated group, which was 4.61 times higher than that
at 24 h (Figure 2C).

Proteome Analysis
A total of 159 DEPs (Supplementary Materials, Supplementary
Table 2) were detected in the digestive glands of the scallops
exposed to OA, compared to the solvent controls (fold
change > 1.2 as up-regulated or < 0.83 as down-regulated,
p < 0.05). In these DEPs, 104 of the 159 DEPs were up-
regulated and 55 were down-regulated (Figure 3A). At the
same time, all the differences in protein GO enrichment
(BP, CC, MF) and pathway KEGG enrichment results and
significant (p < 0.05) numbers were summarized, and intuitively
display through the column figure (Figure 3B). Specifically,
855 proteins were annotated with biological process (BP),
and 239 terms were significantly enriched. In contrast, 156
proteins were annotated with cell component (CC), and 58
terms were significantly enriched; 284 proteins were annotated
with molecular function, including 94 terms were significantly
enriched. Furthermore, KEGG analysis showed that there are 9
pathways were significantly enriched.

Differentially expressed proteins (DEPs) were classified into
various categories based on gene ontology (GO) terms (Figure 4).
According to the category of biological process (Figure 4A), the
DEPs were mostly annotated to the “single-organism metabolic
process,” “organonitrogen compound metabolic process,” and
“small molecule metabolic process.” The DEPs covered a wide
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FIGURE 1 | Activities of SOD (A), GST (B), CAT (C), and MDA content (D) of C. farreri exposed to OA (n = 5). Asterisks indicate significant differences between the
control and OA-exposed group within each fixed sampling period, and different letters indicate significant differences among different sampling periods within each
treatment (p < 0.05).

range of molecular functions (Figure 4B), mainly including
“catalytic activity,” “anion binding,” “nucleotide binding,” and
“nucleoside phosphate binding.” Based on the category of cellular
components (Figure 4C), the DEPs were mainly located in
“intracellular,” “intracellular part,” and “cytoplasm.”

To further investigate the main pathways of the scallop’s
response to OA, KEGG enrichment analysis and protein-
protein interaction (PPI) networks were also performed on the
DEPs. As shown in Figures 5, 6, OA treatment led to DEPs
involved in several cellular processes in the scallops, such as
phagosomes, regulation of actin cytoskeleton, adherens junction,
tight junction, and focal adhesion. In addition, DEPs were also
significantly enriched in pathways of amino acid biosynthesis,
carbon metabolism, pentose phosphate pathway, fructose and
mannose metabolism.

DISCUSSION

Oxidative Stress Biomarkers
When exposed to environmental stress, organisms usually
produce excessive ROS, which leads to oxidative stress (Lushchak,
2011). Antioxidant enzymes play a central role in the cellular
defense mechanism against oxidative stress (Valko et al., 2006;
Lushchak, 2011). As the first line of the antioxidant defense

system, SOD catalyzes superoxide anion disproportionation
to oxygen and hydrogen peroxide, while CAT prevents the
formation of excessive H2O2 through decomposing H2O2 once
it is formed (Halliwell, 1974). As a phase II detoxification
enzyme, GST protects cells and tissues against oxidative stress by
catalyzing the conjugation of the reduced form of glutathione to
various xenobiotic substrates (Hayes and Strange, 1995). These
antioxidant enzymes interact with each other to maintain the
balance between ROS production and ROS scavenging in an
organism. In this study, all three antioxidant enzymes (SOD,
CAT, and GST) were generally stimulated in the gills of scallops,
indicating that the antioxidant system was activated in response
to the OA exposure, which may have caused oxidative stress to
the scallops. Similar to our results, increased antioxidant enzymes
activity was also observed in the bivalves Nodipecten subnodosus
(Campa-Cordova et al., 2009) and Anomalocardia flexuosa (Leite
et al., 2021), when exposed to Prorocentrum lima (a dinoflagellate
producing DSP toxins).

Lipid peroxidation (LPO) is a major indicator of cellular
oxidative damage level in organisms and is a major contributor
to the loss of cell function under OA exposure (Cossu et al.,
2000; Alves de Almeida et al., 2007). Lipid peroxidation usually
occurs when the production of ROS exceeds the capacity of
the antioxidant system (Halliwell, 1996; Lushchak, 2011). The
main product of lipid peroxidation is MDA, so generally, the
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FIGURE 2 | Relative expression levels of HSP70 (A), HSP90 (B), and CYP450 (C) transcripts in the C. farreri after 24 h, 48 h, and 96 h exposure to OA (n = 3).
Asterisks indicate significant differences between the control and OA-exposed group within each fixed sampling period, and different letters indicate significant
differences among different sampling periods within each treatment (p < 0.05).

FIGURE 3 | Summary of differentially expressed proteins (DEPs). (A) The number of DEPs between solvent control and OA treatment. (B) Summary of differences
and significant numbers of protein GO enrichment (BP, CC, MF) and pathway KEGG enrichment results (p < 0.05).

extent of LPO can be assessed indirectly by the amount of
MDA (Ohkawa et al., 1979). In this study, the LPO level increased
significantly in the scallops after 48 h and 96h exposure of
OA, indicating that the increasing antioxidant enzyme activities
could not maintain the balance between ROS production and
elimination, eventually leading to the LPO.

Alterations in Gene Expression of the
Stress-Related Proteins
As molecular chaperones, HSPs help organisms combat
environmental stresses and maintain cellular homeostasis
by promoting protein folding and preventing aggregation of
denatured proteins (Johnston and Kucey, 1988; Liu et al.,
2014; Johnston et al., 2018). CYP450 is a monooxygenase that
promotes the biotransformation and metabolic detoxification
of endogenous and exogenous toxic compounds (Snyder, 2000;
Xu et al., 2005). HSPs and CYPs genes can be activated by
various forces in aquatic organisms, which are widely used as
biomarkers for toxicology research (Chaty et al., 2004; Rewitz

et al., 2006; Chae et al., 2009; Liu et al., 2013; Ding et al., 2018).
In the present study, the expression of both HSPs and CYP450
genes increased with the OA exposure time, supporting their
roles in stress response and detoxification process to OA. The
time-dependent changes in genes to OA are also in line with
the result of previous studies involving other environmental
stresses (Liu et al., 2018; Nguyen et al., 2018; Nie et al., 2020;
Zhang et al., 2020). We hypothesize that overexpression of the
HSPs gene may counteract the proteins damaged by the ROS
after OA exposure, while the enhanced synthesis of CYP450 may
contribute to complete the biotransformation of OA. In short,
expressional changes of these genes reflect pressures of OA on
the scallop tissues from the molecular aspect.

Proteomic Responses of Scallops to
Okadaic Acid Exposure
As major organelles in the translation process, ribosomes are
essential for protein production in cells (Wimberly et al.,
2000; Sonenberg and Hinnebusch, 2009). In the OA-treated
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FIGURE 4 | GO annotation of DEPs. DEPs were assigned to second-tier GO categories associated with three terms: biological process (A), cellular component (B),
and molecular function (C).
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FIGURE 5 | Bubble chart showing the significantly enriched KEGG pathways in C. farreri exposed to OA (p < 0.05). In the bubble chart, the vertical axis is the
functional classification or pathway and the horizontal axis is the proportion of the different proteins in this functional type compared to the proportion of the identified
protein. The color of the circle indicates the enrichment significance P-value, and the size of the circle indicates the number of differential proteins in functional
classes or pathways.

scallops of this study, 11 ribosome-associated DEPs exhibited
significant over-expression (Supplementary Table 2), while
significant enrichment of the amino acid biosynthetic pathway
was suggested by the KEGG analysis and PPI network.
The up-regulation of these proteins or pathways suggests
that protein synthesis is effectively enhanced in the scallops
exposed to OA, which possibly compensates for the proteins
damaged by oxidative stress (Tomanek, 2010; Dasuri et al.,
2013).

In the current study, the KEGG pathway analysis shows
that phagosome is one of the important pathways in the
scallops’ response to OA (Figure 5). In the invertebrate
immune system, phagocytosis is a necessary mechanism
for the removal of invading microorganisms, dead cells,
and other relatively large particles (Mydlarz et al., 2006). The
internalization of phagocytosis of large particles is initiated by the
combination of particles with cell surface receptors, followed by
the reconstitution and reorganization of the cytoskeleton to form
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FIGURE 6 | DEPs enriched in the protein-protein interaction network in OA-exposed scallops. Proteins are shown as small elliptical nodes (blue nodes represent
down-regulated proteins and red nodes represent up-regulated proteins) and are connected with associated KEGG pathways (rectangular Nodes). The size of the
line between nodes represents the scoring value of the interaction between the two nodes, and the greater the score, the more reliable.

phagosomes, which ultimately complete the internalization of
particles (Castellano et al., 2001; Freeman and Grinstein, 2014).
As an important component of phagocytosis, the formation of
phagosomes is a prerequisite for the degradation of intracellular
macromolecules (Mizushima, 2007; Xie and Klionsky, 2007;
Lancaster et al., 2021). In addition, we also detected the
significantly altered abundance of ATP6V0D1, ATP6V1B2,
and other lysosome-associated proteins in the OA treatments,
suggesting that OA affects the formation of phagocytic lysosomes.
Previous studies have shown that some functions of phagosomes
occur only in specific membrane domains. For example,
phagosomes can only undergo acidification and fuse with
lysosomes to produce immunocompetent phagolysosomes
(Vieira et al., 2002; Luzio et al., 2007). Moreover, endoplasmic
reticulum (ER)-associated proteins, such as RPN2 and Sec61
subunits known as ER marker proteins, were also identified in
the phagosome pathway of the scallops. Previous studies have
reported that the ER might contribute to the formation of the
phagosome (Muller-Taubenberger et al., 2001; Gagnon et al.,
2005; Mao et al., 2020). In summary, our results indicated that
altered phagocytosis activity is an important way for scallops
to respond to OA exposure, which could remove damaged
proteins and apoptotic cells caused by OA, thereby reducing
inflammation and tissue damage (Ellis et al., 2011; Song et al.,
2015).

Our proteomic results showed that a total of 25 cytoskeleton-
related proteins changed significantly, and 23 DEPs were up-
regulated significantly. KEGG analysis also showed that the

regulation of actin cytoskeleton in the OA-treated scallops
was changed. In eukaryotic cells, the cytoskeleton is a
complex reticular system of protein components such as
microtubules, microfilaments, and intermediate fibers (Schliwa
and Vanblerkom, 1981), playing a key role in maintaining
cell structure, adhesion, migration, differentiation, division, and
organelle transport (Hall, 1998). The result of our proteomic
study is in accordance with the previous physical and omics
studies showing that DST induced extensive exert cytotoxic
effects by modulating the cytoskeleton (Espina and Rubiolo,
2008; Hanana et al., 2012; Huang et al., 2015; He et al., 2019).
Changes in cytoskeleton-related proteins may also be related
to cell connections, such as tight junctions and focal adhesion,
thereby affecting the transport of macromolecules between cells
and the signal transmission between cells and the extracellular
matrix (Schneeberger and Lynch, 1992; Fanning et al., 1998).
In this study, OA treatment led to significant alteration
in the expression of proteins from tight junction, adherens
junction, and focal adhesion pathways. Tight junctions and focal
adhesion are two well-known cell connections associated with
the cytoskeleton. The former links the plasma membranes of
adjacent cells together and maintains normal cell function by
acting as a barrier between cells to prevent the diffusion of
soluble substances as well as membrane proteins and plasmids
(Hartsock and Nelson, 2008). The latter plays a key role
in regulating cell migration, proliferation, and apoptosis by
mediating mechanical and biochemical signaling between cells
and the extracellular matrix (Takeichi, 1995; Gumbiner, 2005;
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Mitra et al., 2005; Hartsock and Nelson, 2008; Burridge, 2017).
Overall, the alteration of cytoskeletal proteins and related cell
connections may compensate for the increased protein turnover
and altered phagocytosis activity caused by OA.

The glycolytic pathway is the universal metabolic pathway
that provides energy and converting energy metabolism to
glycolysis has been shown to inhibit apoptosis and thus
promote cell survival (Gohil et al., 2010; Slavov et al., 2014;
Gao et al., 2020). In this study, the fructose-bisphosphate
aldolase B (ALDOB) and fructose-bisphosphate aldolase C-B
(ALDOCB) were significantly up-regulated. The two proteins
are fructose diphosphate aldolase that catalyzes the formation
of dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-
phosphate (GAP) from fructose-1,6-bisphosphate (FBP) in the
glycolytic pathway (Bauer and Levenbook, 1969). In addition,
our KEGG analysis showed significant enrichment in the pentose
phosphate pathway and fructose and mannose metabolism
(Figure 5). The pentose phosphate pathway and fructose and
mannose metabolism are essential branches of glycolysis, and
both pathways produce intermediate products of glycolysis
that converge into the glycolytic pathway (Jiang et al., 2014).
Moreover, data obtained in this study demonstrate that OA
exposure significantly enhanced the activity of citrate synthase
(CS). Citrate synthase is the downstream process after the
glycolytic pathway, which catalyzes the condensation of acetyl
coenzyme A with oxaloacetate produced by glycolysis or other
isomerization reactions to synthesize citrate in the tricarboxylic
acid cycle. The up-regulated expression of CS further confirms
the activation of the glycolytic pathway (Champe et al., 2005). In
general, after exposure to OA, scallops may increase the energy
produced by glycolysis to meet the additional energy demand
caused by changes in biological processes such as amino acid
biosynthesis and regulation of the actin cytoskeleton (Tomanek
and Zuzow, 2010; Huang et al., 2015).

CONCLUSION

In this study, even though the concentration used in this study
was well below those tolerated by the scallops, OA still resulted

in significant changes in the physiology and proteomics of
the scallops. OA not only induced oxidative stress and altered
stress gene expression in scallops but also significantly changed
biological processes like biosynthesis of amino acids, energy
metabolism, cytoskeleton functions, and phagosome in scallops.
Our findings provide global information for the potential
mechanisms of OA toxicity on bivalves.
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