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Single-cell proteins are attracting growing attention as viable alternatives for fishmeal
(FM) in aquatic feed. Methanotroph (Methylococcus capsulatus, Bath) bacteria meal
FeedKind R© (FK) is a type of single cell protein with high protein content (75.14%) and
desirable amino acids profile, produced by Methylococcus capsulatus (Bath) living on
methane consumption. The present study evaluated the potential of replacing FM with
FK in the diet of black sea bream (Acanthopagrus schlegelii). Five iso-energetic and iso-
nitrogenous diets were designed with FK replacing 0, 4.13, 8.27, 16.53, and 24.80%
FM protein in the basal diet (40% FM content), respectively. All the diets were fed to three
replicates of fish (initial weight 6.56± 0.02 g) for 70 days. After the feeding trial, replacing
dietary 8.27% FM protein with FK significantly improved the weight gain and specific
growth rate of fish (P < 0.05), while other groups showed no significant difference in the
growth performance (P > 0.05). The fish fed diets with 8.27 and 16.53% replacement
levels exhibited significantly increased feeding rates. The 8.27% FK diet significantly
increased the whole-body and muscle crude protein contents, apparent digestibility of
crude lipid, foregut, and midgut amylase activities. The microvillus density in the midgut
of fish fed the 24.80% FK diet significantly increased. The diet with 8.27% FK increased
the serum triglyceride content of the fish, while the 24.80% FK diet reduced the serum
triglyceride, total cholesterol, and low-density lipoprotein cholesterol contents of the fish.
In conclusion, the results indicated that replacing dietary FM protein with up to 24.80%
FK had no adverse effects on the growth of black sea bream, whilst replacing 8.27%
FM protein with FK enhanced its growth performance and feed utilization.
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INTRODUCTION

Meals obtained from animal products such as fish, cattle, and
poultry are readily available and provide a variety of nutritional
profiles for farmed aquatic animals. Marine proteins, such as
those derived from fish, shrimp, and squid, have superior
nutritional values, but their production has raised ecological
and economic concerns, especially fish meal (FM) (Olsen and
Hasan, 2012; Gamboa-Delgado and Márquez-Reyes, 2018; Kim
et al., 2019). Plant meals are the most commonly used protein
sources to replace animal proteins in feed (Kaushik et al., 2004;
De Francesco et al., 2007; Cruz-Suárez et al., 2009). However,
inherent characteristics of plant meals, such as the presence of
anti-nutritional factors and lack of some essential amino acids
(e.g., methionine, lysine), have either limited their use or required
extra processing and costs (Francis et al., 2001; Gatlin et al.,
2007; Miao et al., 2018). Among the unconventional sources of
nutrients that have been intensely studied, single-cell protein
(SCP), a bulk of dried cells that can also be termed as bioprotein,
microbial protein or biomass, including microalgae, yeast, fungal,
and bacterial proteins (BP), are attracting growing attention as
sustainable protein sources for substituting animal- and plant-
derived ingredients in aquafeeds (Anupama and Ravindra, 2000;
Sánchez-Muros et al., 2014; Henry et al., 2015; Adeoye et al., 2021;
Alloul et al., 2021; Jannathulla et al., 2021; Maulu et al., 2021).

In addition to high protein content (60–82%, dry matter),
SCPs contain amino acid profiles similar to FM and provide
fatty acids, nucleic acids, vitamins, and minerals that can
support the growth and normal physiological functions of aquatic
animals (Matassa et al., 2016; Gamboa-Delgado and Márquez-
Reyes, 2018; Wang et al., 2020a). BPs generally contains higher
methionine content (up to 3%) than algal or fungal SCPs
(Erdman et al., 1977; Anupama and Ravindra, 2000). Many
studies with BPs have been conducted on white leg shrimp
(Penaeus vannamei) (Tlusty et al., 2017; Hamidoghli et al., 2019;
Alloul et al., 2021), Florida pompano (Trachionotus carolinus)
(Rhodes et al., 2015), tilapia (Oreochromis niloticus) (Maulu
et al., 2021), Atlantic salmon (Salmo salar) (Storebakken et al.,
2004; Berge et al., 2005; Aas et al., 2006a; Romarheim et al.,
2011), rainbow trout (Oncorhynchus mykiss) (Perera et al.,
1995b; Aas et al., 2006b; Øverland et al., 2006; Hardy et al.,
2018), Atlantic halibut (Hippoglossus hippoglossus) (Aas et al.,
2007), Japanese yellowtail (Seriola quinqueradiata) (Biswas et al.,
2020), and African catfish (Clarias gariepinus) (Adeoye et al.,
2021). Although based on different feed formulas, they have
demonstrated that various BPs could partially or even wholly
replace FM or soybean meal (SBM) in the diet without adverse
effects on the growth performance or health status of various
aquatic species.

FeedKind R© (FK) (Calysta, Inc., Menlo Park, CA,
United States) is a BP product derived from Bath. It is produced
by continuous aerobic fermentation of the bacteria with methane
as the sole carbon and energy source in a proprietary fermenter.
The harvested biomass is subsequently centrifuged, heat
inactivated, and spray dried (Biswas et al., 2020). FeedKind R© has
high contents of crude protein and lipid, with a well-balanced
amino acids profile comparable to the FM (Table 1). Biswas

TABLE 1 | The nutritional composition of FeedKind R© and fishmeal (%, dry matter).

Nutritional components Fishmeal FeedKind R©

Crude protein 71.76 75.14

Crude lipid 8.03 8.31

Ash 17.53 7.20

Phosphorus 2.17 1.57

Essential amino acids

Arginine 4.27 4.75

Histidine 0.69 1.58

Iso-leucine 3.00 3.27

Leucine 5.13 5.80

Lysine 4.21 4.32

Methionine 2.27 1.90

Phenylalanine 3.11 3.27

Threonine 2.92 3.38

Valine 3.79 4.11

Non-essential amino acids

Alanine 4.12 5.17

Aspartic acid 5.56 6.96

Cystine 1.55 0.42

Glutamic acid 8.87 8.23

Glycine 4.55 3.59

Proline 4.50 2.43

Serine 4.25 2.64

Tyrosine 1.99 2.00

Total amino acids 64.78 63.82

et al. (2020) found that FK could replace 30% of the dietary
FM protein without impacting the growth performance or feed
efficiency of Japanese yellowtail.

As a popular aquaculture species in Southeast Asia, black
sea bream (Acanthopagrus schlegelii) is adaptive to the intensive
aquaculture on account of its characteristics of fast growth
rate, high disease resistance, and tolerance to a wide range
of environment (Hong and Zhang, 2003; Wang et al., 2020b).
Previous study on the diet of black sea bream showed that
Clostridium autoethanogenum protein (CAP) could replace FM
up to 58.20% without adverse effects on the growth performance,
antioxidative status, and digestive enzymes activities (Chen et al.,
2020). It showed a higher possible replacement level than that
in largemouth bass (Micropterus salmoides) (150 g/kg) (Yang
et al., 2021). Meanwhile, there is still limited knowledge on
how dietary BPs may affect black sea bream. The purpose of
this study was to evaluate the potential of using FK as an
alternative for FM in the diet of black sea bream based on
the growth performance, feed utilization, digestive enzymes
activities, intestinal and hepatic histology, and serum biochemical
and antioxidative/oxidative parameters.

MATERIALS AND METHODS

Experimental Diets
The methanotroph bacteria meal (FeedKind R©, FK) was
provided by Calysta, Inc., Menlo Park, CA, United States.
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Five isonitrogenous (44.8% crude protein) and isoenergetic
(21 kJ/g gross energy) diets were formulated with FM protein
substituted by graded levels of FK protein at 0 (FK0), 4.13
(FK4.13), 8.27 (FK8.27), 16.53 (FK16.53), and 24.80% (FK24.80)
(Table 2). Crystalline DL-methionine, L-lysine, and L-arginine
were added to maintain sufficient and balanced levels of these
essential amino acids, according to the recommended levels
from previous studies on black sea bream (Zhou et al., 2010a,b,
2011a,b). Taurine was added according to the recommended
level by Tong et al. (2020). Non-essential amino acids were added
to balance the protein level. Ca(H2PO4)2 was added to meet the
available phosphorus contents required in black sea bream (Shao
et al., 2008). The yttrium oxide (Y2O3) was supplemented at
0.1% for determining apparent digestibility.

After pulverizing and sifting through a 178-µm sieve, all
the solid ingredients were weighed before mixing thoroughly
with the lipid ingredients. The mixture was pelletized into 2.5-
mm-diameter pellets using a pelletizer (Modle HKJ-218; Huarui,
Wuxi, China). The pellets were then steamed for 10 min, dried for
72 h at 24◦C before being stored at –20◦C for subsequent feeding.

Experimental Fish and Feeding Trial
Black sea bream was provided by a fish farm (Zhoushan, China).
The feeding trial was conducted in the Xixuan Fishery Science
and Technology Island (Zhoushan, China). Fish were acclimated
to the experimental conditions for 2 weeks in a plastic pond
(5 m × 3 m × 1 m) before the feeding trial. After acclimation,
450 fish (6.56 ± 0.02 g) were randomly selected and divided
into 15 fiberglass tanks. Each treatment included three replicates
with 30 fish in each tank (filled with 420 L of water). Sand
filtrated seawater was supplied to all the tanks at 2 L/min. The
tanks were kept under natural photoperiod and continuously
aerated with air stones. Water temperature was maintained at
26 ± 2◦C; salinity, 27 ± 1 g/L; pH, 7.7 ± 0.1; and dissolved
oxygen ≥ 5 mg/L. The fish were fed to apparent satiation two
times daily at 08:00 and 16:00 for 70 days. Feces were removed
2 h after each feeding session.

Sampling
Before the feeding experiment, 30 fish were randomly collected
and stored at −20◦C for determining the initial whole-body
crude protein content. From the 8th week, the fish feces were
collected before 07:00 every day following the method of Wang
et al. (2020c). Briefly, after siphoning, the feces were precipitated,
filtrated, and finally collected in sealed bags and stored at −20◦C
for determining apparent digestibility coefficient. After the last
feeding, all the fish were fasted for 24 h, anaesthetized with MS-
222 (60 mg/L), and individually measured for final body weight
and length. Five fish from each tank were randomly selected
and preserved at −20◦C for whole-body proximate composition
analysis. Pooled blood was drawn from the caudal vein of the rest
of the fish with 1 ml syringes. The blood samples were settled
at 4◦C for 2 h before being centrifuged at 10,000 g for 15 min
to get the serum for biochemical analyses. Subsequently, ten
fishes were dissected on ice to orderly separate the viscera, liver,
and intraperitoneal fat, and then, weighed for calculating the
somatic indexes. The dorsal muscle was removed for proximate
composition analysis. The gastrointestinal tract was divided into

TABLE 2 | Feed formula and proximate composition of the experimental diets.

Ingredients (%) FK0 FK4.13 FK8.27 FK16.53 FK24.80

Fishmeal1 40.00 38.21 36.42 32.84 29.26

FeedKind2 0.00 1.50 3.00 6.00 9.00

Soy protein
concentrate

5.00 5.00 5.00 5.00 5.00

Fermented
soybean meal

5.00 5.00 5.00 5.00 5.00

Squid liver meal 3.00 3.00 3.00 3.00 3.00

Chicken meat meal 4.00 4.00 4.00 4.00 4.00

Fish oil 3.00 3.13 3.26 3.52 3.78

Corn oil 5.00 4.99 4.98 4.96 4.94

Soy lecithin 2.00 2.00 2.00 2.00 2.00

Wheat flour 21.00 21.00 21.00 21.00 21.00

α-Starch 2.54 2.41 2.29 2.03 1.78

50% L-carnitine 0.30 0.30 0.30 0.30 0.30

Vitamin premix3 0.30 0.30 0.30 0.30 0.30

Mineral premix4 0.50 0.50 0.50 0.50 0.50

Sodium
carboxymethyl
cellulose

0.50 0.50 0.50 0.50 0.50

Carrageenan 0.20 0.20 0.20 0.20 0.20

DL-Methionine 0.41 0.42 0.43 0.45 0.46

L-Lysine 0.64 0.65 0.65 0.67 0.68

L-Arginine 0.30 0.30 0.31 0.31 0.31

Taurine 0.25 0.26 0.27 0.29 0.32

Non-essential
amino acids5

0.57 0.54 0.51 0.45 0.40

Ca(H2PO4)2 2.32 2.32 2.32 2.32 2.32

α-Cellulose 0.47 0.77 1.06 1.66 2.25

Zeolite powder 2.50 2.50 2.50 2.50 2.50

Y2O3 0.10 0.10 0.10 0.10 0.10

Antiseptic 0.10 0.10 0.10 0.10 0.10

Total 100.00 100.00 100.00 100.00 100.00

Proximate composition (%, dry matter)

Crude protein 45.13 45.03 45.18 44.62 43.98

Crude lipid 14.99 15.16 15.28 15.76 15.52

Ash 13.65 13.36 13.15 12.62 12.13

Gross energy (kJ/g) 20.81 20.89 20.96 21.12 21.12

1Provided by Zhejiang Jin Jia Feed Co., Ltd, Hangzhou, China.
2Provided by Calysta, Inc., California, United States.
3Vitamin premix (mg/kg): α-tocopherol, 80; retinyl acetate, 40; cholecalciferol, 0.1;
menadione, 15; niacin, 165; riboflavin, 22; pyridoxine HC1, 40; thiamin mononitrate,
45; D-Ca pantothenate, 102, folic acid, 10; vitamin B12, 0.9; inositol, 450; ascorbic
acid, 150; Na menadione bisulfate, 15; thiamin, 5; choline chloride, 320 and
p-aminobenzoic acid, 50.
4Mineral premix (mg/kg): Na2SiO3, 0.4; CaCO3, 544.9; NaH2PO4·H2O, 200;
KH2PO4, 200; MgSO4·7H2O, 10; MnSO4·H2O, 4; CuCl2·2H2O, 2; ZnSO4·7H2O,
12; FeSO4·7H2O, 12; NaCl, 12; KI, .1; CoCl2·6H2O, .1; Na2MoO4·2H2O, .5;
AlCl3·6H2O, 1; and KF, 1.
5Non-essential amino acids: Aspartic acid:Glycine = 1:1, for balancing the protein
levels among all the groups.

stomach, foregut, midgut, and hindgut for determining the
respective digestive enzyme activities. All the samples were stored
at −20◦C until analyses. Histological samples from the liver and
midgut were collected from three fishes per tank, separated into
two small parts, then respectively, fixed in 10% formalin and 2.5%
glutaraldehyde solution (4◦C).
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Proximate Compositions
The proximate compositions of experimental feed, fish whole-
body, muscle, and feces were determined following the standard
protocols of the Association of Official Analytical Chemists
(AOAC, 1995). Moisture was determined by drying the sample
to constant weight at 105◦C in an oven. Crude protein content
was determined by Kjeldahl method (N × 6.25), and crude
lipid content was determined by Soxhlet extraction method with
diethyl ether. Ash content was determined by combusting the
sample at 550◦C for 8 h in a muffle furnace. The amino acid
compositions of FM, FK, and fish feces were assayed by an
automatic amino acid analyzer (Hitachi L-8900, Tokyo, Japan)
after acid hydrolysis. The feed and fecal samples were dried,
ground, and digested with acid. After filtration and dilution,
the yttrium (Y) content was determined by an inductively
coupled plasma mass spectrometer (PerkinElmer ELAN DRC-e,
Waltham, MA, United States).

Biochemical Assays
The supernatants of the stomach and intestine samples were
obtained following the procedure of Zhou et al. (2020).
Briefly, the tissues were homogenized in 9 vol (v/w) of 0.86%
physiological saline. The homogenate was then centrifuged at
2,500 g for 10 min at 4◦C before collecting the supernatants,
which were used to determine the digestive enzymes activities.
The serum was used to assay the contents of glucose
(GLU), triglyceride (TG), total cholesterol (T-CHO), high
density lipoprotein cholesterol (HDL-C), low density lipoprotein
cholesterol (LDL-C), and malondialdehyde (MDA), as well as
the activities of glutamic pyruvic transaminase (GPT), glutamic

oxalacetic transaminase (GOT), superoxide dismutase (SOD),
and glutathione peroxidase (GSH-Px). The biochemical assays of
serum and tissues were determined using assay kits purchased
from Nanjing Jiancheng Bioengineering Institute (Nanjing,
China) according to the instructions of the manufacturer.

Histological Analysis of Midgut and Liver
After serial dehydration in graded alcohol, the midgut and liver
tissues fixed in 10% formalin were embedded in paraffin and
sectioned to 5-µm thickness. The slices were then subjected to
hematoxylin and eosin (H&E) staining, and observed under a
light microscope (Olympus BX61, Tokyo, Japan). After fixing
with 2.5% glutaraldehyde for more than 4 h, the midgut samples
were postfixed with 1% OsO4 for 1.5 h. After double fixation,
the samples were first dehydrated by graded ethanol, and then,
dried in Hitachi Model HCP-2 critical point dryer (Tokyo,
Japan). The dehydrated samples were coated with gold-palladium
(Hitachi Model E-1010 ion sputter, Tokyo, Japan), and observed
in scanning electron microscope (Hitachi Model SU-8010 SEM,
Tokyo, Japan). The villus height and microvillus density were
measured using Image-Pro Plus 6.0 software. The number of
microvilli per unit area was counted in five randomly selected
non-overlapping fields of view (Wang Y. et al., 2019).

Statistical Analysis
All the data were processed by IBM SPSS Statistics 24.0 and
presented as mean ± standard error (SEM). Levene’s test was
used to determine the normality and homogeneity of variances.
Independent-sample Kruskal-Wallis test followed by Bonferroni

TABLE 3 | Growth performance and feed utilization of black sea bream fed with different diets1.

Index FK0 FK4.13 FK8.27 FK16.53 FK24.80

SR2 (%) 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

WG3 (%) 483.28 ± 5.47b 505.07 ± 2.06ab 570.16 ± 12.94a 536.13 ± 5.84ab 501.47 ± 4.53ab

SGR4 (%/day) 2.52 ± 0.01b 2.57 ± 0.01ab 2.72 ± 0.03a 2.64 ± 0.01ab 2.56 ± 0.01ab

CF5 (g/cm3) 2.84 ± 0.04 2.92 ± 0.04 2.92 ± 0.04 2.93 ± 0.02 2.86 ± 0.04

VSI6 (%) 9.35 ± 0.17 9.32 ± 0.16 9.17 ± 0.32 9.11 ± 0.18 8.76 ± 0.26

HSI7 (%) 2.55 ± 0.12 2.47 ± 0.12 2.56 ± 0.06 2.59 ± 0.04 2.46 ± 0.05

IFR8 (%) 3.38 ± 0.18 3.08 ± 0.15 2.84 ± 0.21 2.86 ± 0.25 2.76 ± 0.24

FR9 (%/day) 2.45 ± 0.08b 2.54 ± 0.06ab 2.65 ± 0.04a 2.62 ± 0.04a 2.59 ± 0.02ab

FCR10 1.27 ± 0.03 1.23 ± 0.02 1.22 ± 0.01 1.23 ± 0.02 1.26 ± 0.01

PER11 1.74 ± 0.04 1.81 ± 0.02 1.82 ± 0.01 1.77 ± 0.05 1.76 ± 0.02

PPV12 (%) 37.22 ± 0.67 37.50 ± 0.85 38.04 ± 0.25 37.59 ± 0.83 37.48 ± 0.21

1Values are presented as mean ± SEM (n = 3).
2SR (survival rate, %) = (final fish number/initial fish number) × 100.
3WG (weight gain, %) = (final weight – initial weight)/initial weight × 100.
4SGR (specific growth rate, %/day) = (ln final weight – ln initial weight) × 100/days.
5CF (condition factor, g/cm3) = body weight/body length3

× 100.
6VSI (viscerosomatic index, %) = viscera weight/body weight × 100.
7HSI (hepatosomatic index, %) = liver weight/body weight × 100.
8 IFR (intraperitoneal fat ratio, %) = (intraperitoneal fat weight/body weight) × 100.
9FR (feeding rate, %/day) = dry feed intake/[(final weight + initial weight)/2]/days × 100.
10FCR (feed conversion rate) = dry feed intake/weight gain.
11PER (protein efficacy ratio) = weight gain/total protein intake.
12PPV (protein productive value, %) = protein gain/total protein intake × 100.
a,bMeans in the same column with different superscripts are significantly different (P < 0.05).
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adjust was performed when data were not homogeneous. A one-
way analysis of variance (ANOVA) followed by Duncan multiple-
range test was performed to determine the statistically significant
differences among different groups. The significance level was set
as P < 0.05.

RESULTS

Growth Performance and Feed
Utilization
As shown in Table 3, no significant differences were found in
survival rate (SR), condition factor (CF) (ANOVA, F4,10 = 1.561,
P = 0.258), viscerosomatic index (VSI) (ANOVA, F4,10 = 0.650,
P = 0.640), hepatosomatic index (HSI) (ANOVA, F4,10 = 0.456,
P = 0.766), and intraperitoneal fat ratio (IFR) (ANOVA,
F4,10 = 1.072, P = 0.420) of black sea bream among all the
treatments. With the replacement level of FM by dietary FK
increasing, the weight gain (WG) and specific growth rate
(SGR) of fish initially increased, and then decreased after 8.27%
replacement level. The WG (ANOVA, F4,10 = 103.298, P = 0.000)
and SGR (ANOVA, F4,10 = 101.470, P = 0.000) of fish in the
FK8.27 group were significantly higher than the FK0 group, but
no significant differences were obtained among the other FK
inclusion groups and the FK0 group. Compared with the FK0
group, the fish in the FK8.27 and FK16.53 groups showed a
significantly increased feeding rate (FR) (ANOVA, F4,10 = 2.481,
P = 0.088). The feed conversion rate (FCR) (Kruskal-Wallis,
F4,10 = 5.284, P = 0.259), protein efficacy ratio (PER) (ANOVA,
F4,10 = 1.141, P = 0.384), and protein productive value (PPV)
(ANOVA, F4,10 = 0.185, P = 0.942) among all the groups showed
no significant differences.

Whole-Body and Muscle Proximate
Composition
As shown in Table 4, the whole-body crude protein content of fish
in the FK8.27 group was significantly higher than other groups
(ANOVA, F4,10 = 6.764, P = 0.005). Compared with the FK0
group, the whole-body ash content was significantly lower in the
FK inclusion groups (ANOVA, F4,10 = 7.650, P = 0.004). Moisture
(ANOVA, F4,10 = 1.615, P = 0.234) and crude lipid contents
(Kruskal-Wallis, F4,10 = 5.681, P = 0.224) in the whole body of
the fish were not significantly affected by dietary FK inclusion.
Moisture in the muscle of the fish in the FK24.80 group was
significantly higher than other groups (ANOVA, F4,10 = 7.262,
P = 0.005). A significant difference was observed in the muscle
crude protein content of fish between the FK8.27 and FK0 groups
(Kruskal-Wallis, F4,10 = 11.732, P = 0.019). Replacing 24.80% FM
protein with FK in the diet significantly decreased muscle crude
lipid content than in other treatments (ANOVA, F4,10 = 11.267,
P = 0.000).

Apparent Digestibility and
Gastrointestinal Digestive Enzyme
Activities
As listed in Table 5, the ADC of dry matter and crude lipid
increased with increasing dietary FK protein replacement level

to 8.27% then, decreased. The ADC of dry matter (ANOVA,
F4,10 = 1.805, P = 0.198), and crude lipid (ANOVA, F4,10 = 2.955,
P = 0.075) in the FK8.27 group were significantly higher than
in the FK24.80 and FK0 groups, respectively. There was no
significant difference in the ADC of crude protein among all the
groups (Kruskal-Wallis, F4,10 = 3.523, P = 0.474).

The digestive enzyme activities in the gastrointestinal tract
of all the treatments are presented in Table 6. Compared with
the FK24.80 group, the FK8.27, and FK16.53 groups exhibited
enhanced trypsin (ANOVA, F4,10 = 3.292, P = 0.030) and lipase
(ANOVA, F4,10 = 2.970, P = 0.042) activities in the foregut.
The foregut amylase activity in the FK8.27 and FK16.53 groups
was also significantly higher than the other groups (ANOVA,
F4,10 = 6.995, P = 0.001). The midgut amylase activity in the
FK8.27 group was significantly higher than in the FK0 group
(ANOVA, F4,10 = 1.557, P = 0.217), but no significant differences
were found in the midgut trypsin (ANOVA, F4,10 = 0.359,
P = 0.835) and lipase activities (ANOVA, F4,10 = 0.458,
P = 0.765) among the treatments. The digestive enzyme activities
in the stomach and hindgut were not significantly affected by
dietary FK inclusion.

Serum Biochemical and
Antioxidative/Oxidative Parameters
The effects of dietary FK on serum biochemical and
antioxidative/oxidative parameters of black sea bream are
listed in Table 7. The serum TG concentration increased with
increasing dietary FK protein replacement level to 8.27%, then
decreased (ANOVA, F4,10 = 10.405, P = 0.000). The serum
T-CHO content of fish in the FK24.80 group was lower than in
the FK0, FK4.13, and FK8.27 groups (ANOVA, F4,10 = 2.819,
P = 0.048). Replacing 24.80% FM protein with FK in the diet
significantly decreased the serum LDL-C level (Kruskal-Wallis,
F4,10 = 12.323, P = 0.015). The serum GPT activity of fish in the
FK8.27 group was significantly lower than in the FK24.80 group
(ANOVA, F4,10 = 2.752, P = 0.055). No significant differences in
glucose (ANOVA, F4,10 = 0.927, P = 0.472), HDL-C (Kruskal-
Wallis, F4,10 = 3.504, P = 0.477), and MDA contents (ANOVA,
F4,10 = 0.280, P = 0.888), as well as GOT (ANOVA, F4,10 = 0.435,
P = 0.781), SOD (ANOVA, F4,10 = 0.275, P = 0.891), and GSH-Px
(ANOVA, F4,10 = 1.384, P = 0.272) activities were found in the
fish serum among all the groups.

Intestinal and Hepatic Histological
Observation
The midgut histological structures of fish in the FK0, FK8.27,
and FK24.80 groups are presented in Figure 1. The experimental
diets did not affect the integrity of midgut intestinal mucosa
morphology, with no visible damage. Each mucosal fold
was composed of a simple lamina propria with abundant
goblet cells and intraepithelial leucocytes (IELs). Different
from the other two groups, the FK24.80 group showed
expansion of central lacteal in the lamina propria of some
villus. The villus height of fish fed with the FK8.27 diet
was significantly higher than the FK24.80 diet, whereas both
groups showed similar villus height to the control group
(ANOVA, F4,10 = 4.047, P = 0.039). The intestinal microvilli
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TABLE 4 | Whole-body and muscle proximate composition of black sea bream fed with different diets1.

Index (%) FK0 FK4.13 FK8.27 FK16.53 FK24.80

Whole body

Moisture 65.76 ± 0.06 66.13 ± 0.67 64.91 ± 0.24 65.10 ± 0.40 65.19 ± 0.11

Crude protein 17.56 ± 0.02b 17.60 ± 0.05b 17.86 ± 0.03a 17.71 ± 0.08b 17.65 ± 0.04b

Crude lipid 11.91 ± 0.13 12.56 ± 0.76 13.53 ± 0.21 13.38 ± 0.10 12.90 ± 0.04

Ash 4.73 ± 0.01a 4.57 ± 0.05b 4.54 ± 0.05b 4.54 ± 0.03b 4.50 ± 0.01b

Muscle

Moisture 73.45 ± 0.17b 73.40 ± 0.16b 73.43 ± 0.12b 73.37 ± 0.06b 74.13 ± 0.03a

Crude protein 20.13 ± 0.01b 20.56 ± 0.04ab 21.02 ± 0.07a 20.77 ± 0.23ab 20.32 ± 0.07ab

Crude lipid 4.43 ± 0.11ab 4.29 ± 0.18b 4.73 ± 0.06a 4.41 ± 0.10ab 3.63 ± 0.08c

Ash 1.61 ± 0.01 1.61 ± 0.01 1.61 ± 0.02 1.60 ± 0.03 1.64 ± 0.03

1Values are presented as mean ± SEM (n = 3).
a,b,cMeans in the same column with different superscripts are significantly different (P < 0.05).

TABLE 5 | Apparent digestibility coefficients of dry matter, protein, and lipid of black sea bream fed with different diets1.

Index (%) FK0 FK4.13 FK8.27 FK16.53 FK24.80

Apparent digestibility coefficient

Dry matter2 80.58 ± 0.94ab 81.07 ± 0.81ab 81.75 ± 0.80a 79.68 ± 0.39ab 78.15 ± 1.04b

Crude protein3 85.80 ± 1.13 86.35 ± 0.63 88.41 ± 0.98 86.63 ± 0.50 85.57 ± 0.15

Crude lipid3 90.96 ± 1.26b 94.58 ± 0.72ab 94.97 ± 1.03a 92.21 ± 0.99ab 91.61 ± 0.44ab

1Values are presented as mean ± SEM (n = 3).
2Apparent digestibility coefficients of dry matter (ADC, %) = (1 − dietary Y2O3/fecal Y2O3) × 100.
3Apparent digestibility of nutrient in feed (%) = [1 − (dietary Y2O3/fecal Y2O3) × (nutrient content in feces/nutrient content in feed)] × 100.
a,bMeans in the same column with different superscripts are significantly different (P < 0.05).

TABLE 6 | Digestive enzyme activities in gastrointestinal tract of black sea bream fed with different diets1.

Parameters FK0 FK4.13 FK8.27 FK16.53 FK24.80

Stomach

Pepsin (U/mgprot) 8.19 ± 0.51 9.06 ± 0.24 9.68 ± 0.48 8.91 ± 0.61 8.83 ± 0.15

Lipase (U/gprot) 0.62 ± 0.07 0.62 ± 0.09 0.62 ± 0.08 0.62 ± 0.08 0.69 ± 0.06

Amylase (U/mgprot) 1.43 ± 0.15 1.53 ± 0.21 1.59 ± 0.22 1.39 ± 0.16 1.38 ± 0.21

Foregut

Trypsin (U/mgprot) 3538.03 ± 327.09ab 3411.90 ± 258.56ab 4117.65 ± 437.49a 3797.30 ± 407.68a 2454.55 ± 272.38b

Lipase (U/gprot) 0.85 ± 0.05ab 0.92 ± 0.11ab 1.09 ± 0.08a 1.08 ± 0.06a 0.81 ± 0.07b

Amylase (U/mgprot) 4.30 ± 0.27b 4.42 ± 0.21b 6.48 ± 0.70a 5.95 ± 0.21a 4.15 ± 0.49b

Midgut

Trypsin (U/mgprot) 5,580.22 ± 409.61 5,898.89 ± 378.71 6,115.81 ± 424.16 5,643.15 ± 269.79 5,607.06 ± 486.78

Lipase (U/gprot) 2.02 ± 0.22 2.15 ± 0.14 2.35 ± 0.19 2.12 ± 0.12 2.10 ± 0.19

Amylase (U/mgprot) 5.41 ± 0.55b 6.49 ± 0.43ab 7.22 ± 0.63a 6.79 ± 0.55ab 6.34 ± 0.51ab

Hindgut

Trypsin (U/mgprot) 4,009.93 ± 144.65 4,181.68 ± 210.97 4,637.95 ± 410.95 4,102.46 ± 273.67 4,230.18 ± 413.16

Lipase (U/gprot) 2.02 ± 0.09 2.02 ± 0.14 2.06 ± 0.15 2.08 ± 0.19 2.08 ± 0.15

Amylase (U/mgprot) 5.21 ± 0.19 5.35 ± 0.33 5.15 ± 0.33 5.56 ± 0.44 4.89 ± 0.42

1Values are presented as mean ± SEM (n = 3).
a,bMeans in the same column with different superscripts are significantly different (P < 0.05).

in all the groups were arranged neatly and tightly. When the
FK protein replacement level increased to 24.8%, the midgut
microvillus presented a higher density (ANOVA, F4,10 = 7.258,
P = 0.009). For all the fish sampled, the nuclei of hepatocytes
had normal and spherical shapes, with clear hepatocyte
boundaries (Figure 2).

DISCUSSION

The present study assessed the viability of using methanotroph
bacteria meal as an FM alternative in the formulated diet of
black sea bream. Among the experimental diets, the levels of
taurine and essential amino acids were balanced and sufficient
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TABLE 7 | Serum biochemical and antioxidative/oxidative parameters of black sea bream fed with different diets1.

Parameters2 FK0 FK4.13 FK8.27 FK16.53 FK24.80

GLU (mmol/L) 10.82 ± 0.88 10.57 ± 1.01 9.71 ± 0.64 9.66 ± 1.49 8.57 ± 0.73

TG (mmol/L) 2.84 ± 0.15b 3.04 ± 0.20b 3.66 ± 0.21a 3.26 ± 0.11ab 2.17 ± 0.18c

T-CHO (mmol/L) 9.63 ± 0.44a 9.76 ± 0.22a 9.52 ± 0.43a 9.24 ± 0.38ab 8.13 ± 0.47b

HDL-C (mmol/L) 3.02 ± 0.22 2.89 ± 0.06 3.35 ± 0.22 3.22 ± 0.20 2.90 ± 0.15

LDL-C (mmol/L) 4.58 ± 0.24a 4.33 ± 0.17ab 4.14 ± 0.13ab 3.95 ± 0.22ab 3.33 ± 0.06b

GPT (U/L) 2.15 ± 0.23ab 2.06 ± 0.27ab 1.67 ± 0.29b 2.08 ± 0.27ab 2.84 ± 0.24a

GOT (U/L) 7.88 ± 0.87 6.56 ± 1.28 8.13 ± 0.28 7.10 ± 0.90 7.32 ± 1.12

SOD (U/ml) 142.18 ± 7.03 142.04 ± 5.52 134.54 ± 4.65 138.56 ± 8.39 135.55 ± 5.27

GSH-Px (U/ml) 165.63 ± 24.37 200.97 ± 19.85 225.86 ± 22.95 214.68 ± 11.53 210.72 ± 13.42

MDA (nmol/ml) 11.07 ± 1.48 10.15 ± 0.81 10.20 ± 1.23 11.63 ± 0.98 10.85 ± 1.11

1Values are presented as mean ± SEM (n = 3).
2GLU, glucose; TG, triglyceride; T-CHO, total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; GPT, glutamic pyruvic
transaminase; GOT, glutamic oxalacetic transaminase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; MDA, malondialdehyde.
a,b,cMeans in the same column with different superscripts are significantly different (P < 0.05).

for the growth of black sea bream. The improved WG and SGR
of fish in the FK8.27 group may be ascribed to the synergistic
effects of combining appropriate levels of two ingredients, i.e.,
FM and FK, with high nutritional values and complementary
amino acids in the diet (Adeoye et al., 2021). Similar results
were also obtained in African catfish fed diet with 30% FM
protein replaced by a BP product (Yenprotide manufactured
by Yenher Agro-Products Sdn. Bhd., Malaysia) (Adeoye et al.,
2021), Atlantic salmon fed diets with 18 and 36% bacterial
protein meal containing a mix of Bath, Alcaligenes acidovorans,
Bacillus brevis, and Bacillus firmus (BPM) (Aas et al., 2006a),
as well as Nile tilapia (Oreochromis nilotica) and Malaysian
Mahseer (Tor tambroides) fed with diets incorporating 1:2 (w/w)
of phototrophic purple bacteria (Rhodovulum sulfidophilum
and Marichromatium sp., respectively) (Banerjee et al., 2000;
Chowdhury et al., 2016). Chowdhury et al. (2016) reported that
the extracellular enzymes of phototrophic purple bacteria could
benefit the early digestion and metabolism of fish. These enzymes
may be responsible for the improved fish growth. Further studies
on the functions of extracellular enzymes in FK are needed to
verify this speculation. Furthermore, the improved growth of
fish fed the FK8.27 diet in this study could be explained by
the higher FR with unchanged levels of feed utilization (FCR,
PER, and PPV) of the fish. Good attractability and palatability
of diet can promote the onset and continuation of feed ingestion
in most aquatic animals, and thus increase feed intake (Grasso
and Basil, 2002; Rønnestad et al., 2013). Low molecular weight
(<1,000 Da) substances such as amino acids and nucleotides
can stimulate the olfactory and gustatory sensory cells of fish
(Gamboa-Delgado and Márquez-Reyes, 2018). Previous studies
reported that dietary supplementation of nucleotides improved
the feed intake, growth, immune response, and stress tolerance
in fish (Rumsey et al., 1992; Li and Gatlin, 2006) and shrimp
(Li et al., 2007; Biswas et al., 2012). Microorganisms have high
nucleotide content, making them efficient palatability agents
(Gamboa-Delgado and Márquez-Reyes, 2018). The increased FR
of black sea bream fed the FK diet can be attributed to improved
palatability caused by a high nucleotide level.

In the present study, replacing FM protein up to 24.80%
with FK protein in the diet did not significantly affect the

growth performance and feed utilization of black sea bream,
which may be because the substitution level of FK was not too
high. In our previous study of black sea bream, no significant
effects were found on the growth performance of fish fed
diets with up to 58.20% FM replaced by CAP (Chen et al.,
2020). Similar results were also obtained in Pacific white shrimp
(Litopenaeus vannamei, 50% FM replacement) and smallmouth
grunt (Haemulon chrysargyreum, 30% FM replacement) fed
with Methylobacterium extorquens BP diets (Tlusty et al., 2017),
African catfish fed with 60 or 100% BP diets (Adeoye et al.,
2021), and rainbow trout fed with 27% BPM diet (Aas et al.,
2006b). Nevertheless, in the study of Storebakken et al. (2004),
dietary 50% FM amino acids replaced by BPM exhibited negative
effects on the growth of Atlantic salmon. Aas et al. (2007) found
that Atlantic halibut fed 9% BPM diet performed similarly as
the control group, whereas the growth performance and feed
utilization were reduced in the fish fed 18% BPM diet. Reduced
growth performance was also found in Japanese yellowtail when
more than 50% dietary FM was replaced by FK (Biswas et al.,
2020). Apart from the differences of fish species and FM content
in the basal diets of different experiments, compared to the
present study, the adverse results may be because high levels
of dietary BPs could reduce the digestibility and absorption of
nitrogen, total amino acids, as well as several essential and non-
essential amino acids (Perera et al., 1995a,b; Storebakken et al.,
2004; Øverland et al., 2006). Hence, overuse of BPs in diets may
limit the amino acids supply for fish growth. In addition, Sharif
et al. (2021) proposed that the adverse effects on the fish growth
may be due to the high concentration of nucleic acids in the
BPs. Although dietary nucleic acids may improve the growth
and immunity of fish, a high dietary level (10%) can affect the
palatability of diets, increase the uric acid level in the serum
and adversely affect feed intake, growth and feed utilization of
fish (Tacon and Cooke, 1980; Li and Gatlin, 2006). FK contains
9% nucleic acids (Calysta data), and thus FK24.80 contributed
less than 1% nucleic acids to the feed. Based on the unchanged
FR, there was no apparent palatability-mediated aversion for the
FK24.80 diet in the present study. Therefore, it can be inferred
that the nucleic acids in the experimental diets had no negative
effects on the feed intake and growth of black sea bream. The
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FIGURE 1 | Intestinal histomorphological observation and statistics of black sea bream fed FK0, FK8.27, and FK24.80 diets for 10 weeks. (A) Representative
histomorphological images from hematoxylin and eosin-stained midgut transverse section (100×/200×), single arrows indicate vacuoles in the lamina propria; (B)
representative scanning electron microscope images of ultrastructure of the midgut epithelium surface (5.00 k×/35.0 k×); (C) mean (±SEM) height of villus in midgut
(n = 3); (D) mean (±SEM) number of microvillus per µm2 in midgut (n = 3). a,bMeans with different superscripts are significantly different (P < 0.05). VH, villus height;
LP, lamina propria; GC, goblet cell; IELs, intraepithelial leucocytes; CL, central lacteal.
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FIGURE 2 | Representative histomorphological images from hematoxylin and eosin-stained liver of black sea bream fed FK0, FK8.27, and FK24.80 diets for 10
weeks (200×/400×).

effects of FK replacement levels higher than 24.80% on black
sea bream could be further studied to determine the maximum
dietary FK concentration that can maintain the normal growth of
fish. On the other hand, low digestibility ascribed to microbial cell
walls and membranes impeding enzymatic digestion could also
account for the poor performance at relatively high BP inclusion
levels (Kiessling and Askbrandt, 1993). Previous studies found
that the ADCs of dry matter and energy significantly decreased
as the dietary SCP level increased in sea bass (Dicentrarchus
labrax) (Oliva-Teles and Gonçalves, 2001), and Atlantic salmon
(Berge et al., 2005). Rumsey et al. (1991) demonstrated that
the energy and nitrogen digestibility of rainbow trout increased
after removing all the yeast cell wall components and separating
nitrogen into amino acids and nucleic acids fractions. In this
study, the FK24.80 group also presented the lowest ADC of
dry matter, though no significant differences in the ADCs of
dry matter and crude protein were found between FK inclusion
groups and the control. Further study on the FK and its autolysate
as dietary protein sources is needed to explain the factors affecting
its digestion, especially at a high inclusion level.

In the present study, dietary 8.27% FM protein replaced by FK
significantly increased the crude protein content in the whole-
body and muscle of black sea bream. This suggests that the
combination of FM and appropriate level of FK in the diet
could contribute to superior growth performance and nutrient
absorption. Adeoye et al. (2021) also found that catfish fed with
30% BP included diet had higher body protein content than the
control. In addition, the foregut and midgut amylase activities
of fish in the FK8.27 group were higher than those in the
control group, indicating that the capacity of the fish to digest
carbohydrates was enhanced and more protein was saved for

growth. With the increase of FK replacement level, the whole-
body and muscle crude lipid contents of fish first increased and
then decreased, with the fish in the FK8.27 group showing the
highest crude lipid content. This result could be related to the
higher lipase activity in the foregut and the ADC of crude lipid of
fish fed the FK8.27 diet, which suggests enhanced lipid digestion
of fish. Many studies have also demonstrated the protein-sparing
effect of lipid (Yigit et al., 2002; Ai et al., 2004; Aliyu-Paiko et al.,
2010; Li et al., 2017; Wang L. et al., 2019). Furthermore, the
lipid composition of FK is different from that of the FM, being
rich in phospholipids, consisting mainly of 16:0 and 16:1 fatty
acids (Calysta data). Tocher et al. (2008) proposed that dietary
phospholipids could improve the digestion and absorption of
lipids and other nutrients, and facilitate the transport efficiency of
fatty acids and lipids from the intestine to the rest of the body by
promoting lipoprotein synthesis. The higher serum TG content
in the FK8.27 group also indicates a more active lipid metabolism
of the fish. It could be speculated that the combination of FM
and suitable level of FK in the diet could benefit the digestion
and retention of lipids in the body of the fish. Similar results
were found in rainbow trout (Hauptman et al., 2014), red
drum (Sciaenops ocellatus) (Rosales et al., 2017), and sunshine
bass (female white bass Morone chrysops × male striped bass
M. saxatilis) (Gause and Trushenski, 2011). In addition, Adeoye
et al. (2021) and Hamidoghli et al. (2019) hypothesized thathigher
lipid contents could be ascribed to an attempt to compensate
for the imbalance of BP amino acids by promoting protein
deamination, resulting in the non-nitrogenous or carbonaceous
components of the diet being deposited as lipids. However,
the muscle crude lipid content of fish in the FK24.80 group
was instead lower than the other groups in this study. This
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may be due to BPs non-starch polysaccharides (NSP) content,
which is assumed to interfere with nutrients digestion and
absorption by increasing digesta viscosity (Storebakken et al.,
1998; Leenhouwers et al., 2006; Duan et al., 2017). The specific
mechanisms need further exploration.

In the present study, black sea bream fed with representative
levels of dietary FK were taken for histological observation,
including FK0, FK8.27, and FK24.80. The midgut was chosen
because of its highest digestive enzyme activities among the three
parts of the intestine. The results showed that dietary FK did not
negatively affect the integrity of fish midgut intestinal mucosa
and hepatic morphology. No significant differences in midgut
villus height were observed between the FK inclusion groups
and the control group, while the microvillus in the FK24.80
group presented a higher density than the FK0 and FK8.27
groups. Similarly, previous studies reported that dietary BPs
did not damage the intestinal morphology of Atlantic salmon
(Storebakken et al., 2004; Berge et al., 2005) and African catfish
(Adeoye et al., 2021). The increased microvillus density provided
a larger nutrient absorptive surface in the fish fed the FK24.80
diet, which may compensate for the relatively lower villus
height. Dietary nucleotides, which increased with the increasing
FK levels, were demonstrated to influence gut motility, thus
increasing the transit time of digesta and may stimulate the
increase of microvilli density (Kim et al., 1968). Furthermore,
dietary nucleotides and phospholipids could improve intestinal
health and ameliorate intestinal injury (Sturm and Dignass, 2002;
Li and Gatlin, 2006), which may benefit the growth of microvilli
in the FK24.80 group.

Serum biochemical parameters are widely used as indicators
of the general nutritional condition and physiological status of
fish (Congleton and Wagner, 2006). In this study, the measured
parameters, such as GLU, HDL-C, and MDA contents, GPT,
GOT, SOD, and GSH-Px activities, did not show any obvious
changes in fish fed the FK included diets. Similar results
were found in African catfish fed dietary BP obtained from
fermentation of agricultural wastes (Adeoye et al., 2021), Japanese
yellowtail fed dietary FK (Biswas et al., 2020), and black sea
bream fed dietary CAP (Chen et al., 2020). Serum TG, T-CHO,
and LDL-C are indicators relating to lipid metabolism of fish. In
the present study, the serum TG concentration increased with
increasing dietary FK protein replacement level to 8.27% then
decreased. Replacing 24.80% FM protein with FK in the diet
significantly decreased the serum TG, T-CHO, and LDL-C levels
of fish. This result was consistent with the gut lipase activity,
suggesting that the lipid hydrolysis level increased first and then
decreased with the increasing dietary FK levels. It may also be
related to the dietary lipid composition, as FK had a different fatty
acid profile from FM. Studies found that dietary phospholipids
could lower plasma lipoprotein levels, and bioactive components
in bacterial meal lipids could lower blood cholesterol (Øverland
et al., 2010). Nevertheless, referring to other studies on black
sea bream, the values of these parameters were all within the
normal ranges (Jin et al., 2017, 2019; Wang et al., 2020b). These
results manifested that feeding FK to black sea bream did not
elicit apparent adverse effects on the fish physiological health and
antioxidative/oxidative status.

CONCLUSION

In conclusion, this study found that dietary FM protein
can be partly (24.80%) replaced with FK without adverse
impacts on growth performance, feed utilization, intestinal and
hepatic histology, serum biochemical and antioxidative/oxidative
parameters in black sea bream. The combination of dietary FM
and appropriate FK level (e.g., FK8.27) can contribute to superior
growth performance and nutrient absorption of black sea bream.
Further research on the higher dietary replacement level in
various aquatic species and the bioactive components (e.g.,
nucleic acids, phospholipids, NSPs) is essential for evaluating
the nutritional value and exploring the functional mechanism
of SCP products.
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