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The spleen is an important organ in the immune function of fish, and it is also
important for hematogenesis and antibody and granulocyte production. However,
the effect of oxidized fish oil on the spleen of hybrid grouper (♀ Epinephelus
fuscoguttatus × ♂ Epinephelus lanceolatus) is unknown. In this study, hybrid groupers
were fed with oxidized fish oil and the spleen index, antioxidant ability, histology and
transcriptome were investigated. Oxidized fish oil did not affect the spleen index. Levels
of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and
malondialdehyde (MDA) in the spleen were significantly increased as the amount of
oxidized fish oil in the diet increased, but the vitamin E concentration was significantly
decreased. The morphological organization of the spleen was damaged with increased
oxidative stress. And the spleen reacted to oxidative stress by platelet activation, FOXO
and notch signaling pathways, which involved amyloid beta precursor protein binding
family B member 1 interacting protein (APBB1IP) gene, glucose-6-phosphatase (G6PC)
gene, histone acetyltransferase p300 (EP300) gene, insulin gene and notch 2 gene.
In conclusion, the oxidized fish oil caused oxidative stress and damaged its structure.
Additionally, oxidized fish oil changed the transcription profile of the spleen.

Keywords: hybrid grouper (♀ Epinephelus fuscoguttatus × ♂E. lanceolatus), oxidized fish oil, spleen, oxidative
stress, antioxidant ability, transcriptome

INTRODUCTION

Fish oil is an important source of lipids in aquaculture feed, being rich in unsaturated fatty acids
such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids (Long et al., 2021). However,
during its production, storage and usage, fish oil is readily oxidized, producing a variety of
primary and secondary metabolites including aldehydes, ketones, alcohols, esters, acids, and other
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substances (Yu et al., 2021). Fish oil oxidation in feed is a frequent
occurrence in aquaculture and may induce oxidative stress in
aquatic animals (Chen et al., 2019; Song et al., 2019).

The immune system of fish mainly comprises immune organs
and tissues, immune cells and immune factors (Dalmo et al.,
1997). The spleen has the functions of degrading and processing
antigens and producing antibodies (Dalmo et al., 1997).
Additionally, the spleen is also a major hematopoietic organ
that can produce blood cells, endothelial cells, reticulocytes,
macrophages and melanin macrophages (Graf and Schlüns,
1979). Research into fish spleen immunity mainly focuses on the
effects of pathogens and environmental pollutants on the spleen.
Pathogens including necrosis virus (Zhao H. et al., 2020), Yersinia
ruckeri (Wang et al., 2021), Vibrio anguillarum (Song et al., 2021),
and Aeromonas hydrophila (Xia et al., 2021) have been used to
study the immune function of the spleen, as have environmental
pollutants chlorpyrifos (Xing et al., 2019), cypermethrin and
sulfamethoxazole (Zhao Z. et al., 2020) and heavy metals (Savassi
et al., 2020). However, the response of the spleen to the toxic
chemicals generated by oxidized fish oil is unknown.

The hybrid grouper (♀ Epinephelus fuscoguttatus × ♂
Epinephelus lanceolatus), a new species of grouper obtained
through hybridization, has been noted as one of the most sought-
after fish due to its excellent attributes such as high nutritional
value, rapid growth and high disease resistance (Song S. G. et al.,
2018). As a component of the fish immune system, the spleen is
essential in resisting foreign antigens and regulating the immune
response (Fu et al., 2015). In this study, the index, antioxidant
ability and organizational structure of the hybrid grouper spleen
were studied under oxidative stress. Additionally, the molecular
mechanism of oxidative stress in the hybrid grouper spleen
was investigated using transcriptome sequencing technology. In
summary, the findings of this study will provide phenotypic
information as well as a molecular foundation for further research
into the mechanism of oxidative stress in the spleen.

MATERIALS AND METHODS

Oxidized Fish Oil and Experimental Diets
Shandong Yuwang Pharmaceutical Co., Ltd. supplied fresh fish
oil with a peroxide value (POV) of 1.15 mmol·kg−1. The
technique of Chen et al. (2012) was used for preparing oxidized
fish oil. This involved placing the bottle of fresh fish oil into
a 1 L beaker and warming with a water bath at 55◦C, during
which the bottle was constantly injected with air using an air
pump. A titration procedure (GB/T 5538–2005/ISO 3960:2001)
was used to track the POV of the oxidized fish oil until it reached
231 mmol·kg−1, as described by Song C. et al. (2018). Finally, the
oxidized fish oil refrigerated at –20◦C for later use.

Protein sources in the diet were white fish meal, wheat gluten,
corn gluten meal and soybean meal. Wheat flour was the primary
source of sugar in the diet. Fresh and oxidized fish oil were
the primary sources of oil in the diet. Four diets were prepared
with fresh fish oil: oxidized fish oil ratios of 9:0 (R group), 6:3
(L group), 3:6 (M group), and 0:9 (H group). The composition
and content of the experimental feed ingredients were shown

in Table 1. The feed components were crushed, sieved using a
60-mesh sieve and weighed precisely according to the formula.
After the various feed ingredients were mixed step by step, the
corresponding oils were added. The raw materials were mixed
evenly using a mixer, with an appropriate amount of water
added to facilitate even mixing. A pelletizer was used to make
2.5 mm diameter pellets of the mix, which were dried at ambient
temperature, packaged, and refrigerated at –20◦C.

The analysis of experimental diets was as follows. The
moisture content of the feed was determined by drying it at 105◦C
until a constant mass was reached (Zhao et al., 2015). The protein
content was determined using a Kjeldahl nitrogen analyzer (FOSS
KT8400; Li et al., 2021). The burning technique was used to
determine the ash content (Nagy and Clair, 2000). The crude lipid
content was determined using a lipid analyzer (ANKOM XT15;
Purohit et al., 2016). High-performance liquid chromatography
(GB/T 28717-2012) was used to evaluate the malondialdehyde
(MDA) levels in the experimental diets (Long et al., 2022).

Experimental Fish and Feeding Trials
The experimental hybrid groupers, with the same genetic
background and uniform specifications, were provided by a

TABLE 1 | Formulation and proximate composition of experimental diets
(% dry matter).

Ingredient (%) R group L group M group H group

White fish meal 40.00 40.00 40.00 40.00

Wheat gluten 14.00 14.00 14.00 14.00

Corn gluten meal 8.00 8.00 8.00 8.00

Soybean meal 9.00 9.00 9.00 9.00

Wheat flour 14.65 14.65 14.65 14.65

Fish oil 9.00 6.00 3.00 0.00

Oxidized fish oil 0.00 3.00 6.00 9.00

α-starch 3.00 3.00 3.00 3.00

Calcium dihydrogen phosphate 1.00 1.00 1.00 1.00

Choline chloride 0.50 0.50 0.50 0.50

Vitamin premixa 0.20 0.20 0.20 0.20

Mineral premixb 0.50 0.50 0.50 0.50

Attractantc 0.15 0.15 0.15 0.15

Total 100.00 100.00 100.00 100.00

Proximate compositiond

Moisture 6.79 6.18 7.37 8.78

Crude protein 49.21 48.56 49.20 49.29

Crude lipid 11.57 11.42 11.34 11.28

Ash 11.52 11.56 11.67 11.52

MDAe (mg/kg) 8.27 10.60 17.80 24.40

aVitamin premix consisted of (g/kg premix): VB1 17.00 g, VB2 16.67 g, VB6
33.33 g, VB12 0.07 g, VK 3.33 g, VE 66.00 g, retinyl acetate 6.67 g, VD 33.33 g,
nicotinic acid 67.33 g, D-calcium pantothenate 40.67 g, biotin 16.67 g, folic acid
4.17 g, inositol 102.04 g, cellulose 592.72 g.
bMineral premix consisted of (g/kg premix): FeSO4·H2O 18.785 g, ZnSO4·H2O
32.0991 g, MgSO4·H2O 65.1927 g, CuSO4·5H2O 11.0721 g,CoCl2·6H2O (10%)
5.5555 g, KIO3 0.0213 g, KCl 22.7411 g, Na2SeO3 (10%) 0.5555 g, zeolite
powder 843.9777 g.
cAttractant composition: taurine: glycine: betaine = 1:3:3.
dMeasured value.
eMalondialdehyde.
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breeding hatchery (Zhanjiang, China). Before the experiment,
the groupers were kept in an outdoor cement tank and fed
commercial feed with 50% crude protein and 11% crude lipid
(HaidaAquatic Diet Co. Ltd., Zhanjiang, China) for 28 days. The
well-proportioned and robust hybrid groupers (average weight
30.34 ± 0.02 g) were split into four groups at random, each
with three replicates and forty fish. The experiment was carried
out in 1 m3 tempered barrels according to the indoor breeding
system of the Donghai Island Breeding Base of Guangdong Ocean
University. The aquaculture water was filtered by sponge and
coral sand and then sterilized by ultraviolet light. For 65 days, fish
were fed experimental diets twice a day, at 09:00 am and 16:00,
until they were satiated. To ensure water quality, 50% of the water
in the barrels was swapped daily. Throughout the test period,
the water in the tempered glass barrels was continuously injected
into air. The following physical and chemical characteristics of
water were maintained: temperature 29 ± 2◦C, dissolved O2
8.1± 0.41 mg·L−1 and ammonia 0.03± 0.01 mg·L−1.

Sample Collection
Fish were fasted for 24 h before being anesthetized with tricaine
methanesulphonate (MS-222, 10 mg·L−1, Sigma-Aldrich) at the
end of the experiment. Fourteen fish were randomly selected
from each barrel. Of these, two fish were used to calculate the
spleen index as follows: spleen index = spleen weight (g)/body
weight (g) (Aghili et al., 2014). The spleens of four fish were mixed
and stored in liquid nitrogen until enzyme activity was measured,
the spleens of two fish were stored in 4% formaldehyde solution
for section analysis and the spleens of six fish were mixed and
stored in liquid nitrogen for transcriptome analysis.

Antioxidant Enzyme Ability
A spleen tissue sample (1 g) was placed in a test tube
and phosphate buffer solution (9 mL) was added. After
homogenization followed by centrifugation for 8 min (4◦C,
6000 rpm), the supernatant was stored at 4◦C. Test kits purchased
from Nanjing Jiancheng Bioengineering Institute (China) were
used to assess superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GSH-Px) activity, as well as vitamin E
and MDA levels. The specific methods were the WST-1 method
for SOD (Peskin and Winterbourn, 2017), the visible light
method for CAT (Hadwan, 2018), the colorimetric method for
GSH-Px (Shi et al., 2010) and vitamin E content (Jargar et al.,
2012) and the TBA method for MDA (Dorsey and Jones, 2017).

Histopathology
The spleen fixed in paraformaldehyde was dehydrated in graded
ethanol concentration, removed into xylene, then embedded in
paraffin, sectioned, mounted with neutral gum and stained with
hematoxylin and eosin. The morphological characteristics of the
spleen were examined under a microscope and photographed as
previously reported (Zhang Y. et al., 2019).

Transcriptome Profiling Analysis
Qualification and Quantification of RNA
Total RNA was extracted from the spleen using the Trizol
method (Simms et al., 1993) and was subsequently processed

with DNase-I. Agar gel electrophoresis was used to evaluate
RNA integrity (Aranda et al., 2012) and the Nanodrop 2000
Ultra Micro Nucleic Acid Protein Analyzer was used to measure
RNA concentration (Thermo Scientific, United States; Feng et al.,
2018). Beijing Biomarker Bioinformatics Co., Ltd completed the
library building and sequencing process.

Preparation of Libraries for Transcriptome
Sequencing
For the RNA sample preparations, a total of 1 µg RNA
per sample was utilized as input material. Following the
manufacturer’s instructions, sequencing libraries were created
using the NEBNext R©UltraTM RNA Library Prep Kit for
Illumina R© (NEB, United States) and index codes were added
to each sample’s sequences. mRNA was extracted from the
total RNA using poly-Toligo-attached magnetic beads (Liu
et al., 2019). In the NEBNext First Strand Synthesis Reaction
Buffer, fragmentation was performed utilizing divalent cations
at a high temperature (5X). M-MuLV reverse transcriptase
and random hexamer primer were used to make first-strand
cDNA. Next, DNA polymerase I and RNase H were used to
synthesize second-strand cDNA. Exonuclease/polymerase was
used to convert the remaining overhangs into blunt ends. To
prepare for hybridization, NEBNext Adaptor, with a hairpin loop
structure, was ligated after adenylation of the 3′ ends of DNA
fragments. The library fragments were purified using AMPure
XP to select cDNA fragments with a length preference of 240 bp
(Beckman Coulter, Beverly, United States). This size-selected,
adaptor-ligated cDNA was treated with 3 l USER enzyme (NEB,
United States) for 15 min at 37◦C followed by 5 min at 95◦C.
Then, PCR was carried out using Phusion High-Fidelity DNA
polymerase, universal PCR primers and index (X) primer. Finally,
the PCR products were purified using the AMPure XP system
and the quality of the library was determined using the Agilent
Bioanalyzer 2100 system.

Clustering and Sequencing
The index-coded samples were clustered using the TruSeq
PE Cluster Kit v3-cBot-HS (Illumina) on a cBot Cluster
Generation System according to the manufacturer’s instructions.
The library preparations were sequenced and paired-end reads
were produced on an Illumina Hiseq 2000 platform after cluster
formation (Liu et al., 2016).

Quality Control
The raw fastq readings were initially processed using in-house
perl programs (Huang et al., 2020). Clean reads were produced
in this phase by eliminating adapter-containing reads, ploy-N–
containing reads and low-quality reads from the raw data (Zhang
T. N. et al., 2019). The content of Q20, Q30 and GC in the
clean data, as well as the sequence duplication level, were also
computed (Zhang et al., 2014). All downstream analyses relied
on high-quality, clean data.

Transcriptome Assembly
The left files from all libraries/samples were combined into
a single large left.fq file and the right files (read2 files) were
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combined into a single large right.fq file (Yang et al., 2020).
Trinity (Grabherr et al., 2011) was used to assemble the
transcriptome based on left.fq and right.fq, with min kmer cov
set to 2 and all other settings at their defaults.

Gene Functional Annotation
NR (NCBI non-redundant protein sequences), Pfam (protein
families), KOG/COG/eggNOG (clusters of orthologous groups of
proteins), Swiss-Prot (manually annotated and reviewed protein
sequences), KEGG (Kyoto Encyclopedia of Genes and Genomes),
GO (Gene Ontology), and TrEMBL (Atlas of Protein Sequence
and Structure) databases were used to annotate gene function
(Krause, 2008; Meng et al., 2020).

Quantification of Gene Expression Levels
For each sample, RSEM (Li and Dewey, 2011) was used to
assess gene expression levels. Clean data was remapped onto the
transcriptome that had been constructed. The mapping findings
were used to calculate the read count for each gene.

Differential Expression Analysis
DESeq R (v. 1.10.1) was used for differential expression analysis
of two conditions/groups (Hao and Feng, 2021). Using a model
based on the negative binomial distribution, DESeq provides
statistical procedures for detecting differential expression in
digital gene expression data. The false discovery rate (FDR)
was controlled by adjusting the P-values using Benjamini
and Hochberg’s method (Jafari and Ansari-Pour, 2019). Genes
identified by DESeq with an adjusted P-value of 0.05 were labeled
as differentially expressed.

Gene Ontology Enrichment Analysis
The topGO R packages–based Kolmogorov–Smirnov test was
used to perform GO enrichment analysis of differentially
expressed genes (DEGs; Lin et al., 2020).

Kyoto Encyclopedia of Genes and Genomes Pathway
Enrichment Analysis
Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al.,
2004) is a database resource for deriving information about
the high-level functions and utilities of biological systems—
such as cells, organisms and the ecosystem—from molecular-
level data, particularly large-scale molecular datasets generated
by genome sequencing and other high-throughput experimental
technologies1. To assess the statistical enrichment of differentially
expressed genes in KEGG pathways, the KOBAS program (Xie
et al., 2011) was utilized.

Data Analysis
SPSS 21.0 (Chicago, IL, United States) was used to handle
experimental data and conduct the one-way analysis of
variance (one-way ANOVA). The results were reported as
mean ± standard error. When the test for homogeneity of
variance had a P-value of greater than 0.05, multiple comparisons
were performed. ANOVA using the Kruskal–Wallis one-way

1http://www.genome.jp/kegg/

method was used to look for differences between groups with
P-values of less than 0.05.

RESULTS

Spleen Index of Hybrid Grouper Fed With
Oxidized Fish Oil
The spleen index of the L, M, and H groups was not significantly
different to that of the R group, but the spleen index of
the H group was significantly smaller than that of the M
group (Figure 1).

Antioxidant Performance of the Spleen
The SOD activity in the M and H groups was significantly
higher than in the R and L groups (Figure 2A). CAT activity
in the H group was significantly higher than in the R and L
groups, but there was no significant difference between H and
M groups (Figure 2B). GSH-Px activity significantly increased
with increased dietary oxidized fish oil (Figure 2C). The vitamin
E content in the M and H groups was significantly lower than
in the R and L groups (Figure 2D). The MDA content in the H
group was significantly higher than in the R and L groups but was
not significantly different to the M group (Figure 2E).

Spleen Histopathology
In the R group, the boundary between red pulp and white
pulp was obvious, lymphocytes were numerous and dense,
tiny arteries were clear and the sinusoid was full of blood
cells (Figure 3A). In the L group, the boundary between
red and white pulp was blurred, lymphocytes were numerous
and dense, tiny arteries were clear and the sinusoid was full
of blood cells (Figure 3B). In the M group, the boundary
between red and white pulp was blurred, lymphocytes became
scarce, the tiny artery was occluded and sinusoid blood
cells started to decline (Figure 3C). In the H group, the
boundary between red and white pulp was further blurred,
lymphocytes became sparser, the tiny artery was also blocked
and the number of blood cells in the sinusoid was further
reduced (Figure 3D).

FIGURE 1 | The Spleen index of hybrid grouper fed diets containing different
oxidized fish oil level. Diverse little letters above histogram bars indicate
significant differences (P < 0.05) in different dosage groups in Duncan’s
multiple range tests, n = 6.
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FIGURE 2 | Antioxidant enzyme, Vitamin E, and MDA concentration in spleen of hybrid grouper. (A) Superoxide dismutase (SOD); (B) catalase (CAT); (C) glutathione
peroxidase (GSH-Px); (D) vitamin E concentration; (E) malondialdehyde (MDA). Diverse little letters above histogram bars indicate significant differences (P < 0.05) in
different dosage groups in Duncan’s multiple range tests, n = 3.

Illumina Sequencing and de novo
Assembly Between R and H Groups
In this study, three duplications in the R group and two
duplications in the H group were used for transcription analysis.
This was because one duplication was poorly correlated with
the other two duplications in the H group. A total of 36.63
GB of clean data was collected from the spleen transcriptome
sequencing results, with 5.99 GB of clean data for each sample
and a Q30 base percentage of 93.76 per cent or higher. The
sequencing quality was generally good, enabling subsequent

FIGURE 3 | Histological examination images in spleen of hybrid grouper fed
diets containing different oxidized fish oil level (magnification 200). R group
(A), L group (B), M group (C), and H group (D). The red arrow represents the
white pulp; the yellow arrow represents the red pulp; the red square
represents the small arteries; the red ellipse represents the blood sinusoid.

research and analysis to be carried out. A total of 100,280
unigenes were recovered after assembly, with 22,604 of these
measuring more than 1 kbp in length (Table 2). The data from the
spleen transcriptome was been submitted to the Sequence Read
Archive (GenBank accession number: PRJNA745324).

Functional Annotation and Classification
Between R and H Groups
There were 43,177 unigenes annotation results in the functional
annotation across all of the databases. Among these, 13,830
(32%), 28,923 (67%), 26,284 (60.9%), 20,989 (48.6%), 28,094
(65.1%), 14,019 (32.6%), 31,728 (73.5%), 27,001 (62.5%), and
31,684 (73.4%) unigenes were annotated to the COG, GO, KEGG,
KOG, Pfam, Swissprot, TrEMBL, eggnog, and NR databases,
respectively (Table 3).

TABLE 2 | Length distributions of the transcripts and unigenes in spleen of hybrid
grouper fed fresh fish oil (R group) and highly oxidized fish oil (H group).

Length range Transcript Unigene

200–300 36,782(23.31%) 34,419(34.32%)

300–500 31,838(20.18%) 25,741(25.67%)

500–1000 30,302(19.20%) 17,516(17.47%)

1000–2000 28,542(18.09%) 11,043(11.01%)

2000+ 30,335(19.22%) 11,561(11.53%)

Total number 157,799 100,280

Total length 187,687,349 86,887,236

N50 length 2,234 1,804

Mean length 1189.41 866.45

Length range: the different length intervals of unigene; the number in the table
indicates the number of unigene.
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TABLE 3 | The unigene’s annotation statistics in spleen of hybrid grouper fed fresh
fish oil (R group) and highly oxidized fish oil (H group).

Database Annotated_
number

300 ≤ Length < 1000 Length ≥ 1000

COG_Annotation 13830 4748 3576

GO_Annotation 28923 9517 14203

KEGG_Annotation 26284 8440 14013

KOG_Annotation 20989 6586 10926

Pfam_Annotation 28094 9024 13484

Swissprot_Annotation 14019 3734 8951

TrEMBL_Annotation 31728 10779 16491

eggNOG_Annotation 27001 8746 14460

nr_Annotation 31684 10784 16460

All_Annotated 43177 15478 16851

Identification of DEGs Between R and H
Groups
The screening criteria included a false discovery rate (FDR)
of less than 0.01 and a fold change (FC) of greater than or
equal to 10. Between the R and H groups, there were 438
differentially expressed genes (DEGs), including 23 up-regulated
genes and 415 down-regulated genes (Figure 4). According to
substantial GO enrichment analyses, the enriched DEGs were
mostly in biological regulation (Table 4). The KEGG pathway
enrichment analysis revealed DEGs to be focused on platelet
activation, the FOXO signaling and notch signaling pathway,
and including amyloid beta precursor protein binding family B
member 1 interacting protein (APBB1IP), glucose-6-phosphatase
(G6PC), histone acetyltransferase p300 (EP300), insulin and
notch 2 (Table 5).

DISCUSSION

Oxidized Fish Oil Did Not Affect the
Spleen Index
One of the most sensitive markers of poisoning is organ weight,
which frequently precedes morphological alterations (Piao et al.,
2013). The use of organ-to-body weight to evaluate treatment
effects in toxicological research has emerged from the evaluation
of organ weight changes in the context of body weight variations
(Michael et al., 2007). In this study, the spleen index in the L, M,
and H groups was not significantly different to the R group. This
may have been because the dose of oxidized fish oil did not affect
the spleen index.

Oxidized Fish Oil Caused Oxidative
Stress in the Spleen
Oxidized fish oil has been proven in many studies to induce
oxidative stress in fish (Song et al., 2019; Long et al., 2021).
Antioxidant systems have evolved in reaction to oxidative stress,
and include antioxidant enzymes such as SOD, CAT, GSH-
Px, and non-enzymatic antioxidants including vitamin E, A, C,
glutathione and uric acid (Nandi et al., 2019).

The initial line of defense against reactive oxygen species
(ROS) is SOD, which catalyzes the dismutation of superoxide
radicals (O2

−) to molecular oxygen (O2) and hydrogen
peroxide (H2O2) (Tosun et al., 2019). CAT can catalyze
the decomposition of H2O2 into water and oxygen (Singh
et al., 2018). As a selenium-dependent hydroperoxidase-reducing
enzyme, GSH-Px is essential in lowering H2O2 and fatty
acid hydroperoxides (Ursini and Maiorino, 2013). In the
present study, the levels of SOD, CAT and GSH-Px in

FIGURE 4 | Volcano map of differentially expressed genes in spleen of hybrid grouper fed fresh fish oil (R group) and highly oxidized fish oil (H group).
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TABLE 4 | Significant GO enrichment analysis of different expression unigenes in spleen of hybrid grouper fed fresh fish oil (R group) and highly oxidized fish oil (H group).

GO.ID Term Annotated Significant Expected KS

GO:0065007 Biological regulation 9396 137 98.75 0.00268

GO:0048856 Anatomical structure development 5230 82 54.97 8.5e-05

GO:0007275 Multicellular organism development 4887 76 51.36 0.00174

GO:0007165 Signal transduction 4357 66 45.79 3.7e-20

GO:0006996 Organelle organization 3456 62 36.32 0.03149

GO:0030154 Cell differentiation 3299 58 34.67 0.00024

GO:1902589 Single-organism organelle organization 2390 53 25.12 0.03952

GO:0051252 Regulation of RNA metabolic process 2649 49 27.84 0.00097

GO:0006355 Regulation of transcription, DNA-templated 2469 48 25.95 0.00225

GO:0048523 Negative regulation of cellular process 3189 46 33.52 0.03189

GO:0048468 Cell development 2428 42 25.52 0.00018

GO:0048583 Regulation of response to stimulus 2848 41 29.93 0.00970

GO:0035556 Intracellular signal transduction 2197 34 23.09 1.4e-05

GO:0007010 Cytoskeleton organization 1482 34 15.58 0.00012

GO:0009966 Regulation of signal transduction 2130 33 22.39 7.7e-05

GO:0051128 Regulation of cellular component organization 2087 31 21.93 0.01055

GO:0006357 Regulation of transcription from RNA polymerase II promoter 1439 29 15.12 3.7e-21

GO:0051173 Positive regulation of nitrogen compound metabolic process 1588 29 16.69 2.0e-07

GO:0032989 Cellular component morphogenesis 1708 28 17.95 0.01126

GO:0031324 Negative regulation of cellular metabolic process 1608 27 16.9 0.00558

GO:2000026 Regulation of multicellular organismal development 1597 27 16.78 0.01443

GO:0009887 Animal organ morphogenesis 1261 24 13.25 0.04926

GO:0030029 Actin filament-based process 855 24 8.99 0.04699

GO:0030030 Cell projection organization 1565 23 16.45 0.00478

GO:0051172 Negative regulation of nitrogen compound metabolic process 1332 22 14 0.00175

GO:0006915 Apoptotic process 1256 21 13.2 7.2e-06

GO:0007049 Cell cycle 1342 21 14.1 0.00041

GO:0010557 Positive regulation of macromolecule biosynthetic process 1079 21 11.34 0.00415

GO.ID, the number of the GO node; Term, the name of the GO node; Annotated, the number of genes annotated to the function for all genes; Significant: the number of
genes annotated to the function by DEG; KS, The P-value of the GO node enrichment analysis result obtained by the KS test method.

TABLE 5 | Different expression unigene KEGG significant enrichment analysis in spleen of hybrid grouper fed fresh fish oil (R group) and highly oxidized fish oil (H group).

Pathway DEG in Pathway P-value Genes involved in pathway Log2FCa Levelb

Platelet activation 1 0.014 APBB1IP –3.83 Down

G6PC 3.99 Up

FOXO signaling pathway 3 0.045 EP300 –3.37 Down

Insulin 4.07 Up

Notch signaling pathway 1 0.047 Notch 2 –3.40 Down

aLog2FC: log2FC (R vs H); bUp: an increased in H group, down: a decrease in H group.

the spleen showed an increasing trend as the amount of
oxidized fish oil in the diet increased, indicating that the
spleen responded to increasing oxidative stress by continuously
increasing antioxidant enzymes activity. However, previous
studies found that there was a continuous decrease in the
activity of antioxidant enzymes in the liver to cope with
increasing oxidative stress (Long et al., 2021). Thus, the results
of the present study were contrary to previous findings; this
was because different organs have different resistance strategies
in response to oxidative stress and different sensitivities to
oxidized fish oil.

Vitamin E inhibits the formation of ROS when lipid undergoes
oxidation (Pinto et al., 2020). In the present study, the vitamin E
content in the spleen showed a decreasing trend as the amount

of dietary oxidized fish oil increased, indicating that the spleen
suppressed the production of ROS by continuously consuming
vitamin E. Chen et al. (2012) also found that the vitamin E
content in serum, the liver and muscle decreased in largemouth
bass (Micropterus salmoides) as the amount of oxidized fish oil in
the diet increased.

One of the end-products of lipid metabolism—and specifically
polyunsaturated fatty acid peroxidation in cells—is MDA, which
is used as a lipid peroxidation biomarker (Li, 2018). In the
present study, the MDA content in the spleen gradually increased
as the dietary oxidized fish oil increased, suggesting that an
increase in the percentage of oxidized fish oil exacerbated splenic
lipid peroxidation. This was in accordance with Rhynchocypris
lagowski (Chen et al., 2019).
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Oxidative Stress Damaged the Structure
of the Spleen
Some studies have shown that oxidative stress can cause
morphological changes to splenic tissue. Mycoplasma
gallisepticum infection caused oxidative stress in chicken
spleen, which led to histological abnormalities in the spleen
(Hu et al., 2021). Flubendiamide and copper caused oxidative
stress and changed the structure in rat spleen (Mandil et al.,
2020). K2Cr2O7 caused oxidative stress and tissue lesions in rat
spleen (García-Niño et al., 2015). The findings of the present
study corroborated these previous findings. This phenomenon
could be explained as follows. Oxidized fish oil induced excessive
production of ROS in the spleen, with high quantities of ROS
disrupting the normal redox state of cells and resulting in the
production of peroxides and free radicals. These peroxides and
free radicals have the potential to harm all cell components,
including proteins, lipids and DNA.

Effect of Oxidative Stress on the Spleen
Transcriptome Between R and H Groups
The mechanisms behind oxidative stress and splenic tissue
damage induced by oxidized fish oil were unknown.
Transcriptome analysis of the spleen samples from the R
and H groups was undertaken to learn more about the effects of
oxidative stress on the spleen.

Gene Ontology Enrichment Function Classification in
Differentially Expressed Genes
In the GO enrichment function, the DEGs were mostly
categorized as involved in biological regulation including signal
transduction, regulation of response to stimulus and apoptotic
processes, etc. Oxidized fish oil is a powerful stimulant that
causes oxidative stress in the body (Yang et al., 2015; Zhang
et al., 2021). In the present study, changes in antioxidant indices
revealed that oxidized fish oil induced oxidative stress in the
spleen. As a biological modulator and signal, oxidative stress
not only has a deadly impact but also plays a critical role in
controlling the function of cell membranes, which are essential
for life (Betteridge, 2000). Oxidative stress alters the redox
status of cells, resulting in the activation of protein kinases
such as receptor and non-receptor tyrosine kinases, protein
kinase C, and MAP kinase cascades, which cause a variety of
physiological responses. These protein kinases are involved in
cell activation, proliferation and differentiation, among other
things. Furthermore, ROS and the resulting oxidative stress play
important roles in apoptosis (Jarzaa̧b and Stryjecka-Zimmer,
2000). In general, the GO enrichment function of DEGs was in
line with biological control caused by oxidative stress.

Effect of Oxidative Stress on Differentially Expressed
Genes in Kyoto Encyclopedia of Genes and Genomes
Pathways
Different gene products work together in organisms to
accomplish biological tasks. Pathway annotation study of DEGs
aids in the understanding of gene functions.

Effect of Oxidative Stress on Platelet Activation
Platelet activation is an essential element of thrombosis. The first
event of activation is platelet shape change, which is followed
by cytoskeleton rearrangement. Actin is the primary cytoskeletal
component (Chen et al., 2017). In the present study, the actin
filament–based process in the GO enrichment function of DEGs
was consistent with previous research, which had shown that
oxidative stress induced platelet activation by increasing the
production of lipid peroxidation (Guo et al., 2019). Meanwhile,
oxidative stress lowers platelet nitric oxide, which increases
platelet activation and intracellular ROS generation (Manasa
and Vani, 2016). In the present study, oxidative stress induced
obstruction of splenic arterioles, which also showed from the
side that platelet activation promoted the formation of thrombus.
Furthermore, as a Rap1 binding protein, APBB1IP is primarily
responsible for leukocyte recruitment and pathogen clearance
through complement-mediated phagocytosis (Ge et al., 2021).
The spleen is an essential immunological organ that can filter
out cell debris, infections and aberrant cells, as well being as a
source of red and white blood cells and immune cell subtypes
(Lewis et al., 2007). In the present research, the APBB1IP
gene involved in platelet activation was down-regulated under
oxidative stress, indicating that oxidative stress impaired the
immune function of the spleen.

Effect of Oxidative Stress on the FOXO Signaling Pathway
Many cellular physiological processes, including apoptosis, cell-
cycle regulation, glucose metabolism, oxidative stress resistance
and lifespan, are influenced by the FOXO signaling pathway
(Ge et al., 2020). Forkhead box O (FOXO) is the O-type
subfamily of the forkhead transcription factor superfamily, which
comprises FOXO1, FOXO3, FOXO4, and FOXO6 (Xie et al.,
2012). FOXO activity is constantly altered to react to a variety
of external stimuli of different types and intensities (Xie et al.,
2012). Oxidative signals stimulate the FOXO transcription factor
family, which controls cell growth and tolerance to oxidative
damage (Gómez-Crisóstomo et al., 2014). Akasaki et al. (2014)
found that decreased expression of FOXO transcription factors
in chondrocytes increased their susceptibility to oxidative stress-
induced death. The FOXO signaling pathway and its genes,
including G6PC, EP300 and insulin, reacted to oxidative stress,
indicating that oxidative stress destroyed the cell signaling
pathways and affected cell function and expression (Chen et al.,
2016). FOXO1 is glycosylated via the hexosamine glycosylation
pathway under oxidative stress (Butt et al., 2011) and FOXO1
is O-glycosylated, resulting in increased production of G6PC
and other gluconeogenic genes (Housley et al., 2008; Kuo et al.,
2008). The G6PC gene was up-regulated in the spleen under
oxidative stress in this research, indicating that the spleen reacted
to oxidative stress through FOXO1 glycosylation as well.

EP300 is the essential enzyme for the acetylation of
FOXOs (Van Der Heide and Smidt, 2005). Under oxidative
stress, acetylation of FOXOs—like glycosylation—has been
demonstrated to control transcriptional activity and mediate
many biological activities of FOXOs (Essers et al., 2004). It
has been observed that acetylation of FOXO factors reduces
FOXO-mediated transcriptional activity by breaking the interface
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between FOXO factors and target DNA, as well as changing the
role of FOXOs role from promoting cell cycle arrest to oxidative
stress prevention to cell death (Van Der Heide and Smidt, 2005).
However, the spleen responded to oxidative stress by reducing the
expression of EP300 gene in this study.

Wang et al. (2007) demonstrated that oxidative stress
increased SIRT2 expression in cells by binding to FOXO3a and
decreasing its level of acetylation, which was similar to the results
of the present study. This phenomenon may have been due to the
spleen responding to oxidative stress via other mechanisms, with
these still requiring further exploration. Furthermore, FOXO
proteins have a key role in regulating the effects of insulin
and growth hormones on a variety of physiological processes,
including cell proliferation, apoptosis and metabolism (Barthel
et al., 2005). FOXO protein, as a key target of insulin action,
may suppress cell proliferation, induce apoptosis and improve
cellular resilience to oxidative stress (Barthel et al., 2005). In the
present study, the spleen synthesized insulin by enhancing the
expression of insulin genes, thereby acting on FOXO protein
to resist oxidative stress. Smith and Shanley (2013) found
that stronger oxidative stress led to a short-term activation of
insulin signaling, which was consistent with the up-regulation
of insulin gene expression in the spleen under oxidative stress in
the present study.

Effect of Oxidative Stress on the Notch Signaling Pathway
Notch signaling is an important pathway for communication
between adjacent cells to regulate cell development. The three
components of the notch signaling cascade are the notch receptor,
notch ligand (DSL protein) and intracellular effector molecule
(CSL-DNA binding protein) (Ehebauer et al., 2006). When their
corresponding transmembrane ligands bind to the extracellular
domains of notch 1, notch 2, notch 3, and notch 4 (a single-pass
transmembrane receptor protein), the notch receptor is activated
(Mu et al., 2013). In particular, notch 2 is generally involved in
cell development and fate, as well as immune functions (Pan
et al., 2013). Sakata-Yanagimoto and Chiba (2012) found that
notch 2 was necessary for the development of B cells in the
marginal zone of the spleen and regulated the differentiation
of dendritic cells (DCs) of the spleen. Additionally, notch 2
regulates intestinal immune cells such as mast cells and DCs,
and it plays an important role in the differentiation of helper
T cells from CD4 T cells and the activation of cytotoxic T
cells. Lewis et al. (2011) also found that DC-specific deletion
of the notch 2 receptor resulted in a drop in DC numbers
in the spleen, as well as the loss of CD11b + CD103 + DCs
in the intestinal lamina propria and a concomitant decrease
in IL-17–producing CD4 + T cells. In the present study,
the notch 2 gene in the spleen was down-regulated under
oxidative stress, showing that oxidative stress damaged the
immune function of the spleen. The significant GO enrichment
analysis of differentially expressed unigenes (DEGs), including
cell differentiation, cell development, negative regulation of
cellular processes, cytoskeleton organization, cellular component
morphogenesis, cell projection organization, cell morphogenesis
and apoptotic processes suggested that the immune cells of the
spleen were negatively affected by oxidative stress. Additionally,

histological analysis of the spleen showed a reduction in immune
cells (T cells and B cells) arising from oxidative stress.

CONCLUSION

Oxidized fish oil caused oxidative stress in the spleen, which led to
spleen tissue damage. More importantly, oxidative stress changed
the spleen transcriptome profile, and the transcription profile of
the spleen was altered through platelet activation, FOXO and the
notch signaling pathway.
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