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Current models of the future of coral reefs rely on threshold (TM) and multivariate
environmental variability models (VM) that vary in how they account for spatial and
temporal environmental heterogeneity. Here, a VM based on General Additive Model
(GAM) methods evaluated the empirical relationships between coral cover (n = 905
sites pooled to 318 reef cells of the Western and Central Indian Ocean Provinces) and
15 potentially influential variables. Six environmental and one fisheries management
variables were selected as significant including SST shape distributions, dissolved
oxygen, calcite, and fisheries management. Common predictive variables, including
cumulative degree-heating weeks (DHW), pH, maximum light, SST bimodality and rate
of rise, and two multivariate metrics were either weak or not significant predictors of
coral cover. A spatially-resolved 2020 baseline for future predictions of coral cover
within 11,678 reef ∼6.25 km2 cells within 13 ecoregions and 4 fisheries management
categories using the 7 top VM variables was established for comparing VM and TM
coral cover prediction for the year 2050. We compared the two model’s predictions
for high and low Relative Concentration Pathway (CMIP5; RCP8.5 and 2.6) scenarios
using the four available future-cast SST variables. The excess heat (DHW)-coral mortality
relationship of the TM predicted considerably lower coral cover in 2050 than the VM. For
example, for the RCP8.5 and RCP2.6 scenarios, the decline in coral for the TM predicted
was 81 and 58% compared to a 29 and 20% for the VM among reef cells with >25%
coral cover in 2020, if a proposed optimal fisheries management was achieved. Despite
differences, coral cover predictions for the VM and TM overlapped in two environmental
regions located in the southern equatorial current region of the Indian Ocean. Historical
and future patterns of acute and chronic stresses are expected to be more influential
than cumulative heat stress in predicting coral cover, which is better accounted for by
the VM than the TM.

Keywords: coral reef, climate change, climate model, fisheries, future prediction

INTRODUCTION

The ecosystem services provided by coral reefs are under threat from a number of forces of
which climate warming, eutrophication, and fishing are among the most wide-spread concerns
(Cornwall et al., 2021; Donovan et al., 2021). The two main threatened ecological services are
the organic production that produce fisheries and the inorganic production that produces the
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calcium carbonate reef framework. Net reef growth is particularly
critical for providing shallow-water habitat and shoreline
protection, which are threatened by the current rates of sea
level rise (Perry et al., 2018). Therefore, the cover of calcifying
coral and algal functional groups and the factors that influence
them are of concern for societies dependent on the above reef
services. This is particularly true in the many tropical regions
that are dependent on fisheries and coastal tourism for food and
economic security (Spalding et al., 2017; Selig et al., 2019).

Current predictions of generic coral health and cover are based
on thermal exposure predictions (van Hooidonk et al., 2020).
Predictions are frequently based on climate model’s predicted
temperature deviations from historical warmest seasonal months
from satellite temperature histories and rate of rise in sea-
surface temperatures and the production of future “excess heat”
(Cornwall et al., 2021). This accumulated excess heat above +1◦C
of warm-season temperatures is the current threshold model
(TM) best-estimate of both the historical and future exposure of
corals to thermal stress. This excess-heat model can be modified
to include and account for other environmental factors. Common
modifications include between-year thermal thresholds, coral
acclimation and genetic adaptation rates, light attenuation, and
future climate model scenarios (Donner et al., 2005; McManus
et al., 2020; Gonzalez-Espinosa and Donner, 2021). Most of this
class of models can generally be described as a TM because their
core predictions rely on a threshold to provoke the coral stress
responses that often but not always coincident with +1◦C above
summer mean temperatures (Donner, 2011).

Criticisms of threshold models are (1) they poorly account for
local variability and environmental contexts (Chollett et al., 2014;
McClanahan et al., 2020b), (2) overly reliant in treating exposure
as a single latent surface heat stress variable (McClanahan et al.,
2019), (3) do not account well for the variable responses in
corals to the 1◦C hot season threshold or other heat stress
metrics (DeCarlo, 2020; McClanahan et al., 2020a), (4) lack the
multivariate aspects of stress that include both thermal and non-
thermal stress elements (Maina et al., 2011), and 5) rely solely
on coral cover responses to heat stress and treat cover as a single
pooled entity without taxa-specific niches, life history, or regional
characteristics (Cacciapaglia and van Woesik, 2016; Darling et al.,
2019; McClanahan et al., 2020a,b). These critiques often arise
from models that can generally be described as environmental
variability models (VMs).

Defense of the threshold models are that they were created
to illuminate the general problem of global climate change on
coral reefs and less to make specific local reef-scale predictions.
TM should, therefore, help to promote policies and actions to
reduce future impacts expected from different human responses
and climate scenarios. Yet, modifications of these models are
currently being used to identifying climate sanctuaries and
prioritize conservation spending (Beyer et al., 2018). There are,
however, many cases where these models fail to predict climate-
warming disturbances and changes on a large scale, which can
undermine the confidence of threshold metrics and usefulness
for influencing management policies (McClanahan et al., 2015b;
DeCarlo and Harrison, 2019; Kim et al., 2019; Mollica et al.,
2019). Moreover, over-reliance on TMs prompts concerns about

policy foci, as per the differential efficacy of managing local
fisheries, eutrophication, and the global atmospheric commons
(Abelson, 2020). If models poorly account for impacts of local
human action, the agency for change is centered solely on the
global and not local coral reef commons.

Consequently, comparing and considering a new generation
of climate change models is needed to address the policy debate
and scales of action. Specifically, building and testing models that
account for the multivariate nature of chronic and acute stress
and coral sensitivity relationships in specific contexts (Mumby
et al., 2011). This requires less reliance on core theoretical
concepts and greater empiricism in building and testing models
that use the power of modern statistical algorithms. A greater
diversity of models needs to be created, examined, and competed
against each other in terms of their ability to predict local-
scale environmental and coral responses. For example, are there
missing but potentially important variables that are not being
considered by the TMs that might greatly modify the outcomes
of climate change? What affects do the five TM simplifications
above have on the ability to predict coral cover? In order to
begin this process, we explored seldom considered variables
that are currently spatially resolved and available to produce a
VM option. Our VM examined coral responses in the context
of acute and chronic thermal stress and fisheries management
in two faunal provinces of the western Indian Ocean (WIO).
Thereafter, a common version of the TM that related excess
heat and coral mortality was compared with this new VM in
terms of their predictions of coral cover in 2050 using Coupled
Model Intercomparison Project Phase 5 (CMIP5) global climate
model projections.

MATERIALS AND METHODS

This study evaluated the empirical relationships between coral
cover and fisheries management and 15 geospatially available
and resolved SST and seawater chemistry variables. Model results
were then used to predict coral cover within 13 ecoregions of
the Western and Central Indian Ocean in 2020 (WIO). The
inputs were the significant SST, chemistry variables and fisheries
management categories selected by a machine-learning algorithm
described below. Thereafter, using the modeled coral cover initial
condition in 2020, cover predictions were made for 2050 based
on the four future-cast SST variables available for the CMIP5 for
low (RCP2.6) and high Relative Concentration Pathway (RCP8.5)
scenarios. The two models’ predictions in 2050 were then
compared to a DHW-coral mortality relationship or threshold
model starting with the same 2020 modelled benchmark (Hughes
et al., 2018; Cornwall et al., 2021). Finally, we evaluated the
potential impacts of a common fisheries sustainability proposals
on coral cover by establishing 30% of the cells as fisheries closures
and 70% as restricted fishing in each country, which is generally
considered a best-practices fisheries policy (O’Leary et al., 2016).

Study Region and Management
The evaluation included the western Indian Ocean coral reefs
or western and central Indian Ocean faunal provinces with a
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spatial extent of 32◦E, 27◦S to 73◦E −7◦N. The United Nations
Environmental Program – World Conservation Monitoring
Center (UNEP-WCMC) coral reef distribution data were used
to create a ∼6.25 km2 grid of reef cells for the entire region.
The map resulted in 11,678 reef cells that were subsequently
classified by ecoregion, nation, and the national and local fisheries
management status (Supplementary Table 1). The cell grid was
appropriate for the local nature of reef fishing, management,
and encompasses the home range size of most large coral
reef fishes and also close to the extent of small-scale fishing
movements and gear used in this region (McClanahan and
Abunge, 2018). Fishery management classification were either
restricted (limited gear often excluding spear guns, explosives,
and small-meshed or drag nets) or unrestricted (all gears
including spearguns and small-meshed nets used) based on
national and local laws but also modified by observations of
compliances with restriction (McClanahan et al., 2015a). Legally
established closures were classified as low and high compliance
based on published literature and personal and stakeholder
observations of compliance. The management categories for each
cell was based on a combination of legal records and maps,
personal observations, and communications with colleagues.
The dominant management coverage was recorded in the
few locations where the reef area was within more than one
management system.

Data Sources
Coral Cover Response Variable
Live coral cover was the biological response used in this model
and was retrieved from a large database of coral cover collected
in 905 sites from 2005 to 2020 compiled by three experienced
observers (T.R. McClanahan, N.A. Muthiga, and N.A.J Graham;
Supplementary Table 2) and often collected across regional
thermal disturbances, such as 2010 and 2016 (McClanahan et al.,
2007, 2020a,b). Coral cover data from multiple survey sites within
the grid cells were averaged. Where multiple temporal records
existed for a site, only the three most recent records were retained,
generating a final cell-based pooled dataset of n = 318 per-
cell means.

Environmental Variables for Empirical Model
Sea-Surface Temperature Variables
We accessed daily sea-surface temperature (SST) data for the
1985-2020 study period from the U.S. National Oceanic and
Atmospheric Administration’s Coraltemp v3.1 SST website1.
These SST data were available at 5-km resolution. From these
data, a number of SST metrics were calculated for the period prior
to the empirical coral cover sampling and used to develop the
empirical coral cover-environmental metrics model. The metrics
calculated included the mean, standard deviation, cumulative
degree heating weeks (cumDHW), skewness, kurtosis, and a
bimodality coefficient found to be strongly related to bleaching
(McClanahan et al., 2019).

These variables characterize the temporal structure of
temperatures experienced by corals and can act as proxies for

1https://coralreefwatch.noaa.gov/product/5km/index_5km_sst.php

either chronic or acute thermal stress. For example, kurtosis is
a measure of the thickness of the tails of the SST distribution
with negative values indicating increasing thickness. Thus, it
represents a measure of the frequency of exposure to SSTs away
from the mean and negative values should be associated with
some degree of acclimation of corals to unusual temperatures
(McClanahan et al., 2020a). Skewness is a measure of the
frequency and direction of rare SST events, with high negative
and positive values indicating more extreme rare cold and
warm SST values. Thus, increased skewness implies more acute
stress with more positive values indicating warm and negative
values cold extremes. The bimodality coefficient measures the
degree of bimodality in SST, and ranges from 0-1, with a
value equal to or greater than 0.55 indicating a bimodal or
multimodal distribution. Increases in bimodality may represent
corals experiencing a stressful ‘jump’ to extreme temperatures,
rather than a more continuous acclimation to thermal variability
(McClanahan et al., 2019).

Cumulative Degree Heating Weeks
Degree heating weeks (DHW) were calculated as the sum of
positive thermal anomalies (hotspots) greater than 1◦C above
the historically warmest month (maximum monthly mean)
over a 12-week period (Liu et al., 2014) (Equations 1 & 2).
Cumulative degree heating weeks were calculated as the sum of
the maximum DHW for each year from 1985 – 2020 at a reef
location (Equation 3).

HS =
{
SSTdaily −MMM, SSTdaily > MMM

0, SSTdaily ≤ MMM

Equation 1 | Calculation of daily hotspots (HS), which are
positive thermal anomalies from observed daily temperatures and
the maximum monthly mean climatology (MMM). MMM is the
temperature of the historically warmest month.

DHW =
1
7

84∑
i = 1

(
HSi, if HSi > 1◦C

)
Equation 2 | Calculation of Degree Heating Weeks (DHW),

which is the accumulation of daily hotspots > 10C over a 12-week
period.

cumDHW =

i = 35∑
i = 1

maximum (DHWi)

Equation 3 | Calculation of cumulative degree heating weeks,
which is an aggregated sum of maximum yearly (t) DHW at a reef
location from 1985 to 2020.

To understand the geographical variation in the thermal
regime across the WIO, we performed a principal components
analysis (PCA) and cluster analysis based on thermal stress
metrics. We used the 1985-2020 NOAA CRW data to calculate
7 thermal stress metrics for each 6.25 km2 reef cell, including
the mean, standard deviation, cumulative degree heating weeks
(cumDHW), skewness, kurtosis, bimodality coefficient, and the
SST rate of rise. The SST rate of rise is the linear regression
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slope of annual mean SST from 1985 – 2020. We conducted a
PCA on the 7 thermal stress metrics for 11,678 reef cells using
the Factominer package in R (Lê et al., 2008). Subsequently,
we conducted a cluster analysis using the clustering large
applications algorithm (CLARA) with Euclidean dissimilarities
and 50 samples to group coral reef locations based on thermal
stress metrics (Kaufman and Rousseeuw, 1990).

Additional Environmental Variables
To broaden the scope of the potential impacts of the environment
on coral cover beyond SST, we extracted a number of abiotic
variables previously found to influence the distribution and
abundance of hard scleractinian corals (Vercammen et al., 2019).
Variables extracted from Bio-ORACLE2 (Tyberghein et al., 2012;
Assis et al., 2018) included surface photosynthetically active
radiation (PAR), diffuse water-penetration attenuation coefficient
at 490nm, calcite concentration, dissolved oxygen, and pH
(Supplementary Table 2). Bio-ORACLE datasets were obtained
from satellite and in situ observation collected over various
time periods from 1898 to 2009. We extracted values for each
cell using the cell’s centroid and the data available prior to the
field sampling of coral cover. Calcite was estimated from back-
scattering light reflectance bands near 443 and 555 nm supported
by field measurements and dissolved oxygen from compiled field
measurements and interpolation methods.

An additional source of data included values from a
multivariate coral climate exposure stress index (Maina et al.,
2011). The methods provided both a Climate Stress Model
(CSM) including radiation, sediment and also a second option
or Global Stress model (GSM) that included reinforcing and
reducing variables, such as eutrophication. The CSM and GSM
were compared against alternative models that included the
above thermal history variables but did not improve the deviance
explained and were therefore excluded from the final model.

Variable selection procedures were applied to the above
variables that included evaluating the correlations among
variables (Supplementary Figure 1). Highly correlated variables
(Pearson r > 0.70) were extracted for further investigation
and excluded from the final model based on previous
evaluations of potential causation. For example, the variables
of SST-SD, bimodality, and kurtosis were highly correlated
and, based on previous variable-selected evaluations and
relationships with coral community metrics, kurtosis was selected
(Ateweberhan et al., 2018; Zinke et al., 2018; McClanahan et al.,
2020a,b). Consequently, we considered fifteen environmental
and one fisheries management variable but based on the above
selection and preliminary models using AIC criteria, a final
model of six environmental and one fisheries management
variables is presented.

Modelling Coral Cover Benchmarks
We used a generalized additive model (GAM) as a specific case
of a VM, to model the in-situ percent coral cover against the
above predictors using a beta distribution and logit link. A beta
distribution is appropriate for variables bound between 0-1, thus
we divided our percent coral cover by 100 prior to analysis. GAMs

2https://www.bio-oracle.org/

are useful for modelling non-linear responses between responses
and predictor variables. Therefore, we included smoothing terms
to our predictor variables to capture the expected non-linear
relationships but limited the knots for the smoothed predictors
to five to prevent overfitting. Country was included as a random
effect capture to address potential bias in survey effort.

Selection of predictor variables was performed to choose the
most parsimonious models using the Akaike Information Criteria
(AIC), where models with <2AIC were further compared on
basis of the variation explained by the addition of variables. We
randomly selected ∼70% of the cell-pooled data (n = 223) to
develop the model and reserved the remaining ∼30% (n = 95)
to test the accuracy of the model predictions. This procedure
was repeated 10 times, where we calculated the average Pearson
correlation coefficient, r squared and the mean squared error for
all 10 runs (Supplementary Table 3). The model was then used
to extrapolate hard coral cover predictions in 2020 to the entire
planning grid and to 2050 as described below.

Future sea surface temperature data were obtained from the
CMIP5 (Taylor et al., 2012) and included simulations of relative
concentration pathways (RCP) consistent with the BAU or high
(RCP 8.5) and reduced carbon emission (RCP 2.6) scenarios.
We extracted daily SST for the 2006 – 2050 period from two
global climate models available from NOAA Geophysical Fluid
Dynamics Laboratory- CM3 and MIROC5. We averaged the daily
SST observations for each cell location from the two CMIP5
models for each RCP scenario to reduce individual model bias.
The average daily SST were used to calculate four thermal metrics
(mean, skewness, kurtosis, and cumDHW) for the 2020–2050
period for low and high Relative Concentration Pathway (RCP)
scenarios. We were unable to forecast the future conditions of
dissolved oxygen and calcite because they are not predicted or
considered in current RCP scenarios. In present-day models,
cumulative DHW was the weakest among the four variables and
had a p value of 0.08, or short of formal significance (Figure 3).
It was, however, retained because it was used in most previous
future-cast evaluations, historically found to be statistically
significant, and to have similar responses pattern in some other
large-sample studies (Darling et al., 2019; McClanahan et al.,
2020a). Maps of the distribution of key variables as well as a
comparison of the satellite data with selected in situ temperature
data are presented (Supplementary Figures 2, 3).

Fisheries Management
The impacts of fisheries management were explored by changing
the management systems of each cell and estimating cover values
under this new fisheries management in 2050. We chose one
common optimal fisheries management system that has been
proposed and tested (O’Leary et al., 2016), which is to have
30% of reef area in high compliance closures and 70% having
restricted fishing. Thus, we changed the management of the cells
in 2050 under both the BAU RCP8.5 and the RCP2.6 carbon
emissions reduction scenarios to estimate the coral cover under
this optimal fishing scenario. The two scenarios of distributing
the 30% reserve and 70% restricted fishing selection at either
the regional and national level were explored. The differences
were minor and therefore we present the more likely by-country
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scenario. We present differences in the cumulative frequencies of
coral cover for the four scenarios (RCP8.5 and RCP2.6 current
management and conservation management) against the 2020
benchmark for each SST cluster.

Predictions and Comparisons of Future Coral Cover Between
Models
The predictions and differences in prediction of the GAM’s
multivariate model and the DHW-mortality model were
compared. The DHW-mortality decision is a common decision
of TMs used to make future predictions for RCP models
(Cornwall et al., 2021). We examined the RCP8.5 and 2.6 DHW
prediction for the 2020 to 2050 period to identify the decade
that had two or more thermal events greater than 4, 6, 8, and
10 DHW. The coral cover was then reduced using the largest
DHW by the proportion established by the empirical DHW-
morality relationship reported for the Great Barrier Reef in 2016
(Hughes et al., 2018). Therefore, coral cover was reduced by
39, 60, 67, and 90% for any repeated 4, 6, 8, and 10 DHWs
increments. The generality of this response beyond the GBR
and over time is unknown but these or similar post-bleaching
mortality rates have been used to predict future states of reefs on a
large scale (Sheppard, 2003; Cornwall et al., 2021) To simplify the
presentation of results, we often compare changes of coral cover
above and below 10 and 25% to describe some model outcomes,
as the 10% cover has been used as a thresholds for net coral reef
growth (Perry et al., 2018) and 25% to achieve maximum fish
diversity (Wilson et al., 2009).

RESULTS

Sea-Surface Temperature Distribution
Patterns
Sea-surface temperature distribution patterns in the WIO were
highly variable, differentiated by most SST metrics, and indicated
that sites clustered into six SST groups (Table 1 and Figure 1A).
The strongest differentiation (60%) was attributable to the
measures of mean, SD, kurtosis, and bimodality that may be
considered chronic stress metrics that differ across the cooler
and less stable southern to warmer and more stable northern
reefs. Cumulative DHW was a weaker differentiating variable and
stronger among reef cells with cooler water, high SD, bimodality,
and thick-tailed distributions (negative kurtosis) in the central to
southern part of this region dominated by the westward-flowing
equatorial current (Figure 1B). The weaker variation explained
by the second axis (19%) was most influenced by SST rate of rise
and skewness, or a measure of the frequency of acute stress.

Clusters 1, 2, and 4 located on the left side of the PCA diagram
were distinguished by being located in the central to southern
WIO and having low water temperatures and high standard
deviations, negative kurtosis, and bimodality (Figure 1). Cluster
1 was the largest cluster with 4794 reef cells and associated with
the dominant northern flow of the Southern Equatorial Current
(SEC) system. Cluster 2 was the smallest cluster with 621 cells and
associated with southwest Madagascar, which was a location with
more stable chronic temperatures but higher right skewness than

clusters 1 and 4 cells. Cluster 4 was also a moderately large cluster
with 1,463 cells that was broadly distributed from the Mauritius
to the African coastline, including the southern Seychelles. This
cluster included more reefs on the windward than leeward and
southern sides of Madagascar than cluster 1.

Clusters 3, 5, and 6 were located on the right sides of the
PCA diagram and distinguished by warm temperature with
low metrics of variation or SD, bimodality, DHW and positive
kurtosis. Cluster 3 was moderate size cluster with 1,548 cells
but largely located along a belt from the Chagos Islands to
northern Kenya that included reefs in the northern Seychelles.
Cluster 3 was a more moderate set of measurements and a
transition between the southern and northern WIO. It was
distinguished from other southern WIO reefs by having some
negative skewness whereas positive skewness distinguished the
northern clusters 5 and 6. Cluster 3 also had high cumDHW
similar to clusters 2 and 3. Cluster 5 had a moderate number of
1,004 cells with restricted distributions to the northern Maldives
and distinguished by warm water, the strongest right skewness,
and low rate of SST rise. Cluster 6 was the second most frequent
cluster with 2,248 cells but had restricted distributions to the
southern Maldives and fewer cells (70) in the northern Chagos.
Clusters 5 and 6 both had warm water and low chronic variation
in SST but cluster 5 had a thinner-tailed distribution and more
episodic warm water than cluster 6.

Model Results
The variable selection procedure for the VM chose 6 of the
14 environmental variables and fisheries restrictions. Variables
not selected included the rate of rise, SD, and bimodality
of SST, global and climate stress models, maximum PAR,
light attenuation, and pH. The full VM (GAM) with the six
selected environmental variables found weak and not statistically
significant relationships for CumDHW and country. Therefore,
the final predictive model included in order of importance:
management, dissolved oxygen, calcite, and mean, skewness,
and kurtosis of SST distributions (Figure 2 and Supplementary
Table 3). This model explained 40% of the variance, had
an adjusted R2 of 0.35, and was generally supported at this
level of prediction by repeated cross validation procedures.
All forms of restrictive management had a modest influence
of increasing coral cover by 9.3% (SD = 0.6). The observed
and predicted patterns were generally consistent across the SST
clusters with most of the deviation from expected coral cover
among cells occurring at high coral cover levels (i.e., > 60%)
among SST clusters 1 and 4 of the southern Indian Ocean
(Supplementary Figure 4).

Coral cover responses predicted by the VM suggest that cover
declined linearly with an increase in SST skewness and kurtosis
and also with increasing dissolved oxygen to between 4.4 and
4.6 ml/l, where it becomes less predictive until 4.9 ml/l. The
relationship with calcite was hump-shaped with maximum coral
coverage at −7 log mol/m3. The best-fit model for CumDHW
and coral cover was also a hump-shaped pattern but with high
variance above 30 CumDHW that was likely responsible for the
lack of significance and the unpredictable nature of this variable.
Mean temperature was also predictive but concave shaped with
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TABLE 1 | Summary of the predictions of mean (+SD) coral cover by all reef cells at the (a) ecoregion, (b) nation, (c) fisheries management system, and (d) SST cluster group in 2020 and in 2050 under the RCP2.6 and
RCP8.5 scenarios.

Coral cover predictions Selected variables

(a) Ecoregion Coral cover,
2020

Coral cover,
2050 (RCP 8.5)

Coral cover, 2050
(RCP 2.6)

Kurtosis Standard
deviation

Bimodality
coefficient

Mean SST Rate of SST
rise

Skewness Cumulative
DHW

Frequency of
all cells (%)

Bight of Sofala/Swamp Coast 30.5 (4.83) 18.18 (7.91) 29.77 (9.06) −1.09 (0.06) 1.55 (0.13) 0.52 (0.02) 26.85 (0.21) 0.015 (0.001) 0.02 (0.02) 50.98 (6.49) 113 (0.97)

Cargados Carajos/Tromelin Island 24.24 (3.45) 30.42 (9.76) 21.35 (2.64) −1.15 (0.04) 1.68 (0.12) 0.54 (0.01) 26.45 (0.4) 0.025 (0.001) 0.04 (0.04) 81.44 (6.55) 141 (1.21)

Chagos 33.11 (2.36) 4.81 (2.99) 11.05 (5.83) −0.27 (0.13) 0.9 (0.09) 0.37 (0.02) 28.21 (0.13) 0.022 (0.001) −0.06 (0.07) 51.39 (5.59) 1457 (12.48)

Delagoa 39.15 (8.43) 7.2 (7.97) 21.53 (10.68) −1.23 (0.02) 1.85 (0.1) 0.57 (0.01) 25.59 (0.58) 0.01 (0.003) 0.03 (0.04) 25.5 (5.98) 96 (0.82)

East African Coral Coast 35.76 (6.9) 21.89 (5.63) 29.21 (5.59) −0.98 (0.11) 1.36 (0.06) 0.51 (0.03) 27.28 (0.15) 0.019 (0.003) −0.13 (0.08) 31.89 (7.62) 2743 (23.49)

Maldives 35.11 (11.08) 27.92 (12.21) 27.01 (13.49) 0.21 (0.15) 0.72 (0.03) 0.35 (0.03) 28.82 (0.1) 0.019 (0.002) 0.3 (0.19) 29.16 (4.2) 3182 (27.25)

Mascarene Islands 38.03 (3.85) 42.41 (5.02) 37.71 (7.34) −1.26 (0.01) 1.78 (0.01) 0.57 (0.0) 25.72 (0.09) 0.025 (0.001) 0.02 (0.01) 55.36 (10.17) 196 (1.68)

Northern Monsoon Current Coast 14.35 (2.09) 18.57 (1.61) 14.46 (3.35) −0.58 (0.04) 1.25 (0.02) 0.44 (0.0) 26.94 (0.05) 0.016 (0.005) 0.26 (0.04) 20.16 (4) 130 (1.11)

Seychelles 41.03 (3.87) 13.69 (6.23) 31.73 (10.54) −0.95 (0.29) 1.52 (0.17) 0.52 (0.06) 27.4 (0.43) 0.018 (0.002) −0.22 (0.04) 33.63 (9.29) 701 (6.00)

Southeast Madagascar 31.32 (3.55) 19.65 (10.85) 20.82 (8.14) −1.14 (0.16) 1.65 (0.02) 0.55 (0.03) 25.32 (0.86) 0.014 (0.008) 0.1 (0.11) 42.2 (15.33) 65 (0.56)

Western and Northern Madagascar 35.68 (10.76) 27.18 (10.86) 33.24 (16.77) −1.17 (0.08) 1.65 (0.25) 0.57 (0.02) 27.1 (0.68) 0.015 (0.007) −0.11 (0.18) 39.18 (21.95) 2854 (24.44)

(b) Country

British Indian Ocean Territory 33.11 (2.36) 4.81 (2.99) 11.05 (5.83) −0.27 (0.13) 0.9 (0.09) 0.37 (0.02) 28.21 (0.13) 0.022 (0.001) −0.06 (0.07) 51.39 (5.59) 1457 (12.48)

Comoros 31.51 (4.99) 29.54 (5.48) 20.73 (4.55) −1.16 (0.01) 1.5 (0.01) 0.55 (0.0) 27.55 (0.01) 0.015 (0.001) −0.12 (0.01) 31.07 (2.05) 238 (2.04)

French Southern Territories 35.87 (6.33) 27.95 (8.99) 32.2 (10.4) −1.15 (0.02) 1.6 (0.17) 0.54 (0.01) 27.13 (0.51) 0.017 (0.003) −0.06 (0.07) 50.56 (10.78) 138 (1.18)

Kenya 18.8 (6.53) 17.28 (3.14) 20.01 (5.48) −0.69 (0.12) 1.25 (0.01) 0.45 (0.01) 26.99 (0.08) 0.017 (0.004) 0.13 (0.13) 21.32 (6.46) 372 (3.19)

Madagascar 34.57 (11.05) 24.59 (9.93) 31.44 (16.01) −1.18 (0.09) 1.68 (0.27) 0.58 (0.02) 26.94 (0.77) 0.015 (0.008) −0.1 (0.2) 41.08 (23.93) 2282 (19.54)

Maldives 35.11 (11.08) 27.92 (12.21) 27.01 (13.49) 0.21 (0.15) 0.72 (0.03) 0.35 (0.03) 28.82 (0.1) 0.019 (0.002) 0.3 (0.19) 29.16 (4.2) 3182 (27.25)

Mauritius 32.57 (7.81) 37.22 (9.63) 30.83 (10.04) −1.21 (0.06) 1.74 (0.1) 0.56 (0.02) 26.03 (0.46) 0.025 (0.001) 0.03 (0.03) 65.19 (15.87) 304 (2.60)

Mayotte 47.11 (3.05) 44.78 (4.19) 56.67 (9.02) −1.15 (0.01) 1.47 (0.01) 0.55 (0.0) 27.6 (0.03) 0.015 (0.001) −0.14 (0.01) 26.62 (3.61) 269 (2.30)

Mozambique 37.64 (5.2) 21.47 (7.02) 30.67 (6.35) −1.07 (0.06) 1.46 (0.13) 0.53 (0.02) 27.09 (0.51) 0.019 (0.004) −0.1 (0.08) 35.71 (8.38) 1186 (10.16)

Reunion 33.06 (0.99) 43.2 (1.29) 35.7 (5.89) −1.24 (0.01) 1.78 (0) 0.57 (0.0) 25.79 (0.08) 0.024 (0) −0.01 (0.01) 71.98 (2.45) 25 (0.21)

Seychelles 41.03 (3.87) 13.69 (6.23) 31.73 (10.54) −0.95 (0.29) 1.52 (0.17) 0.52 (0.06) 27.4 (0.43) 0.018 (0.002) −0.22 (0.04) 33.63 (9.29) 701 (6.00)

Tanzania 36.43 (5.4) 21.85 (5.95) 28.62 (5.59) −0.98 (0.09) 1.35 (0.05) 0.51 (0.02) 27.33 (0.13) 0.018 (0.002) −0.16 (0.05) 31.52 (7) 1524 (13.05)

(c) Management

Fished 33.46 (9.03) 22.26 (8) 28.59 (11.54) −0.58 (0.63) 1.21 (0.42) 0.47 (0.1) 27.77 (0.95) 0.018 (0.005) 0.05 (0.26) 33.73 (14.74) 4903 (41.98)

Restricted 37.26 (10.02) 25.92 (12.9) 29.68 (14.3) −1.02 (0.28) 1.5 (0.26) 0.53 (0.06) 27.27 (0.66) 0.018 (0.006) −0.14 (0.11) 37.19 (14.33) 4883 (41.81)

High compliance closures 34.47 (10.37) 27.39 (13.35) 27.13 (12.05) −1.09 (0.27) 1.65 (0.29) 0.53 (0.06) 26.48 (0.74) 0.021 (0.006) 0 (0.07) 54.38 (25.09) 250 (2.14)

Low compliance closure 34.1 (5.09) 11.9 (14.38) 16.14 (12.8) −0.29 (0.35) 0.94 (0.24) 0.38 (0.06) 28.16 (0.51) 0.021 (0.003) −0.01 (0.14) 46.4 (10.78) 1642 (14.06)

(d) SST Clusters

1 38.14 (7.77) 23.11 (9.07) 31.15 (11.99) −1.02 (0.14) 1.41 (0.12) 0.53 (0.04) 27.42 (0.26) 0.019 (0.003) −0.16 (0.1) 31.66 (11.28) 4794 (41.05)

2 22.53 (9.25) 22.22 (13.07) 33.83 (17.79) −1.13 (0.11) 2 (0.09) 0.56 (0.02) 26.19 (0.74) 0.003 (0.004) 0.18 (0.07) 58.79 (28.97) 621 (5.32)
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the lowest coverage at∼27oC and increasing at lower and higher
temperatures. Fisheries management was a strong effect but
this was largely due to increased coral cover with any form
of restriction, whether it be restricted gear use or high or low
compliance closures.

Future Coral Cover Predictions
The VM was used to predict coral cover in all cells in
2020 and in 2050 for the BAU (RCP8.5), reduced emissions
(RCP2.6), and optimal fisheries management scenarios (Table 1
and Figures 3, 4). Results indicate geographically patchy cover
distributions that generally follow the SST cluster groups. In
2020, the predicted mean cover for the whole region was 35.2%
(+9.2) in 2020 (Figure 3A). The lowest coral cover predictions
(<25%) were for northern Kenya and Maldives and south-west
Madagascar or more generally in clusters 2 in the south and 5 in
the north. The highest cover predictions were for clusters 1 and 6
with intermediate values in clusters 3 and 4 with the exception of
most of northern Kenya.

At the regional level in 2050, coral cover by the VM was
predicted to decline to 22.4% (+12.3) and become more spatially
variable under the BAU scenario (Figure 3B). If the low carbon
emission plan of RCP2.6 was successfully implemented, an
overall higher coral cover values of 27.3% (+13.7) was predicted
and some of the high cover reefs were predicted to increase
further (Figures 3C, 4). In the BAU scenario, the largest declines
by 2050 were predicted for cluster 3 or the Seychelles, Chagos,
and northern Kenya but also the northern part of cluster 5
or the Maldives. There was also a high cover loss predicted
for most of the southern reefs of the Delagoa and Bight of
Sofala/Swamp coast ecoregions of Mozambique from 39.2%
(+8.4) to 7.2 (+8.0) and 30.5% (+4.8) to 18.2% (+7.9) cover,
respectively. Southeast Madagascar reefs were also predicted to
decline considerably to∼20% for both scenarios. In contrast, the
southern region’s Mascarene Islands of Mauritius and Reunion,
the scenario outcomes were more variable. Reunion Island’s coral
cover was predicted to increase under both scenarios. Coverage
in Mauritius could either decline or increase dependent on
the scenario, increasing in the BAU and declining slightly in
the reduced carbon emission scenario. Although both climate
change scenarios reduced overall coral cover relative to 2020
regional estimates, the reduced emission scenario was predicted
to increase coral cover in SST clusters 1, 2, and 3 locations but not
in clusters 4, 5, and 6.

Optimal Fisheries Management Scenario
Fishing restrictions consistently increased coral cover predictions
relative to the business-as-usual (BAU; RCP8.5) and reduced
emissions scenarios (Figures 3, 4). Management induced
increases in coral cover were most notable between the 10
and 40% cover predicted in 2020 with maximum increases
of around 15% relative to the BAU and 10% by the carbon
emissions scenarios. Because of this non-linear initial-condition
effect, including fisheries management, had a minor effect on the
predicted number of cells having coral cover above 10% relative to
the BAU (∼1%) and carbon emission reduction (∼2%) scenarios
(Supplementary Table 4). The effect was, however, larger for reef
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FIGURE 1 | Evaluations of distribution of sea-surface temperatures (SSTs) in the western Indian Ocean. Distribution of sites by (A) Principal Component Analysis
(PCA) of evaluated SST variables and (B) map of the 6 dominant SST clusters distributions.

cells with > 25% cover, increasing by 18% for the BAU and 12%
for the reduced emission scenario.

Comparing Models
Comparing the TM with the VM indicates considerable
variability in regional-level coral cover predictions (Table 1 and
Figures 3-5). Initial coral cover in both models used the same
VM-predicted 2020 baseline but cover states in 2050 differed
considerably dependent on the two climate change scenarios.
Overall, the GAM model predicted higher coral cover in the

region by both scenarios. For example, for the RCP8.5 BAU
scenarios, the number of cells with coral cover >10% in 2050
was 83% by the GAM and 23% by the DHW-mortality model
(Supplementary Table 4). Thus, the number of cells with
cover <10% increased by 74% for the VM compared to a
14% for the TM.

Reducing carbon emissions in the RCP2.6 scenario increased
cover of reefs and cells with >10% cover. The increase was
minor (11%) by the TM but more substantial (38.2%) for the VM
predictions. If optimal fisheries management were established,
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FIGURE 2 | Plots of the best-fit (mean + 95%) relationships between coral cover and key selected variables identified by the Variability Model (Generalized Additive
Model (GAM)).

the increase in number of reefs predicted to have coral cover
<10% was reduced to 8.7% of all WIO reefs. Furthermore, the
reefs with initial 2020 coral cover >40% were predicted to have
more coral cover in 2050 if both restrictive management and
emission reductions were implemented.

Prediction were less positive and more divergent between
models for corals if the >25% threshold for biodiversity
conservation was used. In particular, there was more divergence
between scenarios when initial coral cover ranged between 10 and
30%. The 2020 baseline scenario predicted that 87% of reefs had
coral cover >25%. The best-cast reduced emissions and increased
management of the VM 2050 scenario predicted only 66% and
the worst-case TM predicted only 6% of reefs had >25% cover.
In a BAU scenario, 60% of the reefs were predicted to fall below
25% or the level where biodiversity was lost. Consequently, while
many reefs may maintain net growth if the VM predictions were
upheld, there could still be considerable losses in biodiversity
without active local and global management. Where there was
overlap between the TM and VM model, it was largely in clusters
4 and 5 in the reefs located from northeastern Madagascar to the
Tanzanian-Mozambique border region (Figure 5A).

The model and 2050 scenario predictions varied considerably
within the SST clusters (Table 1; Figure 5 and Supplementary
Table 4). The TM predictions were that the percentage of reefs
with >10% cover was close to zero in clusters 2, 3, and 5 and only
clusters 1 and 4 predicted to have∼42% of the reefs above this net
reef growth threshold. Cover was predicted to decline further by
the TM when evaluating reefs by the >25% biodiversity threshold
with the persistent clusters 1 and 4 having ∼11% of their reefs
above 25% and none in all other clusters.

The 2050 predictions for VM RCP8.5 were considerably more
optimistic for corals than TM with >85% of the reefs in clusters

1, 2, 4, and 6 having cover >10%. Clusters 3 and 5 were predicted
to be the two most affected clusters with only 18 and 65% of
reef cells above 10% cover, respectively. The frequency of reefs
having coral cover >25% dropped considerably by the VM for
this biodiversity threshold. Clusters 1, 2, 4, and 6 were predicted
to have between 35 and 79% while predictions for clusters 3 and
5 were 12% and 25% above 25% cover. Fisheries management
increased the frequencies above these thresholds, but mostly for
the >25% cover threshold. For example, management in the
largest clusters 1, 4, and 6 increased the frequency of reefs above
this threshold by 25, 22, and 14%, respectively, compared to
without management restrictions (Figure 5A). Reducing carbon
emissions in the RCP2.6 scenario further increased the predicted
coral cover, such that only the most disturbed clusters 3 and 5 had
significant numbers of reefs with <10% coral cover in 2050.

DISCUSSION

In the WIO region, the empirically-based VM produced
a number of outcomes that differed markedly from TM
predictions. First, SST heterogeneity in the region was strong
and exhibited variable chronic and acute forms of stress that
could often be poorly captured solely by a TM mean summer
temperature threshold benchmarks. Mean optimal growth and
average variances of SSTs, largely the core metrics of the TM,
were not significant predictors of coral cover in the WIO,
whereas skewness and kurtosis were selected and influential
in the final VM. Most of these variables differed among the
six large SST clusters dependent on a variety of oceanographic
and geographic patterns of current and thermal exposure.
Furthermore, there were a number of infrequently considered
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FIGURE 3 | Maps of the predicted coral cover by the Variability Model (VM) (A) in 2020 and in 2050 by (B) the RCP8.5 model, (C) RCP2.6 model, and (D) optimal
fisheries management (30% closure and 70% restricted fishing) for the RCP2.6 predictions. Cell classifications based on the variables and future predictions of the
VM or Generalized Additive Model (GAM) model (Figure 2). Note that 2020 predictions are based on 7 and 2050 on 4 variables selected by the GAM model.

variables that were shown to be influential. Most notably, the
top variables of dissolved oxygen and calcite concentrations,
which should be included in future CMIP evaluates to improve
future predictions for coral reefs. The importance of these
variables was not peculiar to the WIO. For example, a large
modelling study of coral cover in 24 ecoregions of the Coral
Triangle found dissolved oxygen to be the single strongest
environmental predictor of cover and calcite to be 6th among
the 17 variables evaluated (Vercammen et al., 2019). Thus,
these variables exhibit similar influences in both regions and
are likely to be globally influential rather spatially-restricted
drivers of coral cover.

Based on the TM concept and specific application here, coral
cover would be expected to decline with cumulative DHW above
proposed mortality thresholds. However, large empirical cover
compilations have repeatedly found weak, time-since disturbance
patterns, or hump-shaped relationships (McClanahan et al.,
2015b, 2020a; Darling et al., 2019). The weak hump-shaped

relationship found here and in previous studies suggests opposing
forces that constrain coral cover within an optimal location,
which here and elsewhere was reported at around 30-35 DHW.
Consequently, better understanding of thermal stress and its
local impacts should illuminate why DHW, as currently used, is
infrequently a strong long-term predictor of present and future
coral cover (McClanahan et al., 2019, 2020a,b).

The proposed +1◦C coral bleaching threshold can appear
constant at large scales (Liu et al., 2014). However, this
pattern frequently emerges because the +1◦C convention was
equivalent to 1.73-2.94 SDs for two-thirds of the world’s coral
reefs (Donner, 2011). Therefore, DHW values are frequently
calculated as temperatures ∼ +2SD SST above the mean
temperatures. This deviation from the mean should often but
not consistently detect bleaching (van Hooidonk and Huber,
2011). However, using DHW stress thresholds in locations
outside of where +1◦C is approximately equivalent to +2SD-SST
results in weaker predictions of bleaching (DeCarlo et al., 2020).
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FIGURE 4 | Cumulative frequency distributions showing the cumulative frequencies of coral cover in the 11,678 studied reef cells for the 2020 benchmark prediction
of the Variability Model and the four 2050 future scenarios. Scenarios include the Threshold Model (DHW-mortality predictions) for RCP8.5 business-as-usual
scenario and the Variability Model for RCP8.5 scenario, RCP2.6 carbon emission reduction scenario, and RCP2.6 with optimal fisheries management system (30
closures and 70% restricted fishing). See Supplementary Figure 4 for the results presented for each of the 6 SST cluster groups.

More comprehensive evaluations of bleaching have found that
removing the +1◦C threshold and adding additional variables
increased the power to predict bleaching (DeCarlo et al.,
2020; Gonzalez-Espinosa and Donner, 2021; Lachs et al., 2021).
Moreover, the current DHW metric was expected to become
less predictive for bleaching and other coral metrics as corals
acclimate, reorganize, and adapt to changing SST conditions
(McClanahan, 2017; Hughes et al., 2019). Bleaching represents
a stress response to temperatures outside the normal range
but is a less accurate measure of mortality (McClanahan,
2004; Welle et al., 2017) - particularly when viewed over time
and the subsequent responses in coral mortality and recovery
(McClanahan et al., 2015b; Darling et al., 2019). Coral sensitivity
to stresses is not constant and appears to be driven by historical
differences in SST variability at various temporal scales (Safaie
et al., 2018; McClanahan et al., 2020a). Thus, we suggest
that the local acute and chronic stress patterns modify the
excess thermal stress to produce the hump-shaped DHW-coral
cover relationships.

Rare and extreme excess thermal stress, or DHW, will kill
corals more than moderate deviations from mean conditions.
However, initial warm anomalies will also have a greater impact
than subsequent disturbances, as observed in East Africa and
the Great Barrier Reef in 2016, 2017, and 2020 (McClanahan,
2017; Hughes et al., 2019). Thus, high coral cover may occur
in sites where there is a balance between the forces of acute
and chronic stress and acclimation, community change, and
genetic adaptation (McClanahan et al., 2020a). The lowest
coral cover should occur at the two extremes or outside the
optimal location between acute and chronic stress. Therefore,
the predicted linear decline in coral cover by the TM was
not supported here but rather suggests a weak hump-shaped

DHW-coral cover relationship that we believe is more influenced
by patterns of chronic and acute stress. The distribution and
peak of this hump should vary with historical backgrounds and
coral life histories and community structure. The considerable
spatial variability in SST cluster or ecoregions suggests that coral
responses to climate should be better predicted by empirical
models specific to each region. An important caveat is that both
models used here did not account for potential future adaptation
(acclimation and community and genetic change) or differential
recovery rates of corals. As empirical data accumulates specific
to each region or SST cluster, the accuracy of predictions
should increase beyond those provided by the current larger-
scale options. For example, ecoregion has been shown to be
strong predictor of coral sensitivity to exposure, even stronger
than dissolved oxygen when examined for the Coral Triangle
(Vercammen et al., 2019; McClanahan et al., 2020b). Our study
was hampered by incomplete and non-random sampling biases
at the ecoregion level, which prevented us from using ecoregion
as a predictive variable.

Two other key variables of TMs are the mean summer
temperature and rate of SST rise, with pH also being a core
part of future predictions (Camp et al., 2018). SST rise and pH
did not predict the state of coral cover in our empirical study
but pH was a significant variable in the Coral Triangle model
(Vercammen et al., 2019). Additionally, while mean SST was the
3rd strongest predictor, the relationship found here was u-shaped
rather than a decline in cover as mean temperatures increased.
That is, the lowest cover was found near moderate tropical SSTs
(i.e., 25-27oC) associated with the maximum coral growth (Lough
and Cantin, 2014). The implication being that in regions with
rapidly changing SST and environmental conditions, locations
with optimal mean temperatures failed to maintain coral cover
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FIGURE 5 | (A) Map plot of three future scenarios and management priority options, which include reef cells selected for (1) coral cover >25% in 2050 for reefs
where there is<10% differences between the Threshold (TM) and Variability models (VM), (2) where the business-as-usual (BAU) RCP8.5 predicts >25% coral cover
by the VM, and (3)>25% cover with reductions in carbon emissions and optimal fisheries management for the VM. Scatterplot predictions for coral cover comparing
the VM and TM predictions in all 11,678 cells in the WIO in 2050 for (B) RCP8.5 BAU model in 2050 and (C) RCP2.6 carbon reduction scenario. The specific TM
presented here is from the DHW-mortality relationships established from observations of DHW and mortality in the GBR during 2016 (Hughes et al., 2018). Cornwall
et al. (2021) used this algorithm to estimate coral cover and net reef calcification in 2050 (see methods).

during this period episodic thermal stress These faunal provinces
have been undergoing rapid change in recent years, which may
be detrimental to corals with narrow optimal growth conditions
(McClanahan et al., 2014; Abram et al., 2020).

Less commonly examined metrics not included in TMs were
found to be moderate predictors. For example, SST skewness
and kurtosis, which were used here as proxies for chronic
and acute stress were the 3rd and 4th strongest variables.
When evaluated elsewhere, these variables were often among the
strongest predictors of a number of coral metrics (Ateweberhan
et al., 2018; Zinke et al., 2018; McClanahan et al., 2020a).
Cover declined as SST distribution tails became thinner and
right skewed, as would be predicted where there is poor
acclimation to moderate chronic stress. In some cases, other
related proxies, such as daily, seasonal, and annual temperature
ranges were good predictors of bleaching and coral cover
(Safaie et al., 2018; Vercammen et al., 2019). The maximum and
range of SSTs are among the Bio-Oracle SST data options
and found to be the 2nd and 3rd strongest environmental
variables in predicting coral cover in the Coral Triangle
(Vercammen et al., 2019). Consequently, these alternative proxies
support the general importance of acute and chronic stress on

very broad scales. Including kurtosis and skewness or other
appropriate proxies of chronic and acute stress SST metrics,
including dissolved oxygen and calcite, should therefore improve
predictions

Data distribution variables were shown here to be important
but also sensitive to sampling frequency. Therefore, satellite
and in situ measurements were likely to differ dependent on
the frequency of sampling (McClanahan, 2020; Supplementary
Figure 3). Less frequently sampled and accurate satellite data
may not be able to accurately detect chronic and acute
stress (McClanahan and Muthiga, 2021). Satellite data has the
distinct advantages of wide coverage and usage for RCP-based
predictions, which suggests a need to further consider the satellite
proxies that are best at measuring chronic and acute stress.
Satellite coverage and CMIP usage allowed us to evaluate a
reduced-variable model to make predictions aligned with the
metrics currently available. This procedure was useful but less
convincing for producing the most accurate predictions expected
with the future states of all the variables selected by the GAM.
Enough is known about some of these variables that including
them in future CMIP models and scenarios is possible and their
inclusion should be pursued to improve predictions.
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Contextual variables of dissolved oxygen and calcite need
to be included in future-cast models to improve predictions.
Low dissolved oxygen has been considered a potential stress
for corals and other reef invertebrates (Hughes et al., 2020).
However, the increasing coral cover with declining or fluctuating
oxygen found here suggests a more complicated relationship.
The high tolerance to low oxygen among some coral species
may explain this pattern. Nevertheless, much remains to be
known about how corals respond to the direct and indirect
effects of oxygen and how they are associated with other
oceanographic and physio-chemical drivers of coral acclimation
(Camp et al., 2016). The findings presented here and elsewhere
should generate hypotheses for future research (Vercammen
et al., 2019). An example of potentially complex relationship
is the finding that some coral genes provide co-tolerance to
both low oxygen and heat (Alderdice et al., 2021). These
investigator’s experiments suggested that the upregulation of a
hypoxia-inducing factor influenced a coral’s tolerance to thermal
stress. Clearly, addressing the lack of knowledge, covariance,
and the possibility of co-tolerance among stressors should
improve understanding and predictions. An unexpected future
scenario possibility is that the projected declines in dissolved
oxygen with ocean warming could increase tolerance of corals
to thermal stress and produce greater resistance than expected
to climate change.

The role of fisheries management on coral cover is complex
when viewed on a global scale (Graham et al., 2011; Selig
et al., 2012; Bates et al., 2019). Nevertheless, previous large
compilations of coral cover in the WIO region have shown
a weak positive effect of fisheries management on corals but
influenced by a number of environmental, ecological, and human
use contexts (Ateweberhan et al., 2011; McClanahan et al., 2014;
Graham et al., 2020). For example, low compliance reserves and
restricted fishing had similar levels of coral cover in the VM.
Both fisheries categories have been shown to have similar fish
biomass (McClanahan et al., 2015a). Therefore, restrictions on
the use of the most destructive gear, such as drag-nets, small-
meshed nets, explosives, and spearguns may be important for
maintaining coral cover. Cover is likely to be more resistant to
modest human fishing disturbances and therefore not requiring
the total elimination of local human impacts. If these restriction
patterns remain constant or increase further, there could be
potential to maintain or increase future coral, particularly in reef
already having moderate to high cover.

While our model had modest predictive power, there is
still considerable unexplained variation similar to the Coral
Triangle model (Vercammen et al., 2019). Unexplained variation
based on recent field data is also expected to increase in
the future as corals adapt and other unexamined variables
influence outcomes of thermal disturbances (McManus et al.,
2021). Missing variables is a concern as shown here but also
future changes in the disturbances themselves. Changes include
a large variety of possible factors that arise for a number of
reasons. Not the least is that coral cover is a composite metric
that does not include all of the coral organisms and their
various life histories, inter-species relationships, and variable
responses to stresses (Thompson et al., 2015; Darling et al., 2019;

McClanahan et al., 2020a). While cover is the core metric for
evaluating reef status, it lacks a considerable amount of life
history and stress-response information. Second, is that the grid
scale lacks the ability to predict more localized habitat variability.
Moreover, the current environmental data are compiled at a
coarser scale of ∼9.2-km and therefore limit the potential to
evaluate finer-scale resolutions (Assis et al., 2018), Heterogeneity
in smaller-scale stress in reef environments, as well as local
organismic sensitivity to stress, is evident. Therefore, any gross-
scale predictions will fail to capture more resolved variables
including habitats, ocean exposure, and depth, among others.
Finally, the VM used here reminds us that environmental science
can often focus on variables that are assumed to be drivers
while failing to examine less considered but potentially important
variables. This is evident in the historical focus on water
quality parameters that have produced complex, contradictory,
and compensatory relationships on coral stress and recovery
patterns (MacNeil et al., 2019; Lesser, 2021). Here, eutrophication
variables were not examined because they are not widely available
on the scale of our study. Nevertheless, future work should
consider eutrophication or other proxies to compare their
influence relative to calcite and dissolved oxygen. Directed by
an incomplete theory, lack of observations, and unobtainable
metrics, there is the high possibility for blind spots and unreliable
predictions. We see here that the addition of a small number of
available variables, such as calcite and dissolved oxygen, had large
effects on predictions.

Spatial heterogeneity as uncovered in the SST clustering
approach and the consequent future predictions indicate the
complexity of potential responses. One notable case of this is
the large difference in predictions for clusters 5 and 6 along
the Maldives-Chagos islands. Despite their shared oceanic and
northern Indian Ocean locations, future predictions were quite
sensitive to the patterns of SST skewness along this island
chain. Will this observed difference drive changes or will
excluded variables of dissolved oxygen, calcite, and others modify
outcomes? A large-scale study in 2011 did find lower coral cover
in the north compared to the south (Tkachenko, 2015), which is
one of the GAM predictions for clusters 5 and 6. These questions
are currently unanswerable but could be addressed by further
research and monitoring.

This study compared two gross classes of models, the
variability and threshold models. It showed how the inclusion
of novel environmental variability and empirical relationships
can change predictions. The VM predicts less and more spatially
variable thermal sensitivity than the TM, which contains fewer
influential variables and therefore larger-scale homogeneity in
responses to thermal exposure. Predictions overly-reliant on a
TM variations and low exposure metrics may have limited spatial
applications including identifying the location of sanctuaries.
Finding sanctuaries will require expanding and diversifying the
suite of ecosystem variables examined for their role in avoidance,
resistance, and recovery from climate stresses. The inclusion of
five poorly examined variables in the VM produced a more
optimistic view of the future than the TM. The heterogeneity
of the VM provokes the question of what might be the effect
on future predictions for coral reefs by expanding the number
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of variables and increasing the spatial resolution of models?
Moreover, the efficacy of increasing the quantity, quality, and
distribution of field data used to calibrate models. Even large-
scale changes, such as global emissions that are expected improve
conditions for corals in most regions, were shown to have quite
variable consequences for corals among the various SST clusters
and management systems. The current failure to understand and
evaluate the many sources of variability suggest a need to adopt
risk-spreading policies and management decisions.
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