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Incidental capture, or bycatch, of marine species is a global conservation concern.

Interactions with fishing gear can cause mortality in air-breathing marine megafauna,

including sea turtles. Despite this, interactions between sea turtles and fishing gear—from

a behavior standpoint—are not sufficiently documented or described in the literature.

Understanding sea turtle behavior in relation to fishing gear is key to discovering how

they become entangled or entrapped in gear. This information can also be used to reduce

fisheries interactions. However, recording and analyzing these behaviors is difficult and

time intensive. In this study, we present a machine learning-based sea turtle behavior

recognition scheme. The proposed method utilizes visual object tracking and orientation

estimation tasks to extract important features that are used for recognizing behaviors of

interest with green turtles (Chelonia mydas) as the study subject. Then, these features are

combined in a color-coded feature image that represents the turtle behaviors occurring

in a limited time frame. These spatiotemporal feature images are used along a deep

convolutional neural network model to recognize the desired behaviors, specifically

evasive behaviors which we have labeled “reversal” and “U-turn.” Experimental results

show that the proposed method achieves an average F1 score of 85% in recognizing

the target behavior patterns. This method is intended to be a tool for discovering why

sea turtles become entangled in gillnet fishing gear.

Keywords: green turtle, Chelonia mydas, behavior recognition, color-coding, spatiotemporal features, neural

network, machine learning, motion

1. INTRODUCTION

Incidental capture of non-target animal species, termed bycatch, in fisheries is a global ecological
threat tomarine wildlife (Estes et al., 2011). Fisheries bycatch poses a threat to air-breathing animals
such as sea turtles. One such gear, gillnets, can create an ecological barrier that does not naturally
occur, so there is likely no evolutionary mechanism that causes avoidance (Casale, 2011). Various
approaches have been proposed to reduce bycatch rates of sea turtles and other marine megafauna
(Wang et al., 2010; Lucchetti et al., 2019; Demir et al., 2020). Attempted solutions include: marine
policy that sets bycatch limits for fisheries (Moore et al., 2009); acoustic deterrents similar to
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pingers used to prevent dolphin bycatch; buoyless nets and
illuminated nets, which have shown promising results for
reducing bycatch in coastal net fisheries (Wang et al., 2010;
Peckham et al., 2016). These bycatch reduction approaches can
involve changing the technical design of gear or introducing
novel visual or acoustic stimuli, which also changes gear
configuration. However, as a part of the design process,
effectiveness of different types of stimuli must be analyzed
by observing the associated behavioral response of sea turtles,
which has not been clearly documented in previous studies.
Analyzing sea turtle interactions with fishing gear and bycatch
reduction technologies (BRTs) is not an easy task, since it
requires the researcher to monitor the experiment underwater
for long periods while identifying and recording sea turtle
behaviors and ensuring the study subject’s safety. Even when
experiments are recorded with GoPros, short battery life requires
constant monitoring of each camera view, and the subsequent
manual behavioral analysis is time-intensive for researchers.
Fortunately, with the developments in computer vision-based
approaches, recognition of certain behaviors can be performed
automatically after training this convolutional neural network
with behavioral data.

Various approaches have been proposed to complete the
behavior recognition task for different applications involving
humans or animals (Bodor et al., 2003; Porto et al., 2013; Ijjina
and Chalavadi, 2017; Nweke et al., 2018; Yang et al., 2018;
Chakravarty et al., 2019). Some of the recognition algorithms
analyze the data captured using wearable sensors (Nweke et al.,
2018; Chakravarty et al., 2019). While the sensors used in these
type of experiments provide valuable information about the
activities of interest, they are not applicable in our context as
they need to be located on the subject’s body in a controlled
environment. Various methods use vision based approaches
for the behavior recognition task (Bodor et al., 2003; Porto
et al., 2013; Ijjina and Chalavadi, 2017; Yang et al., 2018).
Earlier examples of the vision based methods employ hand-
crafted features for analyzing the activities (Bodor et al., 2003;
Porto et al., 2013). While these approaches can perform well
for differentiating basic behaviors, they are not very efficient
in recognizing complex activities. With the advancements in
the machine learning field, recent studies employ deep neural
networks (DNN) successfully for the activity recognition task
(Ijjina and Chalavadi, 2017; Yang et al., 2018). Although DNNs
provide powerful representations to analyze complex data sets,
end-to-end training approaches usually require large amounts of
data samples and a large number of network coefficients. In this
study, we propose a hybrid approach for the sea turtle behavior
recognition task. We use domain knowledge for determining
base features to recognize certain behaviors and convert them
into color-coded spatiotemporal 3-D images to train deep
convolutional neural networks (CNN). In our application, we are
specifically interested in recognizing “U-Turn” and “Reversal”
behaviors of turtles, since they are important indicators of
effectiveness of the given stimuli. In order to recognize these
behaviors, we combine turtle location, velocity, and orientation
information in spatiotemporal images and use these images as
inputs to a CNN architecture.

FIGURE 1 | Overview of the proposed approach.

In the U-turn behavior, the turtle makes a u-shaped maneuver
in a short amount of time possibly due to an external visual
stimulus. In Reversal behavior, the turtle moves backwards while
facing forward rather than changing its orientation. These are
avoidance behaviors exhibited by sea turtles when faced with
a barrier or other deterrent. To differentiate these behaviors
from each other and from other motion patterns, we use turtle
location, speed, and orientation information. In order to extract
those features and combine them as an input to a deep neural
network based architecture, we propose the recognition system
shown in Figure 1.

Here, we explain how we conduct the physical experiments
and provide an overview of the proposed behavior recognition
framework and explain the functional blocks. We then present
the results of our comparative study for the object tracking
task on the turtle dataset that we collected. We then report the
performance of the proposed orientation estimation network and
behavior recognition network followed by an explanation of the
anticipated results and utility for conservation purposes.

2. MATERIALS AND EXPERIMENTAL
SET UP

2.1. Animal Acquisition and Facility
Maintenance
All sea turtles used in this study were captured by Inwater
Research Group (IRG) via dip net, entangling net, or hand
capture after entrainment in the intake canal at the St. Lucie
Nuclear Power Plant in Jensen Beach, FL. Capture of these turtles
is necessary for returning them to the open ocean. For our
choice trials, we included healthy juvenile and subadult green (C.
mydas) turtles with a standard carapace length of less than 78 cm.
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FIGURE 2 | Experimental tank at the St. Nuclear Power Plant in Jensen Beach, FL. A juvenile green turtle (C. mydas) is participating in a daytime net vs. no net trial.

Image captured from the primary overhead camera used to record all experiments.

After the IRG team removed turtles from the canal and collected
biometric data, all turtles were kept in separate 6 ft diameter
holding tanks with circulating seawater from the canal. Turtles
were not held for more than 72 h.

2.2. Computer Setup
Captured data have been processed using a computer with
Intel(R) Core(TM) i7-9750H processor and NVIDIA RTX
2070 GPU unit and 16GB RAM. For deep neural network
architectures, we have used Keras Libraries1.

3. METHODS

3.1. Animal Behavior Experiments and
Analysis
We conducted all tank experiments in a 13.9 x 2.3 x 1.5 m
concrete tank beside the intake canal at the St. Lucie Nuclear
Power Plant in Jensen Beach, Florida (Figure 2). The two
treatments we used in the development of this method consisted
of a gillnet vs. no gillnet set up during the day and at night,
meaning a turtle was given the choice between a pathway
with a gillnet fully blocking it or a pathway with nothing in
it (see Figure 2). The variable being changed is time of day
with darkness being the most important factor in nighttime
experiments. Each turtle was used in three consecutive 15- min
trials with the same treatment. All trials were recorded using
GoPro Hero8 cameras from 4 different viewpoints, although this
study focused on behaviors recorded from the primary overhead
view, as shown in Figure 2. Turtle behavior was analyzed from
the recordings rather than in real-time due to the need tomonitor
turtle safety. Here, we specifically focus on the novel turtle
avoidance behavior identified in relation to the gillnet deployed
in the treatment sector: Reversal andU-turn. A Reversal occurred
when a turtle made contact with the gillnet and then escaped

1https://keras.io.

by moving backward with its rear flippers and maintaining a
forward-facing orientation. A U-turn involved a 180 degree turn
within a 3-s period. Here, we only classify U-turns that occur near
the barrier of interest (i.e., the gillnet or treatment area containing
the gillnet).

3.2. Related Work
Our behavior recognition approach requires the turtle location
information in every frame. Thus, we included an object tracking
method as part of the design. The visual object tracking problem
has long been studied in the computer vision field. Early
methods have commonly used correlation based approaches
and hand-crafted features for the tracking task. In Ross et al.
(2007), the authors proposed a method (IVT) that employs an
incremental principal component analysis algorithm to achieve
low dimensional subspace representations of the target object
for tracking purposes. In Babenko et al. (2009), a multiple
instance learning (MILTrack) framework was used for object
tracking where Haar-like features were used for discriminating
the positive and negative image sets. In Bolme et al. (2010), an
adaptive correlation based algorithm (MOSSE) that calculates the
optimal filter for the desired Gauss-shaped correlation output
was proposed. In another approach (Bao et al., 2012), Bao et al.
modeled the target by using a sparse approximation over a
template set (L1APG). In this method, an ℓ-1 norm related
minimization problemwas solved iteratively to achieve the sparse
representation. In Gundogdu et al. (2015), an adaptive ensemble
of simple correlation filters (TBOOST) was used to generate
tracking decisions by switching among the individual correlators
in a computationally efficient manner. Henriques et al. (2014)
presents a method to use Kernelized Correlation Filters (KCF)
operating on histogram of oriented gradients, where the key
idea is to include all the cyclic shift versions of the target
patch in the sample set, and train the network in Fourier
Domain efficiently. In Danelljan et al. (2015), authors propose a
discriminative correlation filter based approach (SRDCF) where
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they use a spatial regularization function that penalizes filter
coefficients residing outside the target region. In Demir and
Cetin (2016), authors propose a “co-difference” feature-based
tracking algorithm (CODIFF) to efficiently represent and match
image parts. This idea is further extended in Demir and Adil
(2018) by including a part based approach (P-CODIFF) to
achieve robustness against rotations and shape deformations.
In Bertinetto et al. (2016), the authors propose a method
(STAPLE) to combine both correlation based and color based
representations to construct a model that is robust to intensity
changes and deformations. More recent methods use CNNs for
the tracking task. Siamese network based methods have achieved
remarkable results for the object tracking benchmarks (Kristan
et al., 2019, 2020; Li et al., 2019). In our experiments, we
compared the performance of various state-of-the-art tracking
algorithms on our dataset and used the best performing method
for our application. Detailed results are given in section 4.1.

As a part of our design, we also estimated turtle orientation
to differentiate some of the behavior patterns. Various methods
have been proposed to estimate the orientation of animals
(Wagner et al., 2013), humans (Raza et al., 2018), and other
objects (Hara et al., 2017). Similar to the tracking and behavior
recognition problems, deep CNNs have successfully been used
for the orientation estimation problem as well. In our method,
a lightweight CNN architecture is employed to estimate the
turtle orientation.

3.3. Proposed Method
In this study, we intended to successfully recognize U-turn and
Reversal behaviors of sea turtles. To differentiate these behaviors
from each other and from other motion patterns, we use turtle
location, speed, and orientation information. In order to extract
those features and combine them as an input to a deep neural
network based architecture, we propose the recognition system
shown in Figure 1.

The turtle location and speed were calculated by the visual
object tracker and the turtle orientation calculated by the
angle estimation network are combined to generate color-coded
spatiotemporal images. The images are used by another network
as the input for the behavior recognition task. Details of these
building blocks are given in the subsections below.

3.3.1. Visual Object Tracker
The purpose of the visual object tracking block is to find the
object location and size in every frame based on a given initial
bounding box. Object location found by the visual object tracker
is used to calculate the motion velocity vector (v). Bounding box
output is also used to crop the object region from the image for
the angle estimation network. vn is calculated from the current
object location pn and the previous object location pn−1 as shown
in Equation (1).

vn =

[

vxn
vyn

]

=

[

pxn
pyn

]

−

[

pxn−1

pyn−1

]

(1)

In order to employ a successful object tracking algorithm in the
proposed framework, we performed a comparison between the

TABLE 1 | Topology of orientation estimation network.

Name Explanation

imageinput 64x64x1 input images

conv_1 8 3x3x1 convolutions, stride 1

relu_1 ReLU layer

avgpool2d_1 2x2 average pooling with stride 2

conv_2 16 3x3x8 convolutions, stride 1

relu_2 ReLU layer

avgpool2d_2 2x2 average pooling with stride 2

conv_3 32 3x3x16 convolutions, stride 1

relu_3 ReLU layer

avgpool2d_3 2x2 average pooling with stride 2

conv_4 64 3x3x32 convolutions, stride 1

relu_4 ReLU layer

avgpool2d_4 2x2 average pooling with stride 2

conv_5 128 3x3x64 convolutions, stride 1

relu_5 ReLU layer

avgpool2d_5 2x2 average pooling with stride 2

conv_6 128 3x3x128 convolutions, stride 1

relu_6 ReLU layer

dropout 20% dropout

fc 2 Fully connected layers

regressionoutput Regression with MSE loss function

state-of-the-art visual object trackers IVT (Ross et al., 2007),
MILTrack (Babenko et al., 2009), MOSSE (Bolme et al., 2010),
L1APG (Bao et al., 2012), TBOOST (Gundogdu et al., 2015),
KCF (Henriques et al., 2014), SRDCF (Danelljan et al., 2015), P-
CODIFF (Demir and Adil, 2018), Staple (Bertinetto et al., 2016),
and SiamMargin (Kristan et al., 2019) on our turtle dataset. Based
on the quantitative metrics, we used the best performing tracker.
Details of the experimental results are given in section 4.

3.3.2. Orientation Estimation Network
We built a relatively small CNN architecture for detecting the
orientation of the turtle. The network topology is summarized
in Table 1. Note that we use two outputs for representing the
angle values on the unit circle so that we can use the MSE
loss function without any modifications. We could use a single
output for the angle value. However, we would need to redefine
the loss function to prevent penalizing the jumps between 0◦

and 360◦. For training the network coefficients, we annotated
nearly 25,000 turtle images with bounding box and orientation
labels. We extended this number by rotating the turtle images by
30 to 330 degrees with 30 degree steps and included associated
orientation labels based on the rotation angle.

3.3.3. Color Coding
This block generates spatiotemporal feature images based on
the visual object tracking output and estimates the turtle
orientation. We basically aim to represent the turtle behavior
occurring over a time period as an RGB image. In order to
generate this image, we draw the path of the turtle using
the visual object tracking result. However, we also include the
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FIGURE 3 | Color coded spatiotemporal feature images generated using turtle velocity vector and orientation information.

orientation and speed information using hue and value channels
of the hue-saturation-value (HSV) color space. The angular
difference between the velocity vector (vn) direction and the
turtle orientation (θn) is used for determining the hue channel,
while the magnitude of the velocity vector is used for value
channel. An example output of the color coding block is given
in Figure 3.

3.3.4. Behavior Recognition Network
This block aims to recognize the target turtle behaviors
using the color-coded spatiotemporal feature images. Since
we formulate the behavior recognition task as a vision
based classification problem, we adopt a widely used network
architecture, ResNet50 (He et al., 2016), for this task. In order
to train and test the network, we used a dataset consisting
of 172 sequences with U-turn, Reversal, and random motions.
This dataset is further extended with rotated, shifted, and
symmetric versions of the sequences. Since we have a relatively
small dataset, we employed the transfer learning approach
where we use the coefficients pre-trained on the ImageNet
(Deng et al., 2009) dataset. We modified the last two fully-
connected layers for our behavior recognition task so that
the network gives a decision between three behavior classes.
The coefficients in the last two layers are trained using our
training set.

4. EXPERIMENTAL RESULTS

4.1. Object Tracking and Behavior
Recognition
For our visual object tracking experiments, we compared
several state-of-the-art algorithms on a dataset consisting of 59
sequences with nearly 25,000 frames. We use Center Location
Error (CLE) and Overlap Ratio (OR) as two base metrics
which are widely used in object tracking problems (Wu et al.,
2013). CLE is the Euclidean distance between the ground truth
location and the predicted location, while OR denotes the overlap
ratio of predicted bounding box and ground truth bounding
box. Based on these metrics, we generated the success and
precision plots. The precision plot shows the ratio of frames
where CLE is smaller than a certain threshold. The success
plot shows the ratio of frames where OR is higher than a

FIGURE 4 | Success and precision plots of various methods. (A) Success vs.

overlap threshold plots of various methods. (B) Precision vs. localization error

plots of various methods.

given threshold. Figure 4 shows the performance results of the
compared algorithms.

Based on this comparative analysis, we determined that the
SiamMargin (Kristan et al., 2019) algorithm achieved the highest
success and precision graphs among the compared algorithms on
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TABLE 2 | Normalized confusion matrix showing the percentage of actual and

predicted classes for 3 different behaviors.

Predicted

U-Turn Reversal Random

Actual U-Turn 83.3 3.7 13.0

Reversal 0 82.8 17.2

Random 6.7 5.0 88.3

TABLE 3 | Precision, Recall, and F1 Scores of defined behaviors.

Precision Recall F1 Score

U-Turn 0.833 0.925 0.877

Reversal 0.828 0.905 0.865

Random 0.883 0.745 0.808

Macro-Avg 0.848 0.858 0.85

the turtle dataset. Therefore, we used this algorithm in our visual
object tracking block.

For the orientation estimation experiments, we used 70
percent of the images as training samples, and the rest for the
validation and test samples. We used the batch size as 64, initial
learning rate as 1e-3, and the number of epochs as 50. In every
20 epochs, we dropped the learning rate by using the drop factor
value of 0.1. With these parameters, the model achieved a mean
error value of 12.4 degrees on the test set.

In our final set of experiments, we used color-coded
spatiotemporal feature images to recognize turtle behaviors. For
these experiments, we similarly used 70 percent of the behavior
sequences in our dataset to create spatiotemporal motion
patterns and trained the last two fully connected layers of the
ResNet50 architecture. Then, we used the test sequences to create
similar spatiotemporal motion patterns using the outputs of
SiamMargin tracker and orientation estimation network that we
trained in the previous step. Based on the behavior recognition
network outputs, we achieved the prediction results given in
Table 2. Corresponding Precision, Recall, and F1 Scores for each
behavior are presented in Table 3.

4.2. Anticipated Behavioral Results Using
This Method
Studying the effectiveness of bycatch reduction technologies
(BRTs) is a difficult task when conditions are less than ideal
for recording sea turtle interactions with fishing gear and BRTs
in the field and behavioral data requires intensive analysis by
researchers even when it can be obtained. Therefore, using
behavioral data from controlled experiments to train this
convolutional neural network improves the process.We intend to
use this initial study to discover if sea turtles do, in fact, recognize
fishing nets as a barrier, in which case they would likely avoid the
net with a U-turn when they can see them (presumably during
the day). We expect to identify more Reversal behaviors during
night trials when sea turtles most likely cannot see the net before

them. These behaviors can last as little as 3 to 5 s, so in one 15-min
trial a sea turtle can perform dozens to hundreds of behaviors
that require recording by a researcher. With most treatments
involving at least 15 sea turtles at 3 trials each, it becomes a time-
intensive project with natural human error that comes along with
watching hours of behavior videos. This algorithm can identify
these behaviors and enable a comparison between U-turn and
Reversal behaviors in daytime and nighttime trials.

5. DISCUSSION

5.1. Future Uses and Related Behaviors
While this method has been created and tested exclusively on
behavioral data in a controlled setting, we intend to use this
method on field trials in the future. Given that most gillnet
fisheries operate at night (Wang et al., 2010), obtaining high
resolution footage of sea turtle interactions is challenging. In
particular, we plan on assessing video footage of in situ sea
turtle interactions with gillnet fisheries as a future step of this
research project.

We also recognize that the reversal and U-turn behaviors
observed here are likely not exclusive to gillnet avoidance.
While we were unable to find literature outlining these specific
behaviors, we suspect that reversals and U-turns are evident
in other common sea turtle interactions, such as mating (e.g.,
avoidance behavior by females during courtship) (Frick et al.,
2000), predator avoidance (Wirsing et al., 2008), and competition
over food or habitat resources (Gaos et al., 2021). Additionally,
because this method was created for overhead video, drone
footage of sea turtle interactions would be an ideal way to collect
behavioral data in the field and subsequently detect the behaviors
of interest in other contexts, which has become a common
technique for capturing sea turtle behavior (Schofield et al., 2019).
For example, studies have captured overhead drone footage of
sea turtle courtship behavior (Bevan et al., 2016; Rees et al.,
2018). In the future, our machine learning method could be used
to detect these behaviors in relation to intraspecific aggression,
predator avoidance, and other important interactions captured
by drone footage.

5.2. Conclusion
In this study, we developed a behavior recognition framework
for sea turtles using color-coded spatiotemporal motion patterns.
Our approach uses visual object tracking and CNN based
orientation estimation blocks to generate spatiotemporal feature
images and processes them to recognize certain behaviors. Our
experiments demonstrate that the proposed method achieves an
average F1 score of 85% on recognizing the behaviors of interest.
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