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Community assembly is the result of both, deterministic and stochastic processes.
The former encompasses niche-based local-scale mechanisms such as environmental
filtering and biotic interactions; the latter includes ecological drift, probabilistic
colonisation, and random extinctions. Using standardised sampling protocols, we show
that the spatial variation in species composition (beta diversity) of shallow subtidal
macrobenthic communities of sub-Antarctic (Strait of Magellan and Yendegaia Fjord
[Beagle Channel]) and Antarctic (Fildes Bay [King George Island, West Antarctic
Peninsula]) localities reflects a high contribution of stochastic processes to community
assembly. Null model analyses indicated that random sampling from species pools
of different sizes drove the observed among-locality differences in incidence- and
abundance-based beta diversity. We analysed a normalised stochasticity ratio (NST ),
which delimits between more deterministic (<50%) and more stochastic (>50%)
assembly. NST was notably larger than 50%, with mean values of 69.5% (95%
CI = 69.2–69.8%), 62.5% (62.1–62.9%), and 72.8% (72.5–73.2%) in Strait of Magellan,
Yendegaia Fjord, and Fildes Bay, respectively. Accordingly, environmental factors,
such as depth, seawater temperature, salinity, and underwater light penetration,
accounted for a small fraction of the spatial variation in community composition
across the three localities. In this region, therefore, stochastic processes could have
stronger effects on community assembly than deterministic niche-based factors.
As anthropogenic biotic homogenisation continues apace, our study can give
useful insights into the major ecological processes in Southern Ocean’ coastal
marine communities.
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INTRODUCTION

Community assembly has been a major topic in fundamental
and applied ecological research. In this vein, the analysis of
the spatial variation in community composition—beta diversity
(Whittaker, 1972)—provides important insights into assembly
mechanisms (Chase and Myers, 2011; Legendre and De Caceres,
2013). As a relevant dimension of biodiversity, beta diversity
is associated with ecosystem functioning and several aspects of
stability, such as resistance, resilience, recovery, and invariability
(Mori et al., 2018; Valdivia et al., 2021). Since anthropogenic
biodiversity loss affects ecosystems functioning and stability
especially at large spatial scales, understanding beta diversity at
regional scales is particularly relevant today (Isbell et al., 2017;
Gonzalez et al., 2020).

Community composition, i.e., the combination of species
incidences and abundances, is controlled by both deterministic
and stochastic forces (HilleRisLambers et al., 2012; Vellend, 2016;
Thompson et al., 2020). On the one hand, deterministic niche-
based processes include environmental filtering when species
are adapted to narrow environmental conditions, density-
independent physiological responses to abiotic conditions
(e.g., thermal tolerance), and density-dependent biological
interactions like competition, predation, and facilitation
(MacArthur and Levins, 1967; Keddy, 1992; Belyea and
Lancaster, 1999; Somero, 2010). Strong correlations between
beta diversity and environmental variation would hint for a
primary role of deterministic drivers in community assembly
(e.g., Legendre et al., 2009; Menegotto et al., 2019; López-
Delgado et al., 2020). On the other hand, stochastic processes
encompass random events of reproduction and mortality along
with random chance for colonisation (probabilistic dispersal),
priority effects, historical contingence, and ecological drift led
by random changes in species abundances (MacArthur and
Wilson, 1967; MacArthur, 1972; Drake, 1991; Hubbell, 2001;
Fukami, 2004; Reijenga et al., 2021). When environmental
factors account for small proportion of biological variation, large
correlations between beta diversity and geographic distances
can be used as evidence for a stronger role of stochastic
processes (Gilbert and Lechowicz, 2004; Chase and Myers, 2011).
Importantly, a predominant influence of these mechanisms on
community assembly can generate beta diversity patterns that
are indistinguishable from random chance alone (Ning et al.,
2019; Liang et al., 2020).

The relative contributions of deterministic and stochastic
processes to community assembly may vary among
biogeographic regions. For example, the decrease of beta
diversity from tropical to temperate forests has been explained
as a result of variations in the relative importance of assembly
processes (e.g., Qian and Ricklefs, 2007; Soininen et al., 2007).
However, the use of null models revealed that such biogeographic
pattern is actually the result of differences in species pool size
(gamma diversity) and thus random sampling effects: after
correcting for differences in gamma diversity, the apparent
decrease in beta diversity with increasing latitude disappears
(Kraft et al., 2011, 2012; Myers et al., 2012). Therefore, processes
that generate differences in species pools could have stronger

effects on beta diversity than variations in community assembly
mechanisms (Ricklefs, 1987; Hubbell, 2001; Benício et al., 2021).

Antarctic and sub-Antarctic marine subtidal communities
provide an opportunity to assess the importance of deterministic
and stochastic ecological mechanisms. In these regions, marine
subtidal communities represent a unique spot of biodiversity.
The spatiotemporal distribution of subtidal communities in
the Southern Ocean has been shaped by large-scale geological,
paleoclimatic, and dispersal processes (Arntz et al., 2005; De
Broyer and Koubbi, 2014). As a consequence of the formation
of the Antarctic Circumpolar Current (ACC), Antarctica’s
33-million-year isolation and associated dispersal limitations
between Antarctic and sub-Antarctic areas have boosted the effect
of stochasticity in shaping some local communities (Griffiths
and Waller, 2016; Convey and Peck, 2019). Yet, recent evidence
suggests that dispersal limitations may not be as strong as
previously thought, and local environmental filter could account
for differences between Antarctic and sub-Antarctic marine
communities (Fraser et al., 2018; Avila et al., 2020). The Southern
Ocean, for example, has generally cooled since the opening of
the Drake Passage (Peck, 2018). Moreover, glacier melting is
intensifying in these regions and elsewhere due to climate change,
which can be seen as a selective force in both Antarctic and
sub-Antarctic coastal communities (Barnes and Clarke, 2011;
Stammerjohn et al., 2012; Cauvy-Fraunie and Dangles, 2019).
Thus, to what degree niche and stochastic processes influence
the assembly of local communities across Antarctic and sub-
Antarctic regions is still an open question.

Here, we analyse beta diversity of subtidal hard-bottom
communities dominated by macroinvertebrates and macroalgae
in three localities across Antarctic and sub-Antarctic regions
(Figure 1): Strait of Magellan (ca.,−53.7◦S) and Yendegaia Fjord
(Beagle Channel; ca., −54.9◦S) in Chilean South Patagonia, and
Fildes Bay (King George Island, ca., −62◦S) in West Antarctic
Peninsula. Using identical field protocols, we estimated species
incidences and abundances in 50 × 50-cm plots. This plot size
was appropriate to capture responses to fine-scale environmental
heterogeneity and the outcome of local species interactions (see
also Kraft et al., 2011, 2012; Menegotto et al., 2019). Alpha
diversity was defined as the number of species in a single
0.25 m2 plot. Gamma diversity of each locality was estimated
as asymptotic species richness calculated as first-order Jacknife,
which allowed us to reduce the bias in observed species richness.
In this context, observed number of species is assumed to be
a biased underestimation of the complete assemblage richness
(Gotelli and Colwell, 2011). Following Anderson et al. (2011),
beta diversity was estimated for each locality as the among-
plot variation in species incidences and abundances (Jaccard
and Bray-Curtis dissimilarities, respectively). This framework
makes clear distinction between presence/absence vs. relative
abundance data, and the exclusion of “double-zeros” or joint-
absence data, which usually characterise species abundance
datasets. In addition, we did not use multiplicative or additive
beta partitions (e.g., Tuomisto, 2010) to avoid the mathematical
interdependence between beta, alpha, and gamma diversities
(Chase et al., 2011). The plots at each of the three localities
covered a range of environmental conditions, including depth

Frontiers in Marine Science | www.frontiersin.org 2 December 2021 | Volume 8 | Article 780268

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-780268 December 2, 2021 Time: 11:33 # 3

Valdivia et al. Beta Diversity in Southern Ocean

FIGURE 1 | Geographic positions of localities and sites. Strait of Magellan (STRA) and Yendegaia Fjord (YEND) are located in Chilean south Patagonia; Fildes Bay
(FILD) is located in West Antarctic Peninsula. See all region and site codes in Table 1. Colour scales depict maximal sea surface temperatures (monthly averages)
obtained between 2010 and 2020. Data were derived from a multi-sensor ultra-high-resolution analysis (https://coastwatch.pfeg.noaa.gov/erddap) and visualised in
Ocean Data View (Schlitzer, 2018; http://odv.awi.de).

(between 5 and 20 m), distance from the nearest glacier, and
river inputs (Huovinen et al., 2016, 2020; Valdivia et al., 2020;
Palacios et al., 2021). The sampling design allowed us to test two
competing hypotheses:

(H1) Long-term spatial isolation and differences in abiotic
environmental conditions underpin different assembly rules
among Strait of Magellan, Yendegaia Fjord, and Fildes Bay.
Therefore, among-region differences in beta diversity should
hold after correcting for between-locality variation in gamma
diversity. Also, the relative contributions of deterministic
and stochastic processes to community composition should
vary among regions.

(H2) Alternatively, broad-scale factors that generate
differences in species pools might drive the observed
between-region differences in beta diversity. Consequently,
any observed difference in beta diversity among regions
should disappear after correcting for gamma diversity.
Moreover, stochastic processes will account for the largest
proportion of beta diversity across the three localities.

MATERIALS AND METHODS

Study Regions
Three localities were analysed (Figure 1): Strait of Magellan,
Yendegaia fjord (both in Chilean South Patagonia), and Fildes

bay (South Shetland Islands, West Antarctic Peninsula). For
brevity, the tree localities are referred to as STRA, YEND, and
FILD, respectively, (Figure 1 and Table 1).

STRA is a narrow channel that extends ca. 560 km from the
Pacific (ca. −52.6◦S) to the Atlantic (ca. −52.5◦S). The western
side of the channel has an annual rainfall between 2,000 and
5,000 mm, which, along with glacier meltdown waters, provide
can 6,500 m3 s−1 freshwater to the channel (Brun et al., 2020).
Tidal amplitude (a proxy for tidal currents) in the studied sector
of the Strait of Magellan is 126 cm (J. Garcés, unpublished
data; Medeiros and Kjerfve, 1988). Mean seawater temperature,
salinity, and penetration depth of visible light is 7.3◦C, 28.5 PSU,

TABLE 1 | Names and codes of regions and sites analysed in this study.

Locality Locality
code

Site Site code Latitude Longitude

Strait of Magellan STRA Santa Ana SANA −53.614 −70.927

San Isidro SISI −53.785 −70.973

Yendegaia Fjord YEND Head HEAD −54.856 −68.818

Middle MIDD −54.868 −68.776

Mouth MOUT −54.907 −68.703

Fildes Bay FILDE Artigas ARTI −62.188 −58.873

Collins COLL −62.188 −58.811

Suffield SUFF −62.194 −58.917

Albatross ALBA −62.201 −58.962

Frontiers in Marine Science | www.frontiersin.org 3 December 2021 | Volume 8 | Article 780268

https://coastwatch.pfeg.noaa.gov/erddap
http://odv.awi.de
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-780268 December 2, 2021 Time: 11:33 # 4

Valdivia et al. Beta Diversity in Southern Ocean

and 32 m, respectively, (see details in section “Environmental
variables,” below). YEND is located in the Beagle Channel,
which delimits the southwest border of the Cordillera Darwin
Icefield. The fjord receives freshwater inputs from Stoppani
glacier through a 12-km-long river coming out onto fjord’s head
(Giesecke et al., 2019), which generates a gradient of salinity
and turbidity (Huovinen et al., 2020; Palacios et al., 2021).
Tidal amplitude in YEND is 97.6 cm (J. Garcés, unpublished
data). In this locality, mean seawater temperature, salinity, and
underwater light penetration is 6.6◦C, 31.6 PSU, and 21 m,
respectively. FILD is located in King George Island, Shetlands
Islands. The bay is 14 km long and 6 to 14 km wide, with
a maximal depth of 500 m. In FILD, glacier meltdown affects
seawater turbidity, temperature, and salinity, which influences
the structure of macrobenthic communities (Valdivia et al., 2020).
Tidal amplitude in FILD is 123.2 cm (J. Garcés, unpublished
data). FILD exhibits mean seawater temperature, salinity, and
light penetration of−0.34◦C, 30 PSU, and 31 m, respectively.

Beta diversity of hard-bottom macrobenthic species was
estimated at each locality as the spatial variation in community
composition among 50 × 50-cm plots. From STRA, we analysed
33 randomly distributed plots in two sites: Punta Santa Ana and
Faro San Isidro (18 and 15 plots, respectively). From YEND,
the same number of plots were distributed across three sites:
fiord’s head, middle, and mouth (13, 11, and 9 plots, respectively,
see also Huovinen et al., 2020). Similarly, at FILD we analysed
33 plots distributed in four sites: Collins, Artigas, Suffield, and
Albatross (8, 9, 8, and 8 plots, respectively, see also Valdivia et al.,
2020). Sites spanned ca. 200 m2. Between-site distance through
waterways was 19.3 km in STRA and ranged between 3.0 and 6.4
in YEND, and between 2.4 and 8.0 km in FILD.

Estimation of Species Abundances
Identical field sampling protocols were used to estimate species
abundances at each locality. The study was conducted during
August 2016 in STRA, July 2019 in YEND, and between
January and February 2017 in FILD. At each locality, plots
were haphazardly located within areas of rocky substratum, of
similar slopes, and lacking large crevices. Plot slopes ranged
between 10◦ and 20◦ and depths between 5 and 20 m. For each
plot, we used suction dredge sampling to collect sessile and
mobile macrobenthic organisms (>5 mm length; see also Wahle
and Steneck, 1991). We used a portable underwater venture-
suction dredge, constructed with an auxiliary SCUBA cylinder
connected—through a BCD hose and an air-feed valve—to the
wall of a 2.3-m-long, 10-cm-diameter PVC pipe. One of the
extremes of the pipe dredged the surface of each plot. The other
extreme of the pipe was equipped with a 5-mm pore mesh
that received the extracted material. Before sampling, a 0.5 m2

metallic frame was placed on each plot to standardise the sampled
area and to visually estimate the percentage of the plot covered
by bare rock and sand. Additionally, each plot was scraped with
a spatula to collect seaweeds and invertebrates that remained
attached to the rocky substratum. Albeit we originally aimed to
rocky substratum, this method has been proven to efficiently
sample organisms living associated to boulders, rock, and also
the sediments beneath (Wahle and Steneck, 1991). However, the

method may underestimate the occurrence and abundance of
larger organisms, such as large macroalgae.

All samples were placed into independent, labelled plastic bags
on the boat and transported within few hours to the facilities
of Centro IDEAL in Punta Arenas (STRA) or Profesor Julio
Escudero Research Station of the Instituto Antártico Chileno,
INACh (FILD). In YEND, samples were fixed in 70% ethanol and
transported to the facilities of the Universidad Austral de Chile
in Valdivia (south-central Chile) where organisms were cleaned,
sorted, and identified to the lowest taxonomic level possible,
usually to species level. Invertebrate and seaweed abundances
were expressed as wet weights (g 0.25 m−2, 0.01 g accuracy).
Before the analyses, taxon data were standardised to proportions
of the maximum observed for each taxon across the plots.

Alpha diversity was calculated as the number of species
observed in each plot. Gamma diversity was expressed as
asymptotic species richness in order to reduce the bias due to
underestimation of “true” species richness. To this aim, we used
first-order Jacknife, which consists of a non-parametric statistical
technique in which subsets of plots are removed from the dataset
and the estimator is recalculated (Gotelli and Colwell, 2011).

Beta Diversity and Null Model
A null-model approach was used to compare the observed beta
diversity to that expected from random samplings of the regional
species pool (Chase et al., 2011; Kraft et al., 2011). Observed beta
diversity was measured as between-plot Jaccard (i.e., incidence-
based) and Bray-Curtis (i.e., abundance-based) dissimilarities.
Dissimilarities were calculated as:

Dij = 1− Cij,

where Cij is either Jaccard or Bray-Curtis resemblance between
the ith and jth communities. We then simulated null-model
species assemblages in each plot by randomising the assemblage
data matrix with fixed regional species richness and species-
occurrence probability proportional to observed frequencies. The
null model was iterated 1,000 times. From the observed and null
expected assemblages, we calculated standardised effect sizes as:

beta deviation =
Dij − Gij

Vij
,

where beta deviation is standardised effect size, Dij is observed
dissimilarity (either Jaccard or Bray-Curtis) between the ith and
jth communities, Gij is the average null expected dissimilarity
matrices, and V ij is the standard deviation of the null expected
dissimilarity (Kraft et al., 2011). Gij was calculated as:

Gij = 1− Cij,

where Cij is the mean null expected resemblance between the
ith and jth communities (Ning et al., 2019). A value of beta
deviation equal to zero indicates that observed spatial variation
in community structure does not differ from random sampling,
a positive beta deviation indicates higher beta diversity than
expected by chance, and a negative beta deviation indicates
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lower beta diversity than expected by chance (Chase et al., 2011;
Kraft et al., 2011).

To assess the relative contributions of deterministic and
stochastic processes to community assembly, we used Ning et al.
(2019)’s normalised stochasticity ratio (NST). NST is bounded
between zero and one, with values below and above 0.5 (50%)
representing more deterministic or more stochastic assembly,
respectively, (Ning et al., 2019):

NSS=
SS− TSS
DSS−SS

=

∑
ij ξ
(
Cij,Eij

)
−mink

{∑
ij ξ
(

E(k)ij ,Eij

)}
∑

ij ξ
(

DCij,Eij

)
−mink

{∑
ij ξ
(

E(k)ij ,Eij

)} ,
DCij =

{
1 Cij ≥ Eij
0 Cij < Eij

,

ξ
(
x, y

)
=

x− y
x− δ

δ =

{
0 x ≥ y
1 x<y

,

NST = 1− NSS,

where NSS is the normalised selection strength and DSS and
TSS are extreme values of selection strength, reflecting fully
deterministic and stochastic assembly, respectively. DCij is
the similarity between community i and j under extremely
deterministic assembly. Eij

(k) is a given null expected similarity
between community i and j under stochastic assembly. ξ
is a generalised function for SSij under observed, extremely
deterministic, or stochastic assembly (Ning et al., 2019). In this
way, NST allows us to simultaneously consider the situations
when, compared to null expectations, deterministic factors lead
to either more similar or more dissimilar observed communities
(Ning et al., 2019). NST were recalculated for each of 1,000
random samples of data (bootstrapping).

The patterns of incidence- and abundance-based beta diversity
were similar across localities (e.g., Supplementary Tables 1, 2).
To improve brevity, we report the results of incidence-based
beta diversity in the main manuscript, while those of abundance-
based beta diversity are fully reported in the supplementary
electronic material.

TABLE 2 | Environmental factors used in multivariate variance-partitioning
analyses on community composition.

Variable Unit Spatial scale (resolution) Temporal range

Mean sea temperature1 ◦C Site (200 m2) 2016

Mean salinity2 PSU Site (200 m2) 2016

Light penetration (Z1%)3 m Site (200 m2) 2014–2016

Depth4 m Plot (0.25 m2) 2016–2019

The analyses also included a matrix of between-site geographic distances, based
on latitude-longitude data of each site.
1Luis M. Pardo; Giesecke et al. (2019).
2Pardo, unpubl. data; Giesecke et al. (2019).
3Huovinen et al. (2016), Huovinen et al. (2020), Navarro et al. (2021), and Palacios
et al. (2021).
4This study.

Environmental Variables
Seawater temperature, salinity, and light penetration were
analysed as site-level environmental variables (Table 2). Seawater
temperature influences metabolic rates, phenology, and local
population growth rates of marine organisms (Strathmann et al.,
2002; Baldanzi et al., 2018; Suarez et al., 2020). Also, seawater
temperature correlates with other environmental variables such
as nutrient and Chlorophyll-a concentration, which can also
have predictable effects on benthic diversity (Witman et al.,
2008). Variations in salinity can be associated with glacier
meltdown processes and river inputs (e.g., Turner et al., 2017). In
addition, light penetration is a useful proxy for seawater turbidity
and sedimentation, which influences the physiology of subtidal
marine organisms (Sahade et al., 2015; Vause et al., 2019).

In each site at STRA and FILD, we deployed a self-contained
thermistor (Star-Oddi DST CT, Garðabær, Iceland), recording
seawater temperature (◦C) and salinity (PSU) every 30 min. Each
sensor was encased in a PVC pipe, housed in a concrete block,
and deployed by SCUBA divers at ca. 10 m depth from mean low
water. At STRA, thermistors were deployed in August 2016 and
retrieved in October 2016. At FILD, thermistors were deployed in
February 2017 and the data were retrieved every 12 months until
January 2019. Due to overgrowth of the sensors’ conductivity
plates by encrusting organisms, we used only the first 2 months
of the salinity timeseries. The temperature records were not
affected by biofouling because CT temperature sensors are not
as sensitive as conductivity plates. Moreover, the temperatures
obtained during the summer months were similar to previously
recorded values in the region (Höfer et al., 2019). These data
are readily available in Valdivia et al. (2020). At YEND, seawater
temperature and salinity were measured in each site with a CTD
Seabird 19plus, which was deployed from the surface down to a
few metres above the bottom in October 2016. In our study, we
used the mean of the records between 5 and 30 m depth. These
data are available in Giesecke et al. (2019).

Light penetration was expressed as the depth (m) at
which photosynthetic active radiation (PAR) decays to 1%
of subsurface conditions (Z1%). To that aim, we used a
multichannel radiometer (PUV-2500, Biospherical Instruments
Inc., San Diego, United States). Underwater light profiles at PAR
waveband (400–700 nm) were measured during sunny or partly
cloudy days, with calm or moderate wave conditions, and within
few hours between 11:00 and 16:00 h to minimize the impact of
solar zenith angle on light measurements. Z1% was calculated as:

Z1% =
4.6
Kd
,

log Ed = Ed0 + Kd log Z,

where Z is depth (m), Ed is irradiance, Ed0 is the irradiance
right below seawater surface, Kd is vertical diffuse attenuation
coefficient of irradiance, and log is natural logarithm (Huovinen
et al., 2016). Light penetration was estimated in August 2016
(SANA), February 2019 (SISI), July 2018 (HEAD, MIDD, and
MOUTH), January 2014 (ARTI, COLL, and ALBA), and February
2015 (SUFF). Part of these data are readily available in Huovinen
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et al. (2016) and Palacios et al. (2021). In addition to site-
scale factors, we analysed plot depth (m) as potential drivers of
community composition.

Statistical Analyses
The differences in beta diversity (observed, expected, and
deviation) and NST among localities were tested with
permutational linear models. In order to avoid inflating the
rate of type-I error, we used a “treatment” contrast, in which the
northmost locality, Strait of Magellan (STRA), was compared
against the other two localities. The P-value of each parameter
was obtained after 5,000 permutations of the data. Beta deviation
and NST were compared against zero and 0.5, respectively, with
permutational t-tests.

The influence of environmental and spatial (latitude and
longitude) variables on observed beta diversity and beta
deviations was investigated by means of distance-based partial
redundance analyses (db-RDA; Borcard et al., 2004; Peres-
Neto et al., 2006). These analyses allowed us to partition the
variation in beta diversity and deviations into environmental
and spatial fractions. db-BDA were computed for both Jaccard
and Bray-Curtis dissimilarities. The spatial variables consisted
of spatial eigenfunctions computed from Principal Components
of Neighbour Matrices (PCNM) of latitude and longitude
data of each site (Dray et al., 2012). PCNM from each
neighbourhood matrix were selected according to adjusted R2

from RDA after stepwise model building. Then, the fractions of
variation in community composition accounted for by the spatial
relationships among sampling sites (selected PCNM) and depth
and site-scale environmental factors were estimated as adjusted
R2 from the db-RDA ordinations.

All analyses were conducted in R programming environment
(R Core Team, 2021). The R packages tidyverse and cowplot
were used to data pre-processing and plotting, vegan to
estimate dissimilarity matrices, NST to estimate bootstrapped
NSTs, lmPerm for permutational linear models, and MKinfer
for permutational t-tests (Wheeler and Torchiano, 2016;
Wilke, 2016; Ning et al., 2019; Oksanen et al., 2019; Wickham
et al., 2019; Kohl, 2020).

RESULTS

Environmental conditions varied across and within localities
(Figure 2). Temperature decreased from Strait of Magellan
(STRA) to Yendegaia Fjord (YEND) and to Fildes Bay (FILD).
However, temperature exhibited little between-site variation
within YEND and FILD (Figure 2A). Salinity showed a similar
spatial pattern in YEND, but with larger between-site variation
in FILD. Light penetration (Z1%) varied at both spatial scales,
hinting for spatial gradients in light attenuation and likely
turbidity within each locality (Figure 2C).

A total of 246 species, grouped in 28 major taxa, were
identified in this study (Table 3 and Supplementary Table 1).
Forty-six, 92, and 108 species were identified in Strait of
Magellan (STRA), Yendegaia Fjord (YEND), and Fildes Bay
(FILD), respectively. Red algae and decapods exhibited the largest
number of species in STRA (Table 3). Gastropods followed by
bivalves and polychaetes were the most diverse taxonomic group
in YEND (Table 3). Amphipods followed by polychaetes and
seaweeds (red and brown) dominated the community in terms
of number of species in FILD (Table 3).

FIGURE 2 | Site-scale environmental variables analysed in this study. Temperature (A), salinity (B), and light penetration (C) were measured in situ at each site. Light
(PAR) penetration in MIDD (C) was estimated once due to logistic constraints. Values are reported as means and standard deviations. Localities are Strait of
Magellan (STRA), Yendegaia Fjord (YEND), and Fildes Bay (FILD).
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TABLE 3 | Summary of species identified in this study.

Taxon Strait of
Magellan
(STRA)

Yendegaia
Fjord (YEND)

Fildes Bay
(FILD)

Algae Chlorophyta 1 0 1

Rhodophyta 8 1 9

Phaeophyceae 1 1 9

Porifera 3 0 2

Cnidaria Hydrozoa 1 0 1

Plathelmynta Turbellaria 0 0 1

Annelida Polychaeta 3 10 12

Mollusca Polyplacophora 3 1 4

Gastropoda 6 29 6

Bivalvia 0 19 6

Opisthobranchia 2 1 1

Brachiopoda 0 3 0

Nemertea 0 0 3

Arthropoda Pygnogonida 0 0 1

Amphipoda 1 9 26

Isopoda 0 2 4

Tanaidacea 1 0 1

Decapoda 8 7 0

Ostracoda 0 0 1

Cirripedia 1 1 0

Echinodermata Ophiuroidea 0 1 3

Asteroidea 2 2 8

Echinoidea 3 2 0

Holothuroidae 1 1 2

Sipuncula 0 1 0

Bryozoa 0 0 2

Tunicata 0 1 4

Teleostei 1 0 1

Mean alpha diversity in STRA, YEND, and FILD was 6.8
(standard error = 0.56), 11.8 (1.15), and 20.8 (3.62) macrobenthic
species per quadrat, respectively, (Figure 3A). Mean gamma
diversity, estimated as asymptotic Jacknife species richness, was
62.5 (5.3), 131.8 (11.3), and 134.2 (8.1) in STRA, YEND, and
FILD, respectively, (Figure 3B)—the corresponding gamma-to-
alpha diversity ratios were 9.0, 11.1, and 6.5.

Observed beta diversity followed the spatial pattern of alpha
and gamma diversity, increasing from STRA to YEND and
from YEND to FILD (Figure 4A; predicted means of STRA,
YEND, and FILD = 0.76, 0.81, and 0.85, respectively; R2 = 0.14;
Supplementary Table 2). These patterns were expected by
chance (Figure 4B; predicted means of null expected beta
diversity at STRA, YEND, and FILD = 0.76, 0.84, and 0.87,
respectively; R2 = 0.35; Supplementary Table 2). Accordingly,
beta deviation—the standardised difference between observed
beta diversity and that expected by chance—followed a
completely different pattern (Figure 4C). In average, beta
deviation in STRA was indistinguishable from zero (mean = 0.03,
95% [Confidence Intervals = −0.12 and 0.16]; Supplementary
Table 3) and in YEND and FILD was negative (mean = −0.38
[−0.52 and −0.24] in YEND, −0.11 [−0.2 and −0.02] in
FILD; Supplementary Table 3). Similar results were obtained for
abundance-based beta diversity and deviation (Supplementary
Tables 2, 3 and Supplementary Figure 1).

Normalised stochasticity ratio reached average values above
50% in the three localities (Figure 5 and Supplementary Table 3).
Mean NST (95% confidence intervals) were 0.695 (0.692 and
0.698), 0.625 (0.621 and 0.628), and 0.728 (0.725 and 0.731)
in STRA, YEND, and FILD, respectively. This indicates that
community assembly was more stochastic than deterministic
across localities. Incidence- and abundance-based NST showed
similar patterns, with larger values for the latter (Supplementary
Figure 2 and Supplementary Tables 2, 3).

Across the three localities, the joint influence of depth,
site-scale factors, and spatial distances accounted for 7% of
observed beta diversity (incidence-based, Jaccard; Figure 6A).
The combined effects of site-scale and spatial factors accounted
for 43% of observed beta diversity. The joint effects of depth
and spatial factors accounted for 2% of observed beta diversity.
Each of the “pure” effects of depth, site-scale, and spatial
factors explained a maximum of 12% of observed beta diversity
(Figure 6A). Two PCNM were selected as spatial factors in
these analyses, and residual variation was 33% (Figure 6A). After
controlling for gamma diversity, the joint effects of depth, site-
scale, and spatial factors decayed to 0% (Figure 6B). Similarly,
all other combined effects decreased to zero, excepting that of
depth and site-scale factors (1%). The pure effects of site-scale
and spatial factors accounted for 1 and 7% of beta deviation,
respectively. One PCNM was included in the analysis of beta
deviation and residual variation reached a 94% (Figure 6B).
Abundance-based beta diversity (Bray-Curtis) exhibited a similar
partitioning structure to that of incidence-based beta diversity
(Supplementary Figure 3), except that no PCNM was selected
in the model for beta deviation. In addition, no explanatory
matrix fit to the matrix of abundance-based beta deviation
(Supplementary Figure 3).

DISCUSSION

Our results suggest that community assembly at both sides of the
ACC is driven by differences in pooled species richness rather
than local ecological processes. The observed variation in beta
diversity simply disappeared after controlling for among-locality
differences in species pools (gamma diversity). At each locality,
community assembly was more stochastic than deterministic.
Indeed, variance-partitioning suggested a weak fit between scale-
dependent environmental factors and community composition.
Compared to environmental filtering and niche differences,
therefore, broad-scale and stochastic events of reproduction,
mortality, and dispersal likely have a stronger effect on the
assembly of these communities.

Processes Generating Differences in
Gamma Diversity
The apparent differences in beta diversity across the Strait of
Magellan (STRA), Yendegaia Fjord (YEND), and Fildes Bay
(FILD) were the result of random sampling from species pools.
This finding suggests that processes that influence gamma
diversity play a preponderant role in the assembly of these
communities, in agreement with previous surveys conducted
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FIGURE 3 | Species richness observed at the scales of site (A, alpha diversity) and locality (B, gamma diversity estimated as asymptotic Jacknife species richness).

FIGURE 4 | Incidence-based beta diversity (Jaccard’s dissimilarity): Observed (A) and null expected (B) beta diversity across the three localities. Beta deviation (C) is
beta diversity after controlling for differences in gamma diversity. Similar results were obtained when using abundance-based beta diversity (Bray-Curtis,
Supplementary Figure 1).

on marine macrobenthic communities at broader spatial scales
(Witman et al., 2004). What processes may contribute to
differences in gamma diversity? Density-independent responses
to abiotic environmental conditions, density-dependent biotic
interactions, and dispersal are processes operating at both local
and regional scales (Vellend, 2016; Thompson et al., 2020).
Among density-independent factors, substrate composition may
be a relevant factor influencing diversity in our study: several
burrowing species, for instance, were observed almost exclusively
in YEND (e.g., Golfingia margaritacea and Acesta patagonica;
Supplementary Table 1), which may hint to differences in
substratum composition among the localities. Contrarily, the
abundance of benthic communities has been shown to be
decorrelated from depth and sediment type in the nearby of
STRA and fjords and channels off the South Patagonian Icefield
(Ríos and Mutschke, 1999). Thus, these results collectively
suggest that substrate may have underpinned compositional
differences among localities in our study.

Substrate composition and variability can be strongly
influenced by glacier meltdown processes in high-latitude
ecosystems (Gutt et al., 1999; Cauvy-Fraunie and Dangles,
2019). For example, accelerated glacier retreat can result in
more ice-free rocky substrate exposed to colonisation of benthic
macroalgae in Antarctica (Jerosch et al., 2019). In addition,
glacier meltdown influences morpho-functional attributes of
habitat-forming seaweeds in YEND (Palacios et al., 2021), which
could influence understorey species and others closely located.
Indeed, YEND exhibited the shallowest light penetration (Z1%)
in our study and a clear spatial gradient from the head to the
mouth of the fjord, which can be attributed to glacier meltdown-
related turbidity. Enhanced turbidity and sedimentation in
the nearby of glaciers has strong effects on diversity and
composition of subtidal macrobenthic communities in FILD
(Valdivia et al., 2020). Depending on substrate slopes and depth
(Cardenas and Montiel, 2015), increased sedimentation could
well cover denuded rocky substrata at sites located in the nearby
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FIGURE 5 | Incidence-based normalised stochasticity ratio (NST): The index
is bounded between zero and one, depicting fully deterministic or stochastic
community assembly, respectively. The 50 % boundary between both extreme
scenarios is shown. Similar results were obtained when using
abundance-based beta diversity (Bray-Curtis, Supplementary Figure 2).

of glaciers, reducing the availability of substrates for settlement
(e.g., Khim et al., 2007) and also compromising the fitness
of suspension feeders due to appendage clogging and excess
of mineral suspension (Husmann et al., 2012; Krzeminska and
Kuklinski, 2018; Gutt et al., 2019; Topçu et al., 2019).

In addition to environmental conditions at the locality scale, it
is necessary to discuss broad-scale processes that may underpin
the structure of these communities. The ACC and Polar Front
Zone have isolated Antarctica from other large land masses since
ca. 30 million years ago (Barnes et al., 2006). This has limited
the long-distance exchange of biota between Antarctica and other
regions, which—in addition to a long-term invariability in abiotic
environmental conditions—underlies part of a high marine
species diversity in Antarctica and probably the differences in
gamma diversity observed in our study (Barnes et al., 2006;
Poulin et al., 2014; Peck, 2018; Gómez and Huovinen, 2020).

Indeed, long-term isolation likely underpins part of the large
proportion of invertebrate species with benthic and non-feeding
early developmental stages in Antarctica (Poulin et al., 2002).
However, recent evidence indicates that long-distance dispersal
of drifting seaweeds across the ACC could well have been
taking place after the last glacial maximum (Guillemin et al.,
2020). Moreover, anthropogenic global change-related factor,
such as increased storminess and human-mediated transport,
are boosting the movement of marine organisms toward
Antarctic coasts (Chown et al., 2015; Duffy et al., 2017; Fraser
et al., 2018; McCarthy et al., 2019; Cardenas et al., 2020).
Anthropogenic global change has, therefore, the potential to
enhance biotic homogenisation across the Southern Ocean owing
the establishment of new species in Antarctic (Olden et al., 2004).

Related to long-distance dispersal limitations, differences
in speciation rates and early colonisation times can generate
large differences in gamma diversity, even between adjacent
biogeographic regions (e.g., Benício et al., 2021). In the Southern
Ocean, Milankovitch cycles and concomitant climate change over
the last 15 million years have strongly influenced speciation
and extinction rates (e.g., Mittelbach et al., 2007; Poulin et al.,
2014; Crampton et al., 2016). For instance, the drastic impact
of the last glacial maximum triggered recent (ca. 18,000 years
ago) macroalgal recolonisation of Antarctic coasts, apparently
from open-water adjacent areas (“polynyas”; Thatje et al., 2008;
Guillemin et al., 2020). In this line, low population numbers and
enhanced generic drift might have contributed to rapid speciation
in Antarctica, as suggested for low-latitude regions (Fedorov,
1966; Mittelbach et al., 2007). This, in turn, may explain in part
the large observed differences in pooled species richness between
the Antarctic and sub-Antarctic regions (Arntz, 1999).

Stochastic Community Assembly Across
Localities
The analysis of the normalised stochastic ratio suggested that
stochastic processes were more important than deterministic
mechanisms in the community assembly of the three analysed

FIGURE 6 | Incidence-based multivariate variance partitioning analyses after db-RDA. The analyses were computed for observed dissimilarities (A) and after
controlling for differences in gamma diversity (B). Numbers in the Venn diagrams are adjusted R2 that represent the relative contribution of plot-, site-scale, and
spatial factors to observed and corrected dissimilarities. See also Supplementary Figure 3.
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localities. Correspondingly, physical factors accounted for a
modest proportion of community structure after accounting
for the among-region differences in gamma diversity. How
do we explain the relatively high contribution of stochastic
processes, such as priority effects, historical contingency, and
ecological drift, to community assembly within the analysed
localities? Dispersal limitations, for instance, can be associated
with stochastic processes (Lowe and McPeek, 2014; Vellend
et al., 2014). Indeed, dispersal limitations can reduce population
abundances and thus enhance the effects of demographic
stochasticity—random events of birth, reproduction, and death—
on community-level properties (Leibold et al., 2004).

On top of that, ecological drift (i.e., random fluctuation in
species abundances led by demographic stochasticity) can have
stronger effects on assembly in communities with few organisms
and when local diversity is very reduced relative to the regional
species pool (Shurin and Srivastava, 2005; Myers et al., 2015;
Vellend, 2016). Further, recruitment of rare species can be limited
by demographic stochasticity and Allee effects; i.e., reduction
in organismal fitness at low population size or density (Lande,
1993). In our study, asymptotic gamma diversity was about
ninefold alpha diversity across the three localities. Moreover,
gamma diversity was comparatively larger than observed number
of species in each locality. Therefore, these communities are likely
unsaturated and composed by many rare species. Certainly, the
prevalence of many species that are rare or singleton indicates
that local deterministic processes cannot always account for
the spatial variation in biodiversity (Chase and Myers, 2011;
Partel et al., 2011).

Caveats and Future Directions
The comparatively high contribution of stochasticity to
community assembly would have been the result a low
environmental variability within each locality. However, the
observed variation in salinity and light penetration have
been previously associated with significant responses of the
physiology, morphology, and diversity of benthic species in
YEND and FILD (Valdivia et al., 2020; Palacios et al., 2021).
Previous research suggests that habitat heterogeneity determines
benthic community assembly in polar regions (Wlodarska-
Kowalczuk et al., 2007; Somerfield et al., 2009; Pabis et al., 2015).
Albeit those contributions studied soft-bottom communities,
they suggest that the assembly of polar benthic communities
is actually independent of historical context and alpha and
gamma diversities (Pabis et al., 2015). This apparent discrepancy
between our and previous results probably stems from the fact
that our sampling method, vacuum dredge, allowed us to obtain
organisms occurring on both, rocks and sand below the rocks.
As a consequence, we were able to identify species that use rocky
bottoms (e.g., Aulacomya atra, and several seaweeds), spaces
between rocks (e.g., Brachidontes sp.), and species that use sandy
bottoms (e.g., G. margaritacea).

On the other hand, our study represents a snapshot of
community composition across an extensive region. However,
the balance between deterministic and stochastic forces can well
vary over time. Rapid warming and increased connectivity in
the Southern Ocean could well reduce the effects of both abiotic
environmental filters and dispersal limitations on community

structure in the future (Cardenas et al., 2020). In terrestrial
ecosystems, assembly have been shown to tilt over time toward
either stochasticity or determinism, depending on succession,
environmental stressors, and temporal covariation in species
abundances (Zhou et al., 2014; Ning et al., 2019; Liang et al., 2020;
Li B. et al., 2021; Li C. L. et al., 2021). Contrasting with terrestrial
communities, the high prevalence of organisms with seawater-
borne propagules in marine communities facilitates the dispersal
from regional species pools (Roughgarden et al., 1988; Vermeij
and Grosberg, 2010)—this leads to stronger regional effects on
marine than terrestrial ecosystems (Cornell and Harrison, 2013).
Thus, the effects of climate change on dispersal could have more
severe consequences for marine than terrestrial ecosystems (see
also Kinlan and Gaines, 2003). Albeit our study did not allow
us to detect temporal variability in the deterministic-stochastic
balance, our results are well in line with previous studies of
marine and terrestrial ecosystems and broader spatial scales
(Witman et al., 2004; Kraft et al., 2011, 2012).

The influence of ecological drift on community assembly
can be exacerbated in communities with small numbers of
individuals (i.e., small community size; Hubbell, 2001; Vellend,
2016). This makes the probability of species extinction to increase
as community size decreases (Vellend, 2016). Accordingly,
anthropogenic impacts that reduce the number of individuals
across species can make the local community more prone to
extinctions (Myers et al., 2015). In line to our results, future
biodiversity research in the Southern Ocean should target at the
effects of community size on assembly processes (Vellend et al.,
2014), along with long-term monitoring programmes of species
abundances and composition.

CONCLUSION

In summary, differences in species pools seemed to be a
major determinant of the observed differences in community
composition between and within West Antarctic Peninsula
and Chilean south Patagonia. Abiotic environmental factors
explained a small fraction of the variation in community
composition across the localities. Compared with niche
processes, stochastic processes may have a stronger effect on the
assembly of these communities. Therefore, conservation policies
should aim to protect critical community sizes in order to limit
stochastic extinction risk in the Southern Ocean.
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