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Berberine hydrochloride is an isoquinoline alkaloid, which has antitumoral, antibacterial,
and antiviral activities in vivo and in vitro. Charybdis japonica is one of the main
economic species of crab in Southeast Asia. We studied the molecular mechanism of
oxidative stress in berberine hydrochloride-treated C. japonica infected with Aeromonas
hydrophila. C. japonica were infected with A. hydrophila after being submerged in
different concentrations (0, 100, 200, and 300 mg/L) of berberine hydrochloride for
48 h. The full-length cDNA of Prx6 and the ORFs of Prx5 and PXL2A were cloned.
Prx6 and PXL2A each have one conserved domain, Cys44, and Cys81. The Prx5
conserved domain contains three important Cys loci, Cys75, Cys100, and Cys76. Prx6
was different from Prx5 and PXL2A in the Peroxiredoxin family. The transcription levels
of PXL2A infected with A. hydrophila were all higher than the control. The transcription
levels of C. japonica were further increased by adding berberine hydrochloride
and were increased the highest at a concentration of 300 mg/L. The activities of
glutathione peroxidase, superoxide dismutase, and catalase in the hepatopancreas of
berberine hydrochloride-treated C. japonica infected with A. hydrophila were significantly
increased compared with those only infected with A. hydrophila and the control group.
The glutathione transferase activity in the hepatopancreas was significantly increased
in berberine hydrochloride-treated C. japonica. The results of this study provide a new
understanding of the potential role of berberine hydrochloride on the oxidative stress
mechanisms of C. japonica.
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INTRODUCTION

Berberine hydrochloride is a natural isoquinoline alkaloid and
the main active ingredient of several herbal medicines commonly
used clinically, such as Coptis chinensis and Phellodendri
(Habtemariam, 2016) berberine hydrochloride is the most
important bioactive component in Phellodendron chinensis,
accounting for about 0.6% of Phellodendron chinensis extract
and 1.6% of berberine (Anna et al., 1995; Lu-Yang et al., 2014).
It has been studied widely in biochemistry and pharmaceutical
chemistry and found to have antitumoral, antibacterial, and
antioxidant (Domadia et al., 2008) activities both in vivo and
in vitro. Berberine hydrochloride has certain bacteriostatic
and bactericidal effects on Candida albicans, Trichophyton
mentagrophytes, and Staphylococcus aureus (Zhang et al., 2013;
Zorić et al., 2017; Xiao et al., 2019). Berberine can inhibit the
formation of extracellular amyloid peptides in bacteria, thus,
interfering with the formation and stability of biofilms (Peng
et al., 2015; Wang et al., 2018). In addition, berberine can also
affect the integrity and permeability of bacterial cell membranes,
and bind to some proteins on the cell membrane, thereby
affecting the structure and function of proteins. It also affects the
expression of bacterial DNA and binds to DNA (Kang et al., 2015;
Du et al., 2020).

Importance
With the rapid development of the C. japonica farming industry,
investors, in pursuit of economic benefits, have encountered
problems such as the high density of crab farming, environmental
degradation, and frequent outbreaks of various diseases, resulting
in high mortality and huge economic losses (Jithendran et al.,
2010). Bacterial infection of crabs in the process of culture
is one of the main causes (Xia et al., 2010; Bonami and
Zhang, 2011). The open water circulation system can give
rise to several crab bacterial diseases, including black gill
syndrome, shell disease, vibriosis, and edema disease (Wang,
2011). Among these, Aeromonas hydrophila of the Vibrionaceae
is a pathogenic bacterium affecting fish and crustaceans, which
leads to huge economic losses (Gonzalez-Escalona et al., 2006;
Igbinosa et al., 2012).

Oxidative response in innate immunity is an important
means to resist environmental stress and the invasion of
pathogens (Liu et al., 2020). All organisms are equipped
with a wide range of antioxidant proteins to maintain
intracellular redox homeostasis, including superoxide
dismutase (SOD), catalase (CAT), glutathione peroxidase
(GPx), glutathione transferase (GST), oxidized glutathione
(GSSG), glutathione (GSH), and peroxidase-reducing proteins
(Fridovich, 1972).

Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant
enzymes that can prevent oxidative damage and regulate
intracellular signal transduction (Jithendran et al., 2010). Prxs
reduce peroxides by using a redox-active cysteine and are
divided into three subgroups according to the number of
cysteine residues involved in the catalysis (Wood et al., 2003).
The Prx family has six subtypes, which can be divided into
two subgroups, including five 2-Cys Prxs (from Prx1 to Prx5)

and 1-Cys Prx (Prx6). In addition, depending on whether
70 conserved cysteine residues form either intermolecular or
intramolecular disulfide bond bridges (Fridovich, 1972), 2-Cys
Prxs are divided into typical and atypical categories. PRXL2A
was identified during fetal liver development and was activated
in monocytes stimulated by M-CSF (Yu et al., 2001). This
protein protects cells from oxidative stress. For example, it
appears to be one of the antioxidants involved in high-altitude
adaptation in humans living in the Andes of South America
(Guido et al., 2015). Prx5 was amplified in Macrobrachium
rosenbergii (Arockiaraj et al., 2012), Exopalaemon carinicauda
(Duan et al., 2013), and the crab Scylla paramamosain (Tu
et al., 2017). Prx6 has been cloned in Procambarus clarkii
(Wu et al., 2017).

In recent years, the treatment of bacterial diseases in aquatic
animals has depended on the use of a large number of antibiotics.
However, negative effects such as drug resistance, and cross
infection of pathogenic bacteria have appeared, which endanger
human health and pollute soil and water sources when released
into the environment (Castanon, 2007; Dupont, 2007; Martínez,
2009; Seal et al., 2013). Secondary metabolites isolated from
different plants can be beneficial to both humans and animals
(Lazreg Aref et al., 2011). Therefore, berberine hydrochloride was
considered as a bacterium drug to reduce side effects.

The molecular mechanism of oxidative stress in C. japonica
infected with A. hydrophila and exposed to berberine
hydrochloride was studied. The main objectives of this study are:
(1) To study the mRNA expression of Prx5, Prx6, and PRXL2A
genes in hepatopancreas, heart, intestine, muscle, and gills; (2) To
characterize Prx5, Prx6, and PRXL2A, as well as oxidative active
sites and functional properties; (3) To detect the oxidative stress
response of Prx5, Prx6, and PRXL2A genes at the mRNA level in
C. japonica immersed in berberine hydrochloride and infected
with A. hydrophila; (4) To determine the oxidative stress response
of C. japonica immersed in berberine hydrochloride and infected
with A. hydrophila by the activities of antioxidant enzymes.

MATERIALS AND METHODS

Experiment Design
The C. japonica used in this study weighed 82 ± 1.4 g, were
9.3 ± 0.9 cm long, and 6 ± 1.8 cm wide. C. japonica were
obtained from the waters around Malaysia. There were seven
treatment conditions and controls, each with three repeat tanks,
each tank contained 12 C. japonica that were added with the
same nets. PVC pipes were provided as shelter for the animals
to prevent cannibalism. The experiment lasted for 2 weeks.
During domestication, all the crabs were fed commercial feed
(9812; Shanghai Harmony Feed Co., Ltd., Shanghai, China)
at 7:00 and 20:00 daily. The daily feed was 5% of the crab’s
body weight. The crabs were exposed to seawater using an
artificial sea salt cycle (a salinity of 28 psu). Water temperature
was controlled at 25 ± 1◦C, pH 8.0 ± 0.2, dissolved oxygen
concentration 5.0 mg L−1, and light/dark period was 12 h.
There were 252 samples. The seven treatments were: C. japonica
treated with 100, 200, and 300 mg/L of acid berberine and
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injected with 105 CFU/L of A. hydrophila; C. japonica injected
with 105 CFU/L of A. hydrophila; C. japonica soaked in
berberine hydrochloride 100, 200, and 300 mg/L. Two weeks
after acclimation, water quality remained at the same level as
during domestication. The C. japonica were not fed for 24 h
before the experiment. According to the preliminary experiment,
300 mg/L is harmless to C. japonica. C. japonica were soaked
in berberine hydrochloride in nine tanks containing either 100,
200, or 300 mg/L, and 48 h later, 105 CFU/L of A. hydrophila
was injected into the fourth leg. According to the preliminary
experiment, A. hydrophila 105 CFU/L could cause death in
C. japonica after 24 h. Nine C. japonica not soaked in berberine
hydrochloride were injected with 105 CFU/L A. hydrophila into
the fourth leg as a control. After 72 h, 252 crabs were anesthetized
on ice, and the tissues were collected.

RNA Extraction and Full-Length cDNA
Cloning
Total RNA was extracted from the prepared samples using
TRIzol Reagent (Aidlab Biotech Co., Beijing, China) according
to the manufacturer’s instructions. Gene fragments of Prx5,
Prx6, and PXL2A from C. japonica were obtained and verified
in the transcriptome database of our laboratory (unpublished).
BLAST comparison and open reading frame (ORF) analysis
showed that Prx5 and PXL2A had complete ORF regions.
After obtaining full-length genes, full-length primers were
designed and validated, and full-length fluorescent quantitative
primers PRX5f, PRX5R, PXL2A F, and PXL2A R were designed
(Table 1). ST comparison and ORF analysis revealed partial
cDNA regions of Prx6 gene fragments. RACE primers (3′ and 5′)
were designed by Primer31. Full-length fluorescent quantitative
primers Prx6 F1, Prx6 F2, Prx6 F3, Prx6 R1, and Prx6 F2 R2 were
designed (Table 1).

1http://bioinfo.ut.Ee/primer3-0.4.0

TABLE 1 | Primer names and sequences.

Primer name Sequence (5′ to 3′)

Prx5 F ATGCTTCGCCGCTCTTTCGC

Prx5 R CTACGTGGCAGTCAGTTTCTTGC

PrxL 2A F ATGTCGCTATCCGTCATG

PrxL 2A R GATAAACTGATACTATTGCC

qPCR -Prx6 F ACCCAGATGAGAAGACAGCC

qPCR -Prx6 R TCTTCTTGGCCTCATCAGCA

qPCR -PXL2A F GTGCCTATGTATGCCCTCCT

qPCR -PXL2A R CAACAAGAACACACTGCCCA

qPCR -Prx5 F GTACATGAAGGAGGCGGAGA

qPCR -Prx5 R CAAGAACCGGCAAGTCGATC

Beta -actin F CTGCGGAATCCACGAAAC

Beta -actin R GTCAGCAATGCCAGGGTA

5′RACE -Prx6 F1 GGATGCCCCATTTGTC

5′RACE -Prx6 F2 GAGGTAAGAATGCAGCTT

5′RACE -Prx6 F3 GCCCGTCAGTGCTGTCAG

3′RACE -Prx6 R1 GGTGCTGCCCTCCATCCCTGCTGA

3′RACE -Prx6 R2 CCCAGAGCACAAGGTGGTCCAGGT

RNA Extraction and Full-Length cDNA
Cloning
The cDNA end amplification step, the full length of the cDNA
sequence Prx6 expression products were negative according to
SMARTer RACE 5′/3′ kit instructions. The PCR product of
amplified Prx6 was detected by agarose gel electrophoresis to
check the clarity of the band and the length of the fragment. The
PCR products of full-length Prx5 and PXL2A were detected by
agarose gel electrophoresis to check the clarity of the bands and
the length of the fragments.

Full-length Prx6 sequences were obtained by splicing the
terminal and intermediate sequences with DNAMan software.
The primers were designed for PCR based on the spliced
full-length fragments (Table 1) and sent to the Shanghai
Baibaishun Biotechnology Co., Ltd. for sequencing. The results
were compared through the NCBI database to verify the accuracy
of the complementary DNA sequences.

Bioinformatics Analysis
This experiment adopted the ORF finder2 to predict ORF interval
homologous proteins were analyzed using BLASTP, and protein
hydrophobic water using ExPASy ProtScale3 analysis. ExPASy
was used for ProtParam analysis of the amino acid composition,
molecular weight, and isoelectric point. SignalP 5.1 Server4 was
used to predict signal peptides. Protein domains were analyzed
by SMART, and secondary and tertiary structures were analyzed
by PSIRED Protein Structure Prediction Server and Swiss-model
Server, respectively. DNAMan was used for multiple sequence
alignment, and MEGA-X was used to construct a phylogenetic
tree to compare gene sequence homology. In the process of
phylogenetic tree construction, the evolutionary history was
inferred by the neighbor-joining method, and the evolutionary
distance was calculated by the Poisson correction method.
Amino acid sequence alignment of species was performed using
the NCBI database.

Quantitative Real-Time PCR Analysis
RNA was extracted from the hepatopancreas, gills, muscle,
heart, and intestine for real-time fluorescence quantitative PCR
analysis. Rt-qPCR was performed using CFX96 RT-PCR (BioRad,
Hercules, CA, United States) and TransStart Top Green qPCR
SuperMix (TransGen, Beijing, China). The primers qPCR-
PRX6F, QPCR-PRx6r can be found in Table 1.

Enzyme Activities
Catalase, glutathione peroxidase, superoxide dismutase,
glutathione transferase, oxidized glutathione, and glutathione
were measured by kits provided by the Nanjing Jiangchen
Bioengineering Research Institute. SOD activity was determined
by the Peskin and Winterbourn methods. The ratio of
autoxidation rate was measured at 450 nm for samples
with or without serum. The activity was assessed in terms

2http://www.ncbi.nlm.nih.gov/gorf/orfig.cgi
3https://web.expasy.org/protscale/
4http://www.cbs.dtu.dk/services/SignalP/
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of U/mL. Determination of CAT activity was according to
the method; H2O2 was determined by measuring residual
at 405 nm. GSSG was detected at an absorbance of 405 nm,
GSH was detected at 405 nm, and GPX was detected at
340 nm. An 0.01 increase in the absorbance of the reaction
system resulting from 1 min reaction of GPX at 37◦C per
milliliter of serum was defined as one unit TAC. The amount
of enzyme that reduced the GSH concentration to 1 mmol
L−1 per minute in the reaction system was defined as one
GPx unit, and the unit of glutathione disulfide reductase
(GR) activity was defined as the amount of enzyme that
consumed 1 mmol NADPH within 1 min, using 1-chloro-2
and 4-dinitrobenzene as substrates. GST was measured by
absorbance at 340 nm.

Data Analysis
The experimental data were statistically analyzed by Microsoft
Office Excel 2010 and SPSS 19.0, and the results were expressed
as the mean ± standard deviation (SD). The relative mRNA
levels of target genes were analyzed using 2−11Ct. One-way
analysis of variance (ANOVA) was used to test the significance
of the difference (P < 0.05), and the Duncan test was used for
multiple comparisons.

RESULTS

Full-Length Sequence Analysis
The complete mRNA sequences for Prx5, Prx6, and PXL2A have
been submitted to GenBank with accession numbers MZ611745,
MZ611746, and MZ611747. The full-length mRNA of Prx5, Prx6,
and PXL2A contained 498,660 and 651 bp ORFs, and the full-
length cDNA of Prx6 was 1114 bp. The polypeptides of Prx5,
Prx6, and PXL2A were 207, 219, and 216 amino acids long with
predicted molecular weights of 18.2, 24.1, and 18.2 kDa and
theoretical isoelectric points of 6.14, 5.36, and 6.13, respectively.

Multiple Sequence Alignment
Figures 1, 2 show the alignment of C. japonica PRDX5, PRDX6,
and PXL2A with other homologous sequences. The PRDX5
subfamily protein contains a mitochondrial transmembrane
transport signal peptide at the N-terminal, which is consistent
with the prediction of a protein with subcellular localization.
It also has a PRX5_like conserved domain, which contains
three important Cys sites. There is a possible active site (red
box), where Cys75 is associated with antioxidant activity and
S-palmitoylation. If this site is modified by S-palmitoylation,
it will lose antioxidant activity. Cys100 is not a key amino
acid and has nothing to do with antioxidant activity and
S-palmitoylation. Cys176 can form an internal disulfide bond
with the Cys75 subunit, which is related to antioxidant activity
and is independent of S-palmitoylation. PRDX6 subfamily
proteins all have a PRX_1CYS domain, and the TxxCxxR (red
box) is an important active site in the protein, which may have
a cysteine sulfenic acid (-SOH) intermediate. Cys44 may form
a disulfide for cysteine or small mercaptan molecules of other
proteins. PXL2A subfamily proteins all have PRX_like2 domains,

and only one Cys (Cys81 in the red box) is an important active
site in the protein.

Phylogenetic Tree Construction
The amino acid sequences of PRDX5 and PRDX6 genes from
C. japonica were compared with those from other representative
organisms, and the amino acid sequences of PRDX5 and
PRDX6 were constructed by the NJ method (Figure 3). PRDX5
from C. japonica was clustered with PRDX5 from Scylla
paramamosain and with PRDX5 from other Malacostraca-like
species in a branch, closest to insects, and classified into a
large evolutionary division. PRDX5 of fishes and mammals was
another evolutionary branch of clustering. It is most closely
related to PRDX6 of other fungi. The PRDX6 from C. japonica is
very close to PRDX5 in the evolutionary tree and has the highest
similarity with the PRDX6 sequence of Scylla paramamosain and
is grouped into a branch with PRDX6 of other Malacostraca
species and is in an evolutionary relationship with insects and
Demospongiae. It is classified with PRDX6 of fish, amphibians,
birds, and mammals in another large branch of evolutionary
clustering and is most closely related to the PRDX6 of other fungi.

The amino acid sequences of the PXL2A gene from
C. japonica were compared with PXL2A amino acid sequences
from other representative organisms, PXL2B and PXL2C,
and the amino acid sequences of the PXL2A gene were
constructed by the NJ method (Figure 4). As can be seen
from the results of the evolutionary tree, PXL2A from
C. japonica has the highest similarity with PXL2A from
Chionoecetes opilio and is clustered into the same group
with other Malacostraca species. The PXL2A of gastropods,
bivalves, polyps, fish, amphibians, birds, and mammals are in
another evolutionary branch of clustering. The evolutionary
relationship with PXL2A of hexanauplia is the farthest. In
contrast, PXL2B and PXL2C were clustered separately into two
evolutionary branches, constituting the outgroups of PXL2A
lineal homologs.

Tertiary Structure
The amino acid sequences of Prx5, Prx6, and PXL2A were
deduced, as shown in Figure 5. Peroxiredoxins (Prxs) are an
important class of peroxidases that are involved in antioxidant
protection and redox signaling. The third-order structure of
PRDX5 of C. japonica was constructed using the third-order
structure detection results from PRDX5 of Alvinella pompejana
(2xHF.1) Then, the results of tertiary structure human PRDX5
(2vL2.2) were used to predict the possible active site of PRDX5
in C. japonica. The results showed that the active site of
C. japonica PRDX5 was a conserved redox-active cysteine
residue, i.e., cysteine peroxide [C (P)], which subjects the
peroxide substrate to nucleophilic activity. Hydrogen peroxide
oxidizes C (P)-SH to cysteine sulfonic acid (C (P)-SOH), which
then forms a disulfide bond with another cysteine residue
(decomposing cysteine (C (R)). The disulfide is then reduced
by the appropriate electron donor to complete the catalytic
cycle. In this atypical 2-cys-PRx, C (R) is present in the same
subunit to form an intramolecular disulfide. The disulfide is then
reduced by thioredoxin.
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FIGURE 1 | Sequencing results and amino acid sequence analysis of PRDX5, PRDX6, and PXL2A in C. japonica. The start (ATG) and end (TGA) codons are
highlighted with a black box. *Denotes the termination codon. The blue boxes indicate possible mitochondrial signaling peptides. The red boxes represent the
redoxin domain. The red shade indicates the likely active site, cysteine sulfenic acid (-SOH) intermediate, for peroxidase activity.

Frontiers in Marine Science | www.frontiersin.org 5 December 2021 | Volume 8 | Article 784205

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-784205 December 17, 2021 Time: 15:9 # 6

Han et al. Enhance the Antioxidant Ability

FIGURE 2 | Results of the similarity analysis of PRDX5, PRDX6, and PXL2A. The red box is The important active site (R, T, and C), cysteine sulfenic acid (-SOH)
intermediate, for peroxidase activity. The red entity box is located in the conservative domains of redoxin, PRX_1cys, and PRX_like2.

In the process of building the tertiary structure prediction
models of C. japonica PRDX6 and PXL2A (Figure 5), we
found that there were few relevant reference models. We
finally selected the tertiary structure detection results of

human PRDX6 (65b6m.1) to build the tertiary junction
of C. japonica PRDX6 and PXL2A. The active sites
were also predicted. The results showed that C. japonica
PRDX6 and PXL2A were unique 1-cys-p. Unlike some
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FIGURE 3 | Evolutionary relationships of PRDX5 and PRDX6 amino acid sequence of C. japonica and other species.

2-cys-PRx, it is found in all organs and all species from
bacteria to humans.

Peroxiredoxin Family
The Peroxiredoxin family can be divided into seven subfamilies
named PRDX1∼6 and peroxiredoxin-like 2 (Figure 6).

The subfamilies of Peroxiredoxin-like 2 include PXL2A,
PXL2B, and PXL2C. In C. japonica, we found PRDX1∼6
and PXL2A through omics data comparison. The expression
levels of PRDX5, PRDX6, and PXL2A were relatively high,
and the C. japonica infected with A. hydrophila soaked
with berberine hydrochloride was significantly upregulated.

Frontiers in Marine Science | www.frontiersin.org 7 December 2021 | Volume 8 | Article 784205

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-784205 December 17, 2021 Time: 15:9 # 8

Han et al. Enhance the Antioxidant Ability

FIGURE 4 | Evolutionary relationships of PXL2A amino acid sequence of C. japonica and other species.

The evolutionary tree of the cloned genes is shown in
Figure 7.

Tissue Expression Profile of
Peroxiredoxins
Real-time quantitative PCR expression analysis showed that the
transcription levels of Prx5, Prx6, and PXL2A were generally
expressed in all the tested tissues, and the expression patterns
were different in different tissues. As shown in Figure 7,
transcription levels of Prx5, Prx6, and PXL2A are higher in the
gills, hepatopancreas, and muscles, and lower in the intestine and
heart. The hepatopancreas is the immune organ of C. japonica.
In Figure 8, the transcription levels of Prx5, Prx6, and
PXL2A increased stepwise in 100, 200, and 300 mg/L berberine
hydrochloric acid-soaked hepatopancreas of C. japonica. In
300 mg/L berberine hydrochloric acid, the C. japonica infected
with A. hydrophila had lower levels of Prx5 and Prx6 than the
control group, while transcriptional level of PXL2A was just the
opposite. The transcription levels of Prx5, Prx6, and PXL2A in
the hepatopancreas of C. japonica soaked with 100, 200, and

300 mg/L berberine hydrochloride and injected with 105 CFU/L
A. hydrophila, increased incrementally.

Results of Enzyme Activities of
Glutathione Peroxidase, Catalase,
Superoxide Dismutase, Glutathione
Transferase, Oxidized Glutathione, and
Glutathione
As shown in Figure 9, 100, 200, and 300 mg/L berberine
hydrochloride soaked C. japonica infected with A. hydrophila
significantly increased the activities of SOD, GPX, and CAT
in hepatopancreas compared with C. japonica only infected
with A. hydrophila and the control group. Supplementation of
berberine hydrochloride at 100, 200, and 300 mg/L significantly
increased the activity of GST in the hepatopancreas. The activity
of GST and GSSG in hepatopancreas was maximized by soaking
with 300 mg/L berberine hydrochloride. Supplementation of
berberine hydrochloride at 100, 200, and 300 mg/L could affect
the GSH content. A high GSH/GSSG ratio was maintained
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FIGURE 5 | The predicted spatial structures of C. japonica PRDX5, C. japonica PRDX6, C. japonica PXL2A, Arenicola marina PRDX5, Homo sapiens PRDX6, and
Homo sapiens PRDX5.

in the experimental group of 200 and 300 mg/L berberine
hydrochloride and A. hydrophila at the same time.

DISCUSSION

Peroxiredoxins (Prxs) are an important class of peroxidases
that are involved in antioxidant protection and redox signaling
(Ledgerwood et al., 2017). They use conserved Cys residues
to reduce the peroxide substrate. Prxs have very high catalytic
efficiency, making them major players in cell-wide hydrogen
peroxide reduction. Prxs play an important role in a variety of
diseases because reactive oxygen species are involved in many
cellular metabolic and signaling processes. In this study, the
Prx family members PRDX5, PRDX6, and PXL2A were studied.
The likely active site in PRDX5 is indicated by a red circle in
Figure 6. The results showed that the active site of C. japonica
PRDX5 was a conserved redox-active cysteine residue Cys75,
i.e., cysteine peroxide [C (P)], which subjected the peroxide
substrate to nucleophilic activity. Hydrogen peroxide oxidizes
C (P) -SH to cysteine sulfonic acid [C (P) -SOH], which then
forms a disulfide bond with another cysteine residue Cys176
decomposing cysteine [C (R)]. The cys75-s-cys176 disulfide is
then reduced by the appropriate electron donor to complete the
catalytic cycle (Declercq et al., 2001). In this atypical 2-cys-PRx,
C (R) is present in the same subunit to form an intramolecular
disulfide. The disulfide is then reduced by thioredoxin (Hall et al.,
2010). Both conserved Cys residues are required for their catalytic

function, suggesting that Prx5 can be used as a reducing agent to
reduce cell metabolism and oxidative stress (Wood et al., 2003).
PRDX6 has a possible active site (red circle, Figure 6). Of the six
Prxs, Prx6 has 1-cys-PRx, and unlike the 2-cys-PRx of PRDX5, it
is present in all organs and all species from bacteria to humans
(Poole and Nelson, 2016). In addition, Prx6 is unique in that
it has Ca20 + -independent phospholipase A2 (PLA2) activity;
Ser32, His26, and Asp140 of Prx6 are believed to be involved
in PLA2 activity. Ser32 is involved in liposome binding and
hydrolysis, while His26 is only involved in binding, and Asp140 is
involved in catalysis (Manevich et al., 2007). Phosphorylation of
Prx6 at Thr177 in the C-terminal domain may lead to necessary
structural changes. When phospholipids bind to the monomer
Prx6, the phospholipids points toward the PLA2 active site and
the acyl chain points toward the peroxide active site (Fisher,
2010). PXL2A is an antioxidant molecule that protects cells from
oxidative damage (Gong et al., 2013). PXL2A has a key region
that activates thioredoxin, an antioxidant protein that protects
cells from oxidative stress (Yu et al., 2001; Chen et al., 2016).
In this experiment, Prx5 and Prx6 of C. japonica infected with
A. hydrophila had lower transcriptional levels and the antioxidant
capacity in hepatopancreas was also lower than the control
group. The hepatopancreatic transcription level of C. japonica
was significantly improved after the addition of 100, 200, and
300 mg/L berberine hydrochloride. The transcription levels of
C. japonica PXL2A infected with A. hydrophila were all increased
compared with the control group, while the hepatopancreatic
transcription levels of C. japonica were further increased
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FIGURE 6 | Evolutionary relationships of the Peroxiredoxin family.

by adding 100, 200, and 300 mg/L berberine hydrochloride.
From the above conclusions and considerations, berberine
hydrochloride can improve the hepatopancreas expression of
Prx5, Prx6, and PXL2A genes in C. japonica to enhance resistance
to oxidative stress. Enhance oxidative stress by activating 1-Cys-
Prx and 2-Cys-prx active sites. The strongest ability to oxidize
stress was observed at 300 mg/L berberine hydrochloride.

Glutathionesylated Prx6 complexes are regenerated by
glutathione into a new active form (Manevich et al., 2004; Ralat
et al., 2006). A study that detected Prx6 and GST amino acid
fragments by fluorescence titration found that Pro40-Cys47 and

Leu148-PHE157 of Prx6 interact with GST (Kim et al., 2016). The
Prx6 active site may be involved in the GST interaction, making
it easier for GSH to enter the active site in the active state. The
active site of PRDX6 was Cys44, and that of PXL2A was Cys81.
C(P) is reactivated by glutathione s-transferase PI-mediated
glutathione conversion, followed by spontaneous reduction
of the enzyme by glutathione (Kim et al., 2016). Physiological
activation of 1-Cysprx requires the reaction of its heterodimer
with GST, then oxidized glutathione to cys-44, and then the
heterodimer is separated to obtain glutamate mercaptosylated
protein, which is catalyzed by spontaneous reduction of
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FIGURE 7 | Relative expression of Prx5, Prx6, and PXL2A genes in different tissues of C. japonica is shown. The abscissa is the heart, hepatopancreas, gills,
muscles, and intestines. The bar chart shows significant differences (*P < 0.05).

FIGURE 8 | Relative expression of Prx5, Prx6, and PXL2A genes in the hepatopancreas of C. japonica. Infected with A. hydrophila (AH), C. japonica immersed in
berberine hydrochloride at 100 mg/L (BH1) and 200 mg/L (BH2), C. japonica immersed in berberine hydrochloride at 300 mg/L (BH3), C. japonica immersed in
berberine hydrochloride at 100 mg/L, and injected with A. hydrophila 1 (BHAH1), C. japonica immersed in berberine hydrochloride at 200 mg/L and injected with
A. hydrophila of 105 CFU/L (BHAH2), C. japonica immersed in berberine hydrochloride at 300 mg/L and injected with A. hydrophila (BHAH3), and the control group
(CK) at 105 CFU/L. The bar chart shows significant differences (*P < 0.05).

glutathione to complete 1-Cysprx activation (Manevich et al.,
2004). Glutathione is used for detoxification by GST and
glutathione peroxidase (GPx) is used for H2O2 degradation
(Winston and Giulio, 1991). High levels of GSH are maintained
through de novo synthesis and GR-dependent GSSG cycling back
to GSH (Zhu et al., 2013). In this study, immersion of the crabs
in berberine hydrochloride at 100, 200, and 300 mg/L could
significantly increase the activity of GST in the hepatopancreas of
C. japonica. It was found that 300 mg/L berberine hydrochloride
in C. japonica infected with A. hydrophila maximized the activity
of GST and GSSG in hepatopancreas. Different concentrations
of berberine hydrochloride could affect the content of GSH.
GSH/GSSG provides antioxidant protection in various disease
models. A high GSH/GSSG ratio maintains normal cell function
and prevents oxidative stress damage (Zhu et al., 2013). A higher
GSH/GSSG ratio was maintained in the experimental group
of C. japonica infected with A. hydrophila by immersion of

berberine hydrochloride at 200 and 300 mg/L in this experiment.
The activities of GST,GSSG and GSH in hepatopancreas of
Acipenser japonicus soaked with berberine hydrochloride at
100 mg/L, 200 mg/L and 300 mg/L were significantly increased.

Superoxide dismutase and catalase are involved in a
variety of physiological and metabolic reactions, especially
scavenging free radicals and preventing biomolecular
damage (Simon et al., 1974). GPX is an intracellular and
cytoplasmic enzyme that degrades most hydrogen peroxide
and, in the presence of reducing glutathione, converts
it to oxidizing glutathione and water as well as catalase
(CAT) (Leitão and Alcantara-Gomes, 1994). In general,
CAT is an enzyme that converts high concentrations
of H2O2 into water and oxygen. However, when H2O2
is present at low concentrations, GPX can control this
transformation (Halliwell, 1992). GPX can eliminate H2O2
at low concentrations, while CAT can only eliminate H2O2
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FIGURE 9 | Charybdis japonica (AH) infected with A. hydrophila, crabs immersed in berberine hydrochloride 100 mg/L (BH1), 200 mg/L (BH2), and 300 mg/L
berberine hydrochloride (BH3), 100 mg/L berberine hydrochloride and injected with 1 A. hydrophila (BHAH1), 200 mg/L berberine hydrochloride and injected with
105 CFU/L A. hydrophila (BHAH2). Crabs immersed in berberine hydrochloride 300 mg/L and injected with A. hydrophila (BHAH3) and control group CK at
105 CFU/L. Hepatopancreas were used to measure the enzymes and their contents. Each value represents the mean ± SEM (n = 4 for A. hydrophila injection group;
N = 4 for the control). ∗Significantly different (P < 0.05) from control values.

at high concentrations (Kang et al., 2005). Therefore, in our
study, berberine hydrochloride immersion of C. japonica
infected with A. hydrophila and the control group (CK),
significantly increased the activities of SOD, CAT, and GPX
in the hepatopancreas. It was found that 300 mg/L berberine
hydrochloride can maximize the activation of GPX and CAT

to help C. japonica fight against A. hydrophila infection and
can degrade high and low concentrations of H2O2 in the crab.
In this study, 100, 200, and 300 mg/L berberine hydrochloride
significantly increased SOD activity in the hepatopancreas
compared with the control group. Berberine hydrochloride
can affect the activity of SOD, to improve its antioxidant
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capacity, and help C. japonica to challenge the A. hydrophila
infection process.

CONCLUSION

In summary, the full-length cDNA sequence of Prx6 and the
ORF sequence of Prx5 and PXL2A were obtained to analyze the
evolutionary relationships of the Peroxiredoxin family. Berberine
hydrochloride can enhance the expression of Prx5, Prx6, and
PXL2A genes in the hepatopancreas of C. japonica to enhance
the antioxidant ability. It was found that berberine hydrochloride
could increase the activities of GPX, CAT, and GST in the
hepatopancreas of C. japonica. The results of this study provide
a new understanding of the role of berberine hydrochloride
on the oxidative stress mechanism in crustaceans and a new
scientific basis for the potential use of berberine hydrochloride
in protecting crabs against bacterial infection and its application
in aquaculture. In addition, secondary metabolites may provide
an alternative to antibiotics in the treatment of aquatic animal
bacterial diseases.
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