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Local oceanographic variability strongly influences the spawning distribution of blue
whiting (Micromesistius poutassou). Here, we explore the potential of using a dynamic
Earth System Model (ESM) to forecast the suitable spawning habitat of blue whiting to
assist management. Retrospective forecasts of temperature and salinity with the Max
Planck Institute ESM (MPI-ESM) show significant skill within blue whiting’s spawning
region and spawning depth (250–600 m) during the peak months of spawning. While
persistence forecasts perform well at shorter lead times (≤2 years), retrospective
forecasts with MPI-ESM are clearly more skilful than persistence in predicting salinity
at longer lead times. Our results indicate that retrospective forecasts of the suitable
spawning habitat of blue whiting based on predicted salinity outperform those based on
calibrated species distribution models. In particular, we find high predictive skill for the
suitable spawning habitat based on salinity predictions around one year ahead in the
area of Rockall-Hatton Plateau. Our approach shows that retrospective forecasts with
MPI-ESM show a better ability to differentiate between the presence and absence of
suitable habitat over Rockall Plateau compared to persistence. Our study highlights
that physical-biological forecasts based on ESMs could be crucial for developing
distributional forecasts of marine organisms in the North East Atlantic.

Keywords: species distribution model, habitat preference, spawning, North Atlantic, climate variability, ecological
forecast, prediction, MPI-ESM

INTRODUCTION

Current advances of dynamic Earth System Models (ESMs) have permitted skilful predictions of
the marine climate (i.e., temperature and salinity) on seasonal to decadal timescales and thereby
sparked the development of marine biological forecasts (Payne et al., 2017; Tommasi et al., 2017a;
Koul et al., 2021). When a link between the marine climate and marine organisms is identified,
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forecasts of the marine climate can be converted into biological
forecasts and thereby enable “dynamic ocean management”
(Hobday et al., 2016). Until now, the majority of operational
examples are distributional forecasts of marine organisms, mostly
fish, which are provided at near-real-time to seasonal timescales
(Hobday et al., 2011; Eveson et al., 2015; Kaplan et al., 2016;
Siedlecki et al., 2016; Lehodey et al., 2018; Malick et al.,
2020). This is far below the predictive potential of the ocean
where skilful predictions are possible several years and even
a decade in advance, as shown in particular for the North
Atlantic (Matei et al., 2012; Shaffrey et al., 2017; Tommasi
et al., 2017b; Yeager and Robson, 2017). Accordingly, the North
Atlantic is promising for exploring the predictive potential
of coupled physical–biological forecasts beyond seasonal time
scales. An economically important North East Atlantic fish
species with an established link between the marine climate
and its spawning distribution is blue whiting (Micromesistius
poutassou; Hátún et al., 2009b; Miesner and Payne, 2018).
Therefore, this species serves as an ideal case study to explore the
potential of forecasting distributional changes at inter-annual to
multi-annual time scales.

Blue whiting is a migratory fish species that is distributed
meso-pelagically from the Strait of Gibraltar to off-shore
Greenland (Post et al., 2019) and the Barents Sea (Heino et al.,
2008; ICES, 2019). Most fishing takes place during spring in an
area west of the British Isles where blue whiting aggregate to
spawn (NEAFC, 2013). While spawning commonly takes place
in the deep waters along the European Continental Shelf, in
some years changes in the marine climate trigger a westward
expansion of the spawning distribution onto Rockall Plateau
and Hatton Bank (Figure 1C; Hátún et al., 2009b; Miesner
and Payne, 2018). This area of Rockall-Hatton Plateau (RHP)
straddles both international and national waters (with disputed
economic boundaries; Yiallourides, 2018; Johnson et al., 2019)
and forecasting changes in the spawning distribution at inter-
annual to multi-annual time scales could therefore be beneficial
for a range of stakeholders and nations.

Forecasting spatial changes of the spawning distribution
could also be useful for the monitoring and management
of blue whiting. Every spring the International Blue Whiting
Spawning Stock (IBWSS) survey samples the core spawning
region of blue whiting (ICES, 2015). However, sampling is
particularly challenging on RHP due to great distance to the ports
and frequent bad weather conditions (ICES, 2010). Therefore,
forecasting blue whiting in its spawning region with a special
focus on RHP (e.g., whether spawning is going to take place on
RHP) could be valuable for the IBWSS planning group (pers.
communication with Jan Arge Jacobsen, member of the ICES
Working Group of International Pelagic Surveys, Faroe Marine
Research Institute). Accordingly, a forecast at interannual to
multiannual timescales could be used as an objective decision-
making tool to adjust the IBWSS survey coverage on RHP.

Forecasting the spatial distribution of marine organisms is
related to the theory of the ecological niche or suitable habitat
of a species (Payne et al., 2017). Previous work established
the mechanistic link between the marine climate (i.e., salinity)
and the spawning distribution of blue whiting based on species

distribution modelling (Miesner and Payne, 2018). Species
distribution models (SDMs) are also termed ecological niche
models or habitat models, and represent a common method to
define the suitable (i.e., potential) habitat of a species by means
of correlative models that link species distribution data with
environmental observations (Elith and Leathwick, 2009; Wiens
et al., 2009). The suitable habitat of a species is commonly
used as a proxy for its spatial distribution and applied in
marine ecological forecasts such as for the spatial management
of southern bluefin tuna in Australian waters (Hobday and
Hartmann, 2006; Eveson et al., 2015), or Pacific sardine in
Californian waters (Kaplan et al., 2016; Siedlecki et al., 2016).

Based on the previously developed SDM (Miesner and
Payne, 2018) and persistence of salinity, first attempts to
operationalise a forecast of the suitable spawning habitat of
blue have been undertaken (ICES, 2018; Payne and Lehodey,
2019) and are currently provided two months prior to the
IBWSS survey (Payne, 2021). However, due to the highly
variable nature of the marine environment, the management of
living marine resources, such as fish, challenges the stationary
assumption in persistence forecasts (Tommasi et al., 2017a). The
oceanographic conditions in the spawning region of blue whiting
are characterised by a mixture of warm and saline subtropical
Eastern North Atlantic Water coming from the south and cool
and fresh subpolar Western North Atlantic Waters from the
north (Holliday et al., 2000; Hátún et al., 2009a). The relative
mixture of these water masses is related to changes in the North
Atlantic Subpolar Gyre (SPG) and creates a distinct marine
climatic regime to which blue whiting respond through changes
in their spatial distribution (Hátún et al., 2009b; Miesner and
Payne, 2018). Generally, a strong SPG leads to fresher and cooler
conditions in the spawning region, causing blue whiting to cluster
along the continental shelf (Hátún et al., 2009b). A weak SPG
promotes more saline and warm subtropical water masses which
leads to a westward expansion of the spawning distribution onto
Rockall Plateau and Hatton Bank (Figure 1; Hátún et al., 2009b;
Miesner and Payne, 2018). A modelling study based on blue
whiting larvae found that spawning is confined to a certain
range of salinity and proposed that this link could form the
basis of forecasting changes in the spawning distribution of blue
whiting (Miesner and Payne, 2018). The dynamics of the SPG
have been shown to be well represented in the dynamic coupled
Max Planck Institute Earth System Model (MPI-ESM; Koul et al.,
2019). Accordingly, we explore the potential for developing a
forecast of the suitable spawning habitat of blue whiting based
on annual to multi-annual time scales with MPI-ESM, which
could be valuable for both augmenting monitoring surveys, and
enhancing long-term management of the species.

In the first part of the study, we assess whether the marine
climate, i.e., temperature and salinity, is predictable within the
region and depth at which blue whiting spawn during the months
of spawning. We judge the quality of the MPI-ESM hindcast
by comparing it to two reference data sets: the EN4 objective
analysis (Good et al., 2013) and the MPI-ESM ensemble Kalman
filter assimilation (Polkova et al., 2019; Brune and Baehr, 2020).
In the second part of the study, we analyse two ways to extract
information on the suitable spawning habitat from SDMs and
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FIGURE 1 | Mean oceanographic conditions in February, March and April (FMA; climatology of 1965–2016) within the spawning depth of blue whiting (250–600m) in
terms of temperature (left; A,C) and salinity (right; B,D) for MPI-ESM-assim (top; A,B) and EN4-analysis (bottom; C,D). The black rectangle delineates the study area:
the spawning region of blue whiting. Labels in panel (C) show the geographic features Hatton Bank (HB), Rockall Plateau (RP), Rockall Trough (RT), Porcupine Bank
(PB), and the two dominant gyre systems North Atlantic subpolar gyre (SPG) and the subtropical gyre (STG). Bathymetry is indicated by 600 and 2000 m isobaths.

explore the potential of forecasting the suitable spawning habitat
of blue whiting up to five years ahead.

MATERIALS AND METHODS

Modelling and Analysis Strategy
We analyse the skill of 5-year predictions of the marine climate
and subsequently of the suitable spawning habitat of blue
whiting. These are based on decadal retrospective forecasts, in
the following called hindcasts, of the dynamical state of the ocean
with MPI-ESM (Polkova et al., 2019; Brune and Baehr, 2020). In
the first part of the study, we analyse whether we can make skilful

predictions of the marine climate with the MPI-ESM hindcast at
spatial and temporal scales relevant for spawning blue whiting.
We assess the quality of the hindcast by comparison to two
reference products: the EN4 objective analysis (Good et al., 2013)
and the MPI-ESM ensemble Kalman filter assimilation (Polkova
et al., 2019; Brune and Baehr, 2020), hereafter referred to as
EN4-analysis and MPI-ESM-assim, respectively (Figure 2.1).

The spatially complete EN4-analysis provides one way of
filling the gaps between sparsely observed oceanic profiles using
iterative optimal interpolation (Good et al., 2013). Another
approach is used by MPI-ESM-assim, where EN4 profiles are
incorporated into the ocean model component of a dynamic
ESM. We are aware that, strictly speaking, MPI-ESM-assim and
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FIGURE 2 | (1) Observational reference products of the marine climate (EN4-analysis and MPI-ESM-assim; solid boxes) and the corresponding retrospective
forecasts (dashed lines) employed in the study and (2) the workflow of defining (A) and forecasting (B) the suitable spawning habitat of blue whiting. In panel (1) EN4
profiles (rounded box) contain spatio-temporally discontinuous (non-gridded) observations of the marine climate. In order to create spatio-temporally continuous
(gridded) observational reference products, either EN4 profiles are assimilated into MPI-ESM resulting in MPI-ESM-assim or EN4 profiles are statistically interpolated
forming the EN4-analysis. Thereby, both MPI-ESM-assim and EN4-analysis contain the same non-gridded oceanographic observations (EN4 profiles) but their
methods to close observational gaps differ. These observational reference products form the basis for retrospective forecasts of the marine climate. MPI-ESM-assim

(Continued)

Frontiers in Marine Science | www.frontiersin.org 4 January 2022 | Volume 8 | Article 777427

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-777427 January 27, 2022 Time: 14:16 # 5

Miesner et al. ESM-Based Forecasts of Fish Distribution

FIGURE 2 | forms the basis for the dynamic prediction system MPI-ESM-hindcast. Moreover, MPI-ESM-assim and EN4-analysis are employed to form the statistical
persistence forecasts MPI-ESM-persist and EN4-persist, respectively. (2) Workflow of defining (A) and forecasting (B) the suitable spawning habitat of blue whiting,
indicating how input data (rectangles) feeds into each habitat model (rhombus) which transform this information into approximations of the suitable spawning habitat
(hexagon). (A) Environmental observations include CPR larval observations of blue whiting (yellow) and information from the marine climate from either
MPI-ESM-assim (blue) or EN4-analysis (green). These environmental observations calibrate each habitat model. The SDM translates this information into the
likelihood of observing larvae for MPI-ESM-assim and EN4-analysis, respectively, which is a probabilistic proxy for the suitable spawning habitat. The salinity based
habitat model transforms the environmental observations into the suitable salinity for spawning for MPI-ESM-assim and EN4-analysis, respectively, which forms a
deterministic proxy for the suitable spawning habitat. (B) Forecasts of the suitable spawning habitat are based on retrospective forecasts of the marine climate
(dashed rectangles) which includes one dynamic prediction system (MPI-ESM-hindcast; blue) and two statistical predictions (MPI-ESM-persist or EN4-persist; grey
and green, respectively). Each retrospective forecast of the marine climate feeds into a calibrated habitat model (either the SDM or salinity based), which transforms
this information into retrospective forecasts of the suitable spawning habitat (either in terms of the likelihood of observing larvae for the SDM based habitat model, or
the suitable salinity for spawning).

MPI-ESM-hindcast may not be totally independent. Nevertheless,
assimilations with MPI-ESM can be used to overcome the
problem that oceanic observations insufficiently sample the
oceanic state, and to create a consistent reference state (Brune
et al., 2015; Brune and Baehr, 2020). Both our reference products
rely on EN4 profiles. We therefore expect that the considerable
increase in the number of profiles after 2001 with the Argo
program decreases the uncertainty in our reference products
after 2001. Finally, the predictive skill of the hindcast is assessed
retrospectively by comparison to reference forecasts based on
EN4-analysis and MPI-ESM-assim persistence.

In the second part of the study, we analyse whether we
can make skilful predictions of the suitable spawning habitat
of blue whiting (a workflow of this approach is presented in
Figure 2.2). We explore two ways to extract information on the
suitable spawning habitat from SDMs. While we create novel
SDMs based on either MPI-ESM-assim or EN4-analysis in the
first approach, the second method employs the salinity defined as
suitable for spawning by Miesner and Payne (2018) to delineate
the suitable spawning habitat. The approach that is superior in
representing the observed spawning distribution of blue whiting
is subsequently employed for the creation of coupled physical-
biological forecasts. Here, the suitable spawning habitat of blue
whiting is forecasted retrospectively based on the MPI-ESM
hindcast and two persistence forecast and their predictive skill is
judged against fishery and survey observation.

Study Region and Time Period of Interest
The study region covers the core spawning area of blue whiting
west of the British Isles which is sampled annually by the ICES
IBWSS survey (ICES, 2015): 20◦W to 2◦W and 51◦N to 62◦N
(black rectangle in Figure 1) and will henceforth be referred to
as spawning region. We define RHP by the local bathymetry,
following the 1,000 m depth isobath around Rockall Plateau,
George Bligh Bank and Hatton Bank finishing west at the border
of the IBWSS sampling region. To encompass the depth range
where eggs, non-feeding larvae and spawning adults have been
observed (Coombs et al., 1981; Hillgruber and Kloppmann, 1999;
Ådlandsvik et al., 2001), we define the spawning depth of blue
whiting between 250 and 600 m. The main spawning activity of
blue whiting takes place during late March and early April which
corresponds to the timing of the IBWSS survey (Bailey, 1982;
ICES, 2015). Since blue whiting larvae are observed in the surface
waters mainly between March and May with a peak in April

(Pointin and Payne, 2014; Miesner and Payne, 2018) and need
around 3 weeks for the ascent to the surface (Ådlandsvik et al.,
2001), it is likely that spawning ranges from February to April.

Accordingly, the average temperate and salinity between
February and April (FMA) at 250 to 600 m depth within the
spawning region of blue whiting resembles the oceanographic
conditions, i.e., the marine climate, experienced by the spawning
adults and the larvae.

Observations and Retrospective
Forecasts of Temperature and Salinity
Observations of Temperature and Salinity
Monthly observations of ocean temperature and salinity are
available from the Met Office Hadley Centre’s EN4 data set (Good
et al., 2013). Besides quality controlled in situ profiles, hereafter
termed EN4 profiles, a spatially comprehensive objective analysis
is available which uses an iterative optimal interpolation to fill
all observational gaps. We use the EN4 objective analysis version
4.2.1 with corrections based on Gouretski and Reseghetti (2010),
which is available from 1900 to the present and contains 42
vertical levels and a regular 1◦ horizontal resolution (Good
et al., 2013) and will be referred to as EN4-analysis. We
select the period 1958–2016 and average yearly FMA-mean
values of temperature and salinity vertically over 252–596 m to
characterise the marine climate in the spawning region and depth
of blue whiting.

Assimilation and Dynamical Hindcasts of
Temperature and Salinity
Another way of creating a spatially complete data set that
serves as a good estimate of the true state of the ocean, is to
incorporate (i.e., assimilate) oceanic observations into a coupled
ocean-atmosphere model. We use an experiment from the Max
Planck Institute ESM at low resolution (MPI-ESM; Giorgetta
et al., 2013). Its ocean component (Jungclaus et al., 2013)
contains 40 levels and has an effective resolution of around
0.6◦–0.9◦ (67–100 km) within the spawning region. Monthly
observations of oceanic temperature and salinity from EN4
profiles (Good et al., 2013) are assimilated into MPI-ESM using
a full-value 16-member ensemble Kalman filter (EnKF) approach
(Polkova et al., 2019; Brune and Baehr, 2020). Additionally, the
dynamical state of the atmospheric component is nudged toward
ERA40/ERAInterim reanalyses from ECMWF (Uppala et al.,
2005; Dee et al., 2011), and external forcings of the Phase 5
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Coupled Model Intercomparison Project (CMIP5) were applied
(Taylor et al., 2012). We run MPI-ESM with these settings from
1958 to 2016 and simulate an assimilation which will henceforth
be referred to as MPI-ESM-assim. Thereby, MPI-ESM-assim
dynamically represents observed temperature and salinity in a
model-consistent way (Brune and Baehr, 2020).

Based on MPI-ESM-assim, a 16-member hindcast ensemble
is created (Brune and Baehr, 2020), which will be referred
to as MPI-ESM-hindcast. MPI-ESM-hindcast is initialised every
year from the 1st of November 1960 to 2016. In this study,
each initialisation is running for 5 years. The time counting
from the initialisation date of the hindcast is termed lead time.
Accordingly, if the initialisation date is November 1960 and the
hindcast is for March (or FMA) 1961, the (mean) lead time is
4 months and within lead year 1, while a hindcast for March (or
FMA) 1962 has a lead time of (around) 1 year and 4 months, or
within lead year 2.

We regrid both MPI-ESM-assim and MPI-ESM-hindcast to a
1◦ × 1◦ regular grid and create the average of the 16 ensemble
members (i.e., the ensemble mean) which we analyse throughout
the study. For MPI-ESM-assim and MPI-ESM-hindcast we
average annual FMA-mean values of temperature and salinity
vertically between 240 and 600 m to derive the environmental
conditions within the spawning depth of blue whiting.

Persistence Forecast
Persistence forecasts are a common reference in seasonal to
decadal forecasting used to judge the skill of a hindcast: hindcasts
which outperform persistence exemplify the benefit of using
a dynamic ESM (Wilks, 2011; Jolliffe and Stephenson, 2012).
Persistence forecasts presume that future conditions are equal to
past conditions, e.g., a persistence forecast of FMA in 1965 with
a lead time of two years, uses observations of FMA in 1963 as a
forecast by assuming stationarity for the duration of the forecast
(i.e., 2 years). We create persistence forecasts for EN4-analysis
and MPI-ESM-assim for five lead years, termed EN4-persist and
MPI-ESM-persist, respectively.

Predictability of Temperature and Salinity Within the
Spawning Region of Blue Whiting
Here, we compare retrospective forecasts (i.e., MPI-ESM-
hindcast, MPI-ESM-persist and EN4-persist) to MPI-ESM-assim
and EN4-analysis, by means of the anomaly correlation
coefficient (ACC) and the root-mean squared error (RMSE)
which are common measures of forecast accuracy (Wilks, 2011;
Jolliffe and Stephenson, 2012). We calculate anomalies based
on the mean temperature and salinity of the common time
period (1965–2016; e.g., FMA 1965 minus mean FMA from
1965 to 2016). In order to remove the influence of long-term
trends on the prediction we linearly detrend the time series
before calculating the skill. To account for the uncertainty in
predictive skill, we perform a bootstrap with 500 iterations of
ACC and RMSE for the common time period (the years 1965–
2016 are shuffled 500 times with replacement and the ACC/RMSE
calculated for each lead year). Significance of the ACC is defined
from the 95% confidence interval of the bootstrap. Throughout
the study, we show the median ACC and RMSE.

To analyse prediction skill over lead time the detrended
anomalies are averaged over the study region and ACC and
RMSE calculated. For this, the mean bias between forecast
and observation is calculated and subtracted from the forecast
for each year before RMSE and ACC are calculated from
the respective time series. The confidence interval calculated
from the bootstrap is defined as the interquartile range
between the lower quartile (25th percentile) and the upper
quartile (75th percentile) of the bootstrapped data. For the
spatial representation of predictive skill, ACC and RMSE are
calculated for each grid point where water depth exceeds
600 m. Water depth is based on NOAAs ETOPO1 product
(Amante and Eakins, 2009).

Forecasting the Suitable Spawning
Habitat of Blue Whiting Retrospectively
Retrospective Forecasts Based on SDMs
We create novel SDMs with observations of blue whiting larvae
from the Continuous Plankton Recorder (CPR) survey (Reid
et al., 2003) obtained from the Marine Biological Association in
Plymouth. The probability of observing blue whiting larvae is
modelled as a function of a fixed geographical model component,
including latitude and the day-of-the-year, bathymetry, the solar
elevation angle and varying environmental variables (Table 3)
using Generalised Additive Models (Wood, 2006) analogous to
Miesner and Payne (2018). Thus, the SDM accounts for the
meridional migration of adults (Bailey, 1982) and the diel vertical
migration of larvae (Hillgruber and Kloppmann, 2000) which can
affect the capture efficiency of the CPR (Pointin and Payne, 2014).
The environmental variables consist of temperature and salinity,
since these are predictable with ESMs.

We create two sets of SDMs: one calibrated with
environmental data from EN4-analysis and another one
calibrated with MPI-ESM-assim, in order to account for the
difference in these products in handling the spatially incomplete
EN4 profiles. We calculate the salinity and temperature at the
spawning depth of blue whiting during the time of spawning
(SSPAWN and TSPAWN), i.e., one month prior to a CPR observation
(Miesner and Payne, 2018), by averaging vertically over 252–
596 m for EN4 and 240–600 m for MPI-ESM, since the depth
layers slightly vary between the two. At locations where water
depth is shallower than 252 m for EN4-analysis or shallower than
240 m for MPI-ESM, we select variables closest to the seafloor. In
order for the SDMs to be comparable, we couple the same CPR
observations to EN4-analysis and MPI-ESM-assim, containing
48 years from 1958 to 2005 including 68,229 observations
with 938 presences of blue whiting larvae. The resulting spatial
distribution of larval-presence probability can be understood
as a proxy for the suitable spawning habitat of blue whiting
(Miesner and Payne, 2018).

Validation of the SDM and model selection is in line with
Miesner and Payne (2018). As a primary metric for model
selection, we choose the Akaike Information Criteria (AIC);
Anderson, 2008; Burnham et al., 2011). The explained deviance is
equivalent to the coefficient of determination (R2) and considered
an overall indicator of model quality.
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We derive the capability of the models to distinguish between
the presence and absence of larvae from a contingency table
(Table 1). We convert the predicted probability of blue whiting
larval-occurrence from the SDM into presences and absences by
selecting the threshold so that the total number of presences in
the prediction data set is equal to the number of presences in
the observed dataset, in accordance with Freeman and Moisen
(2008). Moreover, we calculate mean values of the true skill
statistic (TSS), positive predictive value (PPV), and negative
predictive value (NPV) based on four-fold cross validation
with 75% of the data used for training and the remaining for
validation, with every 4th year included in one fold (Table 2; see
also Liu et al., 2011; Jolliffe and Stephenson, 2012). Additionally,
we consider the area under the receiver operating characteristic
curve (AUC), which relates the relative proportions of correctly
and incorrectly classified predictions (HR and FAR, respectively)
over a range of threshold levels (Brown and Davis, 2006;
Liu et al., 2011).

We base the choice of the best performing SDM on two steps.
First we create a subset for each of the two SDM sets (one
calibrated with EN4-analysis and the other with MPI-ESM-assim)
with all models having AIC differences smaller than 15 (Table 3),
since models with an AIC difference larger than 15 are considered
to be very dissimilar (Anderson, 2008). From these subsets, we
select the SDM with the highest predictive performance in terms
of TSS, PPV, NPV, and AUC as the “best” performing model and
analyse it further.

We create retrospective forecasts of the suitable spawning
habitat by coupling the best performing SDMs (Table 3) to
retrospective forecast of the marine climate for up to five
lead years. Specifically, we employ the best performing SDM
calibrated with MPI-ESM-assim for retrospective forecasts based
on MPI-ESM-hindcast and MPI-ESM-persist. While we use the

TABLE 1 | Contingency table used to evaluate the predictive accuracy of binary
events.

Observation

Presence Absence

Prediction Presence TP (hits) FP (false alarms)

Absence FA (misses) TA (correct negatives)

The numbers of observations and predictions in each category are represented by
TP, FP, FA, and TA.
TP (true positives): correctly predicted presences, hits; FP (false positives):
erroneously predicted presences, false alarms; FA (false absences): erroneously
predicted absences, misses; TA (true absences): correctly predicted absences.

TABLE 2 | Verification Scores.

Name Quality Measure (Abbreviation) Definition Range

Positive Predictive Value (PPV) TP/(TP + FP) [0, 1]

Negative Predictive Value (NPV) TA/(TA + FA) [0, 1]

Hit Rate (HR) TP/(TP + FA) [0, 1]

False Alarm Rate (FAR) FP/(FP + TA) [0, 1]

True Skill Statistic (TSS) HR - FAR [-1, 1]

The perfect result of the score is underlined. TP, FP, FN, and TN are entries in the
contingency table (Table 1).

best performing SDM fitted to EN4-analysis for retrospective
forecasts based on EN4-persist. Within the SDM, we select the
15th of each month as the day-of-year owing to the monthly
resolution of environmental data and fix the solar elevation angle
to 0◦, representative of sunrise or sunset, in line with Miesner and
Payne (2018). SDMs are calibrated with full-value temperature
and salinity data (i.e., not anomalies) from MPI-ESM-assim and
EN4-analysis, respectively, and transform this information into
blue whiting larval presence probability. Therefore, forecasts
based on SDMs are directly comparable and there is no need for
bias correction.

Retrospective Forecasts Based on Salinity
As an alternative approach to creating new SDMs, solely the
suitable salinity for spawning is used as a proxy for the suitable
spawning habitat. A previous study based on SDMs, observations
from the CPR and an earlier version of the EN4 objective
analysis (EN4.1.1) showed a dome-shaped relationship between
salinity (SSPAWN) and the probability of observing blue whiting
larvae with a non-zero likelihood of observing larvae at salinities
between 35.28 and 35.53 (Miesner and Payne, 2018: SDM 3,
Table 4 and Figure 9). This suitable salinity for spawning
corresponded well to independent observations from both fishery
and scientific surveys (Miesner and Payne, 2018) and is in line
with the re-calibrated SDM based on EN4-analysis that is applied
in this study (SDM_SEN4).

The suitable salinity for spawning in MPI-ESM is bias-
corrected to offset the mean deviations between MPI-ESM-assim
and EN4-analysis within the spawning region and during the time
period for which validation data is available (0.06 for 1977–2012).
Retrospective forecasts of the suitable salinity for spawning are
based on full-value retrospective forecasts of salinity with MPI-
ESM-hindcast, MPI-ESM-persist and EN4-persist. The respective
isohaline where the salinity is defined suitable is used as a proxy
for defining those grid cells in our simulation, which are deemed
to cover the suitable spawning habitat.

Observations of Adult Blue Whiting
The first data set comprises of acoustic surveys of blue whiting
spawning aggregations from 1981 to 2013, spanning 25 years
due to incomplete time series. Before 2004 the observations were
solely based on Norwegian surveys of the spawning stock, while
data from 2004 onward originate from the from the IBWSS
survey that is carried out annually for 2 weeks from late March
to early April (ICES, 2016). The survey records acoustic data
continuously along its cruise tracks and provides estimates of
blue whiting biomass. While most years had a resolution of 0.5◦
latitude × 1◦ longitude, the data resolution is coarser for the
period 2002–2006 with 1◦ latitude× 2◦ longitude.

The second set of independent observations consists of
monthly fishery catch statistics of blue whiting from 1977 to
2012 from the NEAFC (2013) targeting spawning adults with
a resolution of 0.5◦ latitude × 1◦ longitude. The fishery data
is averaged over March and April, in congruence with the
IBWSS survey data.

For both, the survey and the fishery data, the grid cells
within the spawning region where blue whiting were observed
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TABLE 3 | Model fitting results for species distribution models (SDM) calibrated with different environmental reference data (Env. Data).

Env. Data Model Formulation, f() DevExpl AIC 1AIC TSS PPV NPV AUC

MPI-ESM-assim SDM_SSSMPI GEO + SSS 0.470 5337 101 0.358 0.367 0.991 0.964

SDM_SSTMPI GEO + SST 0.470 5325 89 0.359 0.367 0.991 0.966

SDM_SMPI GEO + SSPAWN 0.471 5319 83 0.360 0.368 0.991 0.965

SDM_TMPI GEO + TSPAWN 0.466 5362 126 0.351 0.360 0.991 0.965

SDM_SST+SSSMPI GEO + SSS + SST 0.478 5259 23 0.370 0.378 0.992 0.966

SDM_S+TMPI GEO + SSPAWN + TSPAWN 0.478 5257 21 0.366 0.375 0.992 0.966

SDM_SSTSSSMPI GEO + SSS x SST 0.479 5255 19 0.372 0.381 0.991 0.965

SDM_STMPI GEO + SSPAWN x TSPAWN 0.482 5236 0 0.368 0.377 0.991 0.966

EN4-analysis SDM_SSSEN4 GEO + SSS 0.461 5408 148 0.349 0.358 0.991 0.964

SDM_SSTEN4 GEO + SST 0.468 5343 83 0.356 0.365 0.991 0.965

SDM_SEN4 GEO + SSPAWN 0.476 5268 8 0.367 0.376 0.992 0.966

SDM_TEN4 GEO + TSPAWN 0.469 5341 81 0.353 0.362 0.992 0.964

SDM_SST+SSSEN4 GEO + SSS + SST 0.472 5309 49 0.361 0.370 0.991 0.965

SDM_S+TEN4 GEO + SSPAWN + TSPAWN 0.478 5260 0 0.351 0.360 0.991 0.964

SDM_SSTSSSEN4 GEO + SSS x SST 0.474 5289 29 0.365 0.374 0.991 0.966

SDM_STEN4 GEO + SSPAWN x TSPAWN 0.476 5271 11 0.342 0.350 0.991 0.964

The geographical baseline model (GEO) includes latitude x day-of-the-year + solar elevation angle + log-transformed depth; in accordance with Miesner and Payne
(2018). Environmental variables include, sea surface salinity (SSS), sea surface temperature (SST), and salinity and temperature at the spawning depth of blue whiting
during the time of spawning (SSPAWN and TSPAWN, respectively).
With DevExpl, explained deviance; AIC, Akaike Information Criteria; 1AIC, difference in AIC relative to the smallest AIC value within the model set. For predictive skill
measures the mean value based on 4-fold cross validation is given: TSS, true skill statistic; PPV, positive predictive value; NPV, negative predictive value, area under the
relative operating characteristic curve (AUC). Models with 1AIC < 15 are highlighted with a grey shaded background.

or caught are treated as presence. All remaining cells are treated
as absences, since absences of fish are hardly reported in catch
statistics (e.g., for the months March and April only 0.1% of the
available fisheries data within the spawning region were absences)
and are also low in the survey (0.9% within the spawning
region). Therefore, including the absence data would render the
observations unfit for model- and forecast evaluation.

Predictive Skill of the Suitable Spawning Habitat
Forecast
Observations of adult blue whiting in March and April are
compared to retrospective forecasts of blue whiting’s suitable
spawning habitat averaged over March and April and for each

TABLE 4 | Agreement of the suitable spawning habitat with independent
observations of adult blue whiting observed in the IBWSS survey and caught in
fishery (NEAFC) during March and April within the spawning region.

Observation Habitat Env. Data PPV NPV HR FAR TSS

Survey (IBWSS) SDM EN4-analysis 0.49 0.63 0.54 0.45 0.08

MPI-ESM-assim 0.49 0.52 0.38 0.39 0.00

Suitable
Salinity

EN4-analysis 0.31 0.83 0.75 0.63 0.12

MPI-ESM-assim 0.49 0.70 0.77 0.59 0.18

Fishery (NEAFC) SDM EN4-analysis 0.38 0.74 0.49 0.41 0.08

MPI-ESM-assim 0.33 0.68 0.33 0.34 -0.01

Suitable
Salinity

EN4-analysis 0.24 0.87 0.77 0.62 0.10

MPI-ESM-assim 0.33 0.77 0.72 0.59 0.10

The suitable spawning habitat comprises of the best performing species distribution
models (SDM, SDM_SEN4 and SDM_STMPI) and based on the suitable salinity for
spawning calibrated with different environmental reference data (Env. Data, MPI-
ESM-assim and EN4-analysis); i.e., resembling a retrospective forecast for lead
year 0. Mean values within the spawning region were calculated from the 500-fold
bootstrap, with variables noted in Table 3.

lead year (0–5) using binary verification metrics based on the
contingency table (Table 1). Accordingly, the output of the
biological forecasts are brought to the same spatial grid as the
observations (0.5◦ latitude × 1◦ longitude). Predicted presence-
probabilities from the SDM are converted into presence and
absence by selecting the threshold where predicted prevalence
from the SDM is equal to observed prevalence (Freeman
and Moisen, 2008). For the salinity based forecast, each grid
cell within the range of the suitable salinity for spawning is
defined as presence (of suitable habitat) and the remaining
as absence.

We quantify predictability via TSS, the difference between Hit
Rate and False Alarm Rate (Table 2). A TSS of 1 indicates that
the forecast’s accuracy is perfect, and a TSS of zero is associated
with a purely random forecast (Table 2). In each grid point, all
entries of the contingency table must be sufficiently filled for our
analysis to be robust and viable. To ensure statistical reliability,
we prescribe this condition for each 500-fold bootstrap iteration.
In practice, the counts of true presences (TP) and false absences
(FA) are the critical indicators. Thus, we neglect grid-cells when
the sum of both critical indicators is equal to zero in at least one
bootstrap iteration.

First, we evaluate both definitions of the suitable spawning
habitat against fishery and survey data. Afterward, we select
retrospective forecasts of the suitable spawning habitat at lead
year 0 with best observational agreement in terms of TSS for more
detailed analysis.

We analyse the predictive skill at RHP by pooling the
bootstrapped forecast verification metrics (i.e., TSS) for each
lead year over this region (averaging 40 and 46 grid cells for
the survey and the fishery data, respectively). Uncertainty is
expressed in terms of the interquartile range between the lower
quartile (25th percentile) and the upper quartile (75th percentile)
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of the bootstrapped data. We define significance of the TSS by the
95% confidence interval of the bootstrap.

In order to analyse inter-annual variations in skill, we
calculate the annually TSS averaged over RHP for retrospective
forecasts made approximately one year ahead. Due to the
different initialisation dates we compare MPI-ESM-hindcast with
a lead time of around 16 months (lead year 2) to persistence
forecasts at 12 months lead (lead year 1 for EN4-persist and
MPI-ESM-persist).

The Suitable Spawning Habitat as an Indicator for
Spawning on Rockall-Hatton Plateau
Finally, we evaluate whether retrospective forecast of the suitable
spawning habitat can be applied to anticipate whether spawning
takes place on RHP. For each year, the spatial coverage of blue
whiting observations on RHP is calculated as the percentage of
grid cells within RHP containing presences of blue whiting from
fishery/survey observations in March and April. Likewise, the
percentage of grid cells within RHP containing suitable habitat
in RHP is calculated for each year in March and April, based
on retrospective forecasts with MPI-ESM-hindcast for lead year
2 (16 months ahead) and persistence forecasts for lead year one
(12 months ahead) with EN4-persist and MPI-ESM-persist.

RESULTS

Representations of the Marine Climate in
EN4-Analysis and MPI-ESM-Assim
The large-scale features of temperature and salinity from
February to April (FMA) are similar in MPI-ESM-assim and EN4-
analysis within the spawning depth of blue whiting (250–600 m;
Figure 1). However, on smaller scales (e.g., RP, RT), MPI-ESM-
assim and EN4-analysis differ. Within the spawning region and
spawning depth of blue whiting, anomalies of temperature agree
well in EN4-analysis and MPI-ESM-assim (overall correlation
in FMA of 0.85, bias 0.66◦C; Figure 3A), while differences
are more pronounced in terms of salinity (correlation 0.51;
bias 0.08; Figure 3B). EN4-analysis and MPI-ESM-assim show
similar temporal deviations from climatology and multi-decadal
variability in both temperature and salinity. Both observational
products show more saline and warmer water up to the 1970s and
rather low anomalies around 1975 and from 1986 to around 1995,
followed by an increase up to around 2010 and a stark decrease
in subsequent years, again in line with observations from the
eastern Ellet Line around Rockall Plateau (Holliday et al., 2015,
2020). During some periods, e.g., around 1965 and 1995 there
is a tendency of MPI-ESM-assim to show a higher amplitude of
deviations in terms of salinity than EN4-analysis (Figure 3B).
Deviations from climatology are less pronounced for MPI-ESM-
hindcast, as shown for lead year 2, in particular for salinity during
the past 20 years of the study period (Figure 3B).

Predictive Skill of the Marine Climate
Within the spawning region of blue whiting, MPI-ESM-
hindcast shows greater predictive skill for salinity compared to
temperature and is more skilful than MPI-ESM-persist, when

FIGURE 3 | Mean FMA temperature (A) and salinity (B) anomalies averaged
over the spawning depth of blue whiting (250–600 m) within the spawning
region (black rectangle in Figure 1). Data from EN4-analysis is indicated by
the green line. The ensemble mean of the assimilation run of MPI-ESM
(MPI-ESM-assim) is indicated by the black line and its individual ensembles
are shown as grey dots, where overlapping ensembles create darker shades.
MPI-ESM-hindcast of lead year 2 is added as blue line.

compared to MPI-ESM-assim (Figure 4). The salinity within the
spawning region and spawning depth can skilfully be predicted
for more than 4 years ahead (Figures 4B,D). In terms of the
ACC, the hindcast of salinity outperforms persistence for all
analysed lead years (Figure 4B), while the predictive skill of
temperature is similar to persistence and degrades further after
lead year 3 (Figure 4A). Moreover, salinity is more predictable
than temperature, with a median ACC above 0.6 for all lead
years analysed (Figures 4A,B).In terms of the RMSE MPI-ESM-
hindcast is more skilful than MPI-ESM-persist in predicting
both temperature and salinity, with most pronounced differences
for temperature (Figures 4C,D), indicating that the hindcast is
superior in representing the amplitude of observed variations
in salinity, and in particular temperature. The RMSE of the
persistence forecasts increases with increasing lead times, while
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FIGURE 4 | Predictability of temperature (left; A,C) and salinity anomalies (right; B,D) averaged over 250–600 m in FMA within the spawning region (black rectangle
in Figure 1), measured in terms of the anomaly correlation coefficient (ACC; top row) and root-mean squared error (RMSE; bottom row) of MPI-ESM-hindcast (bullet;
blue area) and MPI-ESM-persist (triangle; grey), judged against MPI-ESM-assim. The connected bullets/triangles indicate the median and the blue/grey shaded
areas indicate spread based on the lower and the upper quartile of a 500-fold bootstrap. Two correlations (or RMSEs) are markedly different when their respective
shaded areas show no overlap.

the RMSE is rather constant for the hindcast from lead year
2 onward, indicating a greater accuracy of the hindcast with
increasing lead times compared to persistence. Comparing
MPI-ESM-hindcast to EN4-analysis shows a similar pattern for
temperature; however, MPI-ESM-hindcast shows for salinity has
a higher uncertainty and outperforms EN4-persist only after lead
year 3 (Figure 5). Overall, the predictive skill of MPI-ESM-persist
(Figure 4) and EN4-persist (Figure 5) is nearly identical and both
show slightly higher ACC for salinity than for temperature.

Accordingly, considering both oceanographic reference
products, a clear advantage of using MPI-ESM-hindcast in
contrast to persistence is found after lead year three for salinity
(Figures 4B,D, 5B,D). This indicates that salinity can skilfully
be predicted with MPI-ESM-hindcast at multi-annual lead

times within blue whiting’s spawning region and spawning
depth during the peak months of spawning. For temperature,
the hindcast is only superior in predicting the amplitude,
but not the phase of observed variations, as indicated by
significantly different values of RMSE but similar values
of ACC when comparing persistence to MPI-EM-hindcast
(Figures 4A,C, 5A,C).

There are two large regions of high predictive skill of MPI-
ESM-hindcast during FMA: one in the SPG region south west
of Iceland and within the STG west off the European mainland,
which are separated by a region of low predictive skill entering
the spawning region from the south-west (Figures 6, 7), similar to
findings by Koenigk and Mikolajewicz (2009), Matei et al. (2012)
Brune et al. (2018) and Frölicher et al. (2020).
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FIGURE 5 | Predictability of temperature (left; A,C) and salinity anomalies (right; B,D) averaged over 250–600 m in FMA within the spawning region (black rectangle
in Figure 1), measured in terms of the anomaly correlation coefficient (ACC; top row) and root-mean squared error (RMSE; bottom row) of MPI-ESM-hindcast (bullet;
blue area) and EN4-persist (triangle; grey), judged against EN4-analysis. The connected bullets/triangles indicate the median and the blue/grey shaded areas indicate
spread based on the lower and the upper quartile of a 500-fold bootstrap. Two correlations (or RMSEs) are markedly different when their respective shaded areas
show no overlap.

Zooming into the spawning region of blue whiting, the
predictive skill is highest around Rockall Plateau and within
Rockall Trough from Porcupine Bank toward the northeast,
while predictive skill within the spawning region is lowest in the
south-west around 45◦N–50◦N (Figures 6, 7). In terms of the
ACC, MPI-ESM-hindcast of salinity is superior to temperature.
However, for lead year 3 a strong decay in predictive skill
is seen with regions toward the south–west of the spawning

region, where correlations between MPI-ESM-hindcast and
MPI-ESM-assim become insignificant for our analysis (Figure 6).
Similarly, predictive skill in terms of RMSE is lowest toward the
south-west (Figure 7).

Overall, the better hydrodynamic representation of MPI-
ESM-assim compared to EN4-analysis together with the high
predictive skill of salinity, specifically over longer lead times
and in the area around RHP, with MPI-ESM-hindcast, encourage
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FIGURE 6 | Anomaly correlation coefficient (ACC) of temperature (left) and salinity (right) in FMA at lead year 2 (≈16 months) (top) and lead year 3 (≈28 months)
(bottom) comparing MPI-ESM-hindcast to MPI-ESM-assim. Dots show significant correlations at the 95% confidence level, calculated from 500 bootstrap samples.
The black rectangle delineates the study area: the spawning region of blue whiting; and black lines indicate the 600 and 2,000 m isobath.

the design of coupled-physical biological forecasts based on
MPI-ESM.

The Suitable Spawning Habitat of Blue
Whiting defined via SDMs and Salinity
We explore two ways of defining the suitable spawning
habitat of blue whiting. In the first approach, SDMs are
calibrated using various combinations of temperature and
salinity from either MPI-ESM-assim or EN4-analysis (Table 3).
For each oceanographic reference product the SDM with the
highest predictive performance are SDM_STMPI and SDM_SEN4
(Table 3). These two SDMs are analysed further.

Specifically, for SDMs calibrated with environmental data
from MPI-ESM-assim, including salinity and temperature at the
spawning depth of blue whiting clearly yields the best performing
model in terms of model parsimony with larval CPR data,
showing the lowest AIC values and highest explained deviance
(SDM_STMPI, Table 3). However, the cross-validated predictive
skill of SDM_STMPI is similar to SDM_SEN4, which is the
best performing SDM calibrated with EN4-analysis which solely
includes salinity as environmental variable (Table 3). Therefore,
considering the predictive skill it seems irrelevant whether we use
MPI-ESM-assim or EN4-analysis to calibrate the SDMs. For all

SDMs the NPV is much larger than the PPV (Table 3), indicating
that the SDMs are better in describing the absence of suitable
habitat than its presence.

In order to compare output from the SDMs to the suitable
salinity for spawning, we convert the likelihood of observing
larvae into a binary variable, namely the presence and absence of
suitable habitat. The threshold for this conversion is a probability
of approximately 0.3 (i.e., for EN4-analysis (MPI-ESM-assim):
0.28 (0.31) in the survey data, and 0.29 (0.34) in the fishery
data). Probabilities that exceed (subceed) this threshold translate
to presences (absences) of suitable habitat.

For both SDMs, the region defined as suitable for spawning
(probability ' 0.3) is centred within the spawning region
spanning from the European Continental Shelf onto Rockall
Plateau. For SDM_STMPI, however, the suitable spawning habitat
extends further west beyond RHP which is not supported by
observations (Figures 8A,B). Generally, both SDMs show a more
contracted distribution toward the continental shelf in 1991
and a slightly more expanded westward distribution in 2005,
however, both fail to reveal the full extent of the observed
distributional changes.

The second approach uses the suitable salinity for spawning
as a proxy for the suitable spawning habitat and there are
large differences between the two approaches in the way the
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FIGURE 7 | Root-mean squared error (RMSE) of temperature (left) and salinity (right) in FMA at lead year 2 (≈16 months) (top) and lead year 3 (≈28 months)
(bottom) comparing MPI-ESM-hindcast to MPI-ESM-assim. The black rectangle delineates the study area: the spawning region of blue whiting.

suitable habitat is spatially expressed (Figure 8). The suitable
salinity for spawning has a considerably larger spatial extent
than the suitable habitat based on SDMs and thereby is a better
general definition of the potentially suitable habitat that rather
overestimates suitable habitat in areas beyond the spawning
region of blue whiting. Therefore, the agreement between the
suitable salinity for spawning and independent observations is
best within the spawning region.

Furthermore, different spatial representations of the marine
climate from the two oceanographic reference products affect
the spatial distribution of the suitable spawning habitat
(Figure 8). The suitable spawning habitat of blue whiting
is more affected by the vicinity of bathymetric features, in
particular Rockall Plateau, when based on MPI-ESM-assim

in comparison to EN4-analysis. The difference between MPI-
ESM-assim and EN4-analysis becomes most apparent, however,
when comparing the suitable salinity for spawning for two
years with contrasting marine climatic regimes. In 1991 the
marine climate in the spawning region of blue whiting is
characterised by rather cold and fresh conditions (Figure 3)
and most blue whiting are observed along the continental shelf
from northern Scotland toward Porcupine Bank and south of
Rockall Plateau within Rockall Trough (Figures 8A,C). To the
contrary in 2005, conditions become more warm and saline in
the spawning region (Figure 3) and in response, blue whiting
show an expanded spawning distribution that stretches from the
continental shelf over RHP with a larger north-westward extent
(Figures 8B,D).

Frontiers in Marine Science | www.frontiersin.org 13 January 2022 | Volume 8 | Article 777427

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-777427 January 27, 2022 Time: 14:16 # 14

Miesner et al. ESM-Based Forecasts of Fish Distribution

FIGURE 8 | Blue whiting habitat suitability in 1991 (left; A,C) and 2005 (right; B,D) for MPI-ESM-assim (top; A,B) and EN4-analysis (bottom; C,D) compared to
observations of adult blue whiting from scientific surveys (IBWSS; red bullet) and fishery catch data (NEAFC; grey triangle) during March and April. Habitat suitability
is shown for both the suitable salinity for spawning (background fill) and the probability of observing blue whiting larvae from SDMs (red contour lines; A,B:
SDM_STMPI; C,D: SDM_SEN4), where 0.3 resembles the threshold for converting the larval-presence probability into presence and absence of suitable habitat.
Bathymetry is indicated by 600 and 2,000 m isobaths.

While these spatial changes imprint on in the suitable
salinity for spawning in MPI-ESM-assim, EN4-analysis fails to
resolve changes between 1991 and 2005. In particular in the
area around RHP, EN4-analysis shows hardly any difference
between the two years (Figures 8C,D), while MPI-ESM-assim
reproduces the absence of suitable habitat on Rockall Plateau
in 1991 (Figure 8A) and the presence of suitable habitat over
most of RHP in 2005 (Figure 8B). Accordingly, the dynamic
properties of MPI-ESM-assim and its ability to account for
bathymetric constraints might be better suited to reflect the
suitable spawning habitat of blue whiting during FMA, in
particular in the area of RHP.

Another difference between the two reference products,
that is visible for both years is that in MPI-ESM-assim
the suitable salinity for spawning extends southward along
the continental shelf passing the Spanish and Portuguese
coast (Figures 8A,B). This extension is supported by fishery
observations (Figures 8A,B).

Within the spawning region, habitat definitions based on the
suitable salinity for spawning generally have a higher agreement
with independent fishery and survey observations as judged by
higher mean values of NPV, HR, and TSS compared to habitat
definitions based on SDMs (Table 4). The SDM-based definition
is only better in terms of PPV for SDM_SEN4 and the FAR. Both
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FIGURE 9 | Agreement between the suitable spawning habitat and observations of adult blue whiting from the IBWSS survey in terms of the True Skill Statistics
(TSS) during March and April. The suitable spawning habitat is defined through Species Distribution Models (SDM) (top row; A,B) or the suitable salinity for spawning
(bottom row; C,D) and based on MPI-ESM-assim (left; A,C) and EN4-analysis (right; B,D). In a and b the best performing SDMs (Table 3) were chosen: SDM_STMPI

(A) and SDM_SEN4 (B). Dots show significant correlations at the 95% confidence level and crosses indicate regions where the predictive skill cannot be evaluated
confidently due to sparse observational data, both based on a 500-fold bootstrap. Good predictive quality (TSS > 0) is indicated by red colours (where HR > FAR)
and the mean TSS within the plotted region (excluding regions with crosses) is noted on Ireland. The grey lines indicate the 600 m and 2,000 m isobath.

habitat definitions are more useful in describing an absence of
suitable habitat within the spawning region (higher NPV) than
presence of suitable habitat (lower PPV).

Overall, spatially averaged values of TSS within the spawning
region are low (<0.2), however all habitat definitions show
greatest agreement with observations from the IBWSS survey in
the region around Rockall Plateau and north–east of it (Figure 9).
SDM_STMPI shows least agreement with observations (overall
TSS = 0) and even displays significantly negative values of TSS
in particular around Porcupine Bank (Figure 9A), followed by
SDM_SEN4 with an overall TSS of 0.08 (Figure 9B). The suitable
spawning habitat in terms of salinity in MPI-ESM-assim shows
best agreement with observations from the scientific survey in
terms of TSS, with positive values mainly in the north-eastern
part of the study region and on RHP (Figure 9C). In contrast to
MPI-ESM-assim, differences between the two habitat definitions
are smaller for EN4-analysis (Figure 9 and Table 4).

Accordingly, the definition of the suitable spawning habitat
based on salinity shows better agreement with independent

observations than applying the full SDMs. Therefore, we create
retrospective forecast of the suitable salinity for spawning and
analyse its predictive skill in further detail.

Predictive Skill of the Retrospectively
Forecasted Suitable Spawning Habitat
Based on Salinity
Generally, retrospective forecasts of the suitable salinity for
spawning based on MPI-ESM-hindcast approximately one year
ahead have a higher predictive skill than persistence based
forecasts (Figure 10). However, overall values of TSS are low
with 0.13 when compared to both survey and fishery data
and differences to persistence-based forecast are small and in
the range of 0.02–0.03 (Figures 10A–C).The predictive skill of
all retrospective forecasts is highest on RHP especially west
of Rockall Plateau and in the northern part of the spawning
region, while low or no predictive skill is found within deeper
parts of Rockall Trough and Porcupine Bank (Figures 10A–C).
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FIGURE 10 | Predictive quality of retrospectively forecasted suitable spawning habitat based on the suitable salinity for spawning with MPI-ESM-hindcast (A),
MPI-ESM-persist (B), and EN4-persist (C) in terms of the True Skill Statistics (TSS) for March and April judged against observations of adult blue whiting from surveys
(IBWSS) (left) and fishery (NEAFC) (right) approximately one year ahead (A–C); and spatially averaged over Rockall-Hatton Plateau (RHP; region delineated in black in
the maps above) for each lead year (D). The last panel (D) shows MPI-ESM-hindcast (blue circle), MPI-ESM-persist (black bullet) and EN4-persist (green triangle)
with the shaded areas indicating the spread based on the lower and the upper quartile of a 500-fold bootstrap. Retrospective forecasts are distinctly different when
their respective shaded areas do not overlap. Due to the different initialisation dates, panels (A–C) show the hindcast with a lead time of around 16 months and the
persistent forecasts with a 12 months lead. In panels (A–C) dots show significant correlations at the 95% confidence level and crosses indicate regions where the
predictive skill cannot be evaluated confidently, both based on a 500-fold bootstrap. Good predictive quality (TSS > 0) is indicated by red colours (where HR > FAR)
and the mean TSS within the plotted region (excluding regions with crosses) is noted over Ireland. The grey lines indicate the 600 and 2,000 m isobaths.
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Results are similar when compared to both survey and fishery
observations. However, significantly positive TSS values on
Rockall Plateau and Porcupine Bank are only found for MPI-
ESM-hindcast and MPI-ESM-persist when compared to fishery
data (Figures 10A,B). The high predictability of retrospective
forecasts on and north-east of RHP, are in line with the high
predictability of the marine climate, specifically salinity, found for
this region (Figures 6, 7).

Within RHP, retrospective forecasts of the suitable salinity for
spawning perform similarly for shorter lead times (<2 years)
with MPI-ESM-hindcast being slightly but not significantly
more skilful than persistence based forecasts (Figure 10D). The
forecast horizon at which MPI-ESM-hindcast is more skilful than
persistence differs for the two oceanographic data sets and for the
two observational data sets of blue whiting. MPI-ESM-hindcast
has more skill than MPI-ESM-persist after lead year 3 when
assessed by the survey data, however, when compared to the
fishery data both show similar skill. EN4-persist shows a similar
or higher predictive skill than MPI-ESM-hindcast after lead year
2, as judged by survey and fishery observations, respectively.

Retrospective forecasts of the suitable spawning habitat
approximately 1 year in advance show prominent inter-annual
variations in predictive skill on RHP, which can roughly be
divided into three periods (Figure 11A): From 1985 to 1995,
MPI-ESM-hindcast shows the highest skill with values of TSS

as high as 0.89 as judged against fishery data while EN4-persist
mainly shows no skill. Around the 2000s this reverses when
EN4-persist has greater values of TSS than MPI-ESM-hindcast.
However, during this time the differences in retrospective forecast
skill is high depending on the observational data set chosen and
retrospective forecasts based on MPI-ESM-persist and MPI-ESM-
hindcast and generally have higher TSS values and hence are
more skilful when judged against fishery data in comparison to
survey data, indicating a rather large uncertainty in observing
blue whiting on RHP. From 2006 onward, forecast skill converges
to a range of TSS around 0 to 0.5.

These marked changes in the predictive skill over RHP
(Figure 11A) coincide with changes in the importance of RHP
as a spawning ground (Figure 11B) which in turn are affected
by oceanographic variability on the spawning region (Hátún
et al., 2009b; Miesner and Payne, 2018). Around 1990 when the
marine climate in the spawning region is characterised rather
cold and fresh conditions, most spawning takes place along
the continental shelf and less on RHP (Hátún et al., 2009a,b;
Miesner and Payne, 2018) as shown for 1991 (Figures 8A,C).
The importance of RHP as a spawning ground stays low until
1998 with less (or equal) than 30% of blue whiting being observed
or caught on RHP (Figure 11B). Likewise, MPI-ESM-persist
and particularly MPI-ESM-hindcast show only small fractions of
RHP with suitable spawning habitat around 1990 (Figure 11B),

FIGURE 11 | Average inter-annual forecast skill on Rockall-Hatton Plateau (RHP; see Figures 10A–C) in terms of the True Skill Statistics (TSS) (A); and the spatial
coverage of suitable spawning habitat in RHP (% of grid cells) (B) based on retrospective forecasts of the suitable salinity for spawning approximately one year ahead
with MPI-ESM-hindcast, MPI-ESM-persist and EN4-persist judged against observations of adult blue whiting from surveys (IBWSS; bullet) and fishery (NEAFC;
triangle) during March and April. In case observations of blue whiting were absent on RHP [(B): white triangles/bullets = 0%] the TSS is not calculated. Note that
observational absences can also indicate that there was no fishing in RHP and shows the absence of IBWSS survey coverage on RHP in the particular year.
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resulting in unprecedentedly high forecast skill with values of TSS
of 0.85 (Figure 11A). In contrast, EN4-persist constantly shows
suitable habitat in more than 30% of RHP. This inability of EN4-
analysis to show the absence of suitable spawning habitat over
RHP leads to the low predictive skill of EN4-persist until around
1998 (Figure 11).

After 1998 both temperature and salinity increase in the
spawning region (Figure 3) which is associated with a north-
and westward expansion so the spawning distribution (Hátún
et al., 2009a,b; Miesner and Payne, 2018) and blue whiting are
observed over a larger area of RHP (Figure 11B). In line with
observations from the Ellet Line (Holliday et al., 2015), EN4-
analysis shows an increase in temperature and salinity above the
climatological average from around 2000–2009 (Figure 3). MPI-
ESM-assim, however shows negative anomalies, particularly in
salinity around 2000 (Figure 3). Accordingly, MPI-ESM-hindcast
and MPI-ESM-persist both underestimate the suitability of the
spawning habitat (Figure 11B) resulting in the absence of skill
over RHP around 2000 (Figure 11A). In congruence with the
period of high temperature and salinity around 2005, which is
found in both EN4-analysis and MPI-ESM-assim (Figure 3), also
the spatial coverage of blue whiting over RHP peaks and blue
whiting are observed over most (if not all) of RHP (Figure 11B).
Since all retrospective forecasts also show suitable spawning
habitat on RHP (Figure 11B), forecasts skill converges with
mainly positive TSS values, in particular for persistence based
forecasts (Figure 11A).

In summary, a clear advantage of creating forecasts of
the suitable spawning habitat of blue whiting with MPI-
ESM compared to EN4-analysis, is the ability of MPI-ESM
to differentiate between the presence and absence of suitable
spawning habitat over RHP. In particular, MPI-ESM-hindcast
skilfully forecasts distributional changes over RHP around a
year in advance.

DISCUSSION

We find a higher predictability of salinity compared to
temperature within the spatio-temporal domain relevant for
spawning blue whiting. Few studies explicitly compare the
predictability of salinity and temperature, as presented in this
study. One exception is a perfect model experiment that indicated
that sea surface salinity is potentially more predictable at inter-
annual timescales than sea surface temperature for most oceanic
regions of the mid to high latitudes, including the Northeast
Atlantic (Koenigk and Mikolajewicz, 2009). In another study, sea
surface salinity within the SPG region showed a higher potential
predictability compared to both sea surface temperature and
upper 300 m heat content with ACC of salinity as high as 0.8 for
lead year 2–5 (Mignot et al., 2016), similar to the skill of MPI-
ESM-hindcast versus MPI-ESM-assim in our study (Figure 4B).
While the mean RMSE for lead year 2–5 of around 0.5 for
temperature and 0.05 for salinity (Mignot et al., 2016) is slightly
higher than our results indicate (Figures 4C,D, 5C,D).

The marine climate in the spawning region of blue whiting
is influenced by the low-frequency dynamics of the SPG that

contributes to recurrent periods of relatively high or relatively
low salinity spanning over 5–10 years (Holliday et al., 2000;
Koul et al., 2019). The salinity signal from the SPG is passively
advected with the general ocean circulation toward the North
East Atlantic (Mauritzen et al., 2006) and thereby into the
spawning region of blue whiting. As such, salinity acts as an
indicator for circulation changes in the subpolar North Atlantic
(Mauritzen et al., 2006) and the low-frequency dynamics of
the SPG that acts on (multi-) decadal timescales (Koul et al.,
2019) likely contributes to the high predictability of salinity in
spawning region of blue whiting. Specifically, the upper ocean at
RHP and the north-eastern Rockall Trough in the vicinity of the
continental slope generally show lower oceanographic variability
(Holliday et al., 2015) with recurrent and prolonged periods
of anomalously high/low salinity (Holliday et al., 2000; Koul
et al., 2019). Therefore, predictions of the marine climate and the
suitable habitat with MPI-ESM-hindcast show particularly high
levels of predictive skill around RHP and in the north-eastern
spawning region.

To the contrary, variations in the strength of the SPG affect
the position and flow trajectory of the North Atlantic Current
and thereby introduce oceanographic variability in the area of
Rockall Trough (Holliday et al., 2000; Hátún et al., 2009a; Koul
et al., 2019). Rockall Trough is one of the main pathways of the
North Atlantic Current, in particular, when the SPG is strong,
while the current branches off west of Rockall Plateau, when
the SPG is weak (Hátún et al., 2005; Holliday et al., 2020). This
oceanographic variability affects the predictability of the marine
climate in the Eastern North Atlantic resulting in particularly
low predictive skill at the entrance of Rockall Trough in the
south-western area of the spawning region.

One key result from this study is that differences in the
spatial representation of the marine climate affect the spatial
expression of the suitable spawning habitat. Differences in the
spatial representation of the marine climate arise from the
different methods that are used in EN4-analysis and MPI-ESM-
assim to distribute information of observed oceanic temperature
and salinity profiles over the study region in time and
space. As a dynamic ocean model, MPI-ESM-assim inherently
accounts for dynamics and bathymetric features by distributing
oceanic properties such as temperature and salinity dynamically
consistent around ridges and seamounts such as Rockall Plateau
and through channels like Rockall Trough (Figures 1A,B). In
contrast, in EN4-analysis observational gaps are filled by means
of statistics and not physics. The objective interpolation used in
EN4-analysis statistically interpolates between observed profiles
and is therefore less capable of representing hydrodynamics,
resulting in rather smooth contours of temperature and salinity,
disconnected from bathymetry.

The more differentiated representation of the marine climate
around bathymetric features in MPI-ESM-assim, results in a
superior ability of MPI-ESM-persist and MPI-ESM-hindcast
to predict the absence of suitable habitat on RHP. Skilfully
forecasting distributional changes of the suitable spawning
habitat on RHP could be particular value to the scientific
monitoring and management of the stock. Distributional changes
are most pronounced on RHP (Hátún et al., 2009b; Miesner
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and Payne, 2018). Moreover, sampling on RHP is challenging. In
particular, the great distance to ports and recurrent periods of bad
weather have resulted in insufficient survey coverage on RHP in
some years (e.g., 2010) which can lead to an underestimation of
the stock’s biomass (ICES, 2010). Therefore, the high inter-annual
predictive skill of the marine climate and the suitable spawning
habitat around RHP with MPI-ESM with marks a success.

A major challenge that is common to all ecological forecasts
that aim at forecasting the spatial distribution of living organisms,
is the way habitat is related to the distribution of a species
(Payne et al., 2017). Here, the suitable spawning habitat of blue
whiting delineates environmental conditions that are suitable for
spawning (i.e., in terms of salinity). However, just because a
region is suitable for spawning does not necessarily mean that the
location is occupied by the fish and spawning takes place. Due
to non-resolved processes such as migration dynamics, density
dependent effects on distribution or other biotic interactions
such competition and predation, not the entire suitable habitat is
necessarily occupied by the species (Guisan and Zimmermann,
2000; Colwell and Rangel, 2009; Elith and Leathwick, 2009).
Therefore, the actual distribution might be smaller than their
potentially suitable habitat, which is clearly seen for the suitable
salinity for spawning (Figure 8).While the SDMs delineate the
core spawning region west of the British Isles, which is recognised
to be the main spawning region of blue whiting (Bailey, 1982;
ICES, 2019), they underestimate the spatial (i.e., latitudinal)
extent of the spawning distribution. Possible reasons are that
the SDMs are constrained by geographic and spatio-temporal
parameters and the choice of the threshold for converting
probabilities into presences of suitable habitat.

Since habitat models are superior in predicting absences
compared to presences, as seen for both approaches applied
in this study (Tables 3, 4), the skill of forecasting species
distributions is asymmetric (Payne et al., 2021). Consequently,
retrospective forecasts of the suitable spawning habitat (e.g., on
RHP) with MPI-ESM-hindcast, have higher skill in predicting
the absence of suitable habitat (i.e., no spawning on RHP)
than their presence.

Nevertheless, instantaneous observations of freely moving
animals, like fish, only provide a snapshot of their distribution.
We cannot be certain whether the observed adult blue
whiting were actively spawning or migrating. Additionally,
observations might not cover the entire spawning distribution,
e.g., fishermen focus on the most profitable regions with
highest fish aggregations while smaller aggregations might be left
untouched. Therefore, observations of fish carry uncertainties
that affect the assessment biological forecast skill. In particular,
our analysis of inter-annual biological forecasts reveals at times
massive differences in skill when judged by either fishery or
survey data. This highlights the need to consider multiple
biological observational data sets for validating coupled physical-
biological forecasts.

We define the suitable spawning habitat of blue whiting
based on SDMs in a generalised additive modelling framework
(Miesner and Payne, 2018). There is, however, a multitude
of other modelling options. We cannot rule out that another
statistical SDM approach, for example, based on machine

learning such as random forest (Breiman, 2001) which is
designed for generating predictions (Elith and Leathwick, 2009)
might have resulted in a better performance of SDM-based
predictions. Additionally applying an ensemble of different
modelling techniques would enable accounting for uncertainty in
defining the suitable habitat (Araújo and New, 2007).

Salinity seems to be a good proxy for the spawning distribution
of blue whiting within its spawning region because it shows
good agreement with independent observations (Miesner and
Payne, 2018). Salinity can have a direct effect on fish, in
particular on early life stages, by affecting their osmoregulation
(Varsamos et al., 2005) or egg (Sundby and Kristiansen, 2015)
and larval buoyancy as shown for blue whiting (Ådlandsvik et al.,
2001). Compared to temperature, however, salinity has a less
direct effect on most marine organisms (Rijnsdorp et al., 2009).
Therefore, salinity is most likely a proxy for other processes that
affect the spawning distribution of blue whiting more directly.
Most notably, temperature and salinity are often correlated
and form central water mass characteristics. Since each water
mass possesses characteristic hydrographic and biogeochemical
properties, it functions as distinct habitat for marine organisms.
Saline waters of subtropical origin provide a higher abundance
of warm-water zooplankton species which are smaller (Hátún
et al., 2009a) and thus more favourable prey items of blue whiting
larvae (Bailey, 1982) than larger zooplankton species that occupy
fresher subpolar waters (Hátún et al., 2009a). Consequently, the
suitable salinity for spawning might resemble subtropical water
masses with good feeding conditions for blue whiting larvae.
The feature of salinity to act as a passive tracer, unmodulated by
atmospheric processes, might contribute to the more prominent
role of salinity, as opposed to temperature, for defining the
suitable spawning habitat of blue whiting.

Due to the imminent importance of salinity as water
mass characteristic, it might also be promising to consider
salinity for characterising the species–environment relationship
of other marine organisms and for creating coupled physical-
biological forecasts. The importance of salinity for anticipating
distributional changes has also been shown for a range of
pelagic species along the US Northeast Shelf (McHenry et al.,
2019). The study emphasised that bottom salinity was generally
more important in explaining range shifts than temperature,
and that projections based solely on temperature masked the
species’ climate vulnerability (McHenry et al., 2019). This
highlights the prominence of salinity as independent variable
in statistical models that predict spatial changes of marine
organisms. In agreement, we also find that salinity prediction
skill bears a great potential for creating novel coupled physical–
biological forecasts.

In regions where local predictability of the marine climate
is low, a potential for creating coupled physical–biological
forecasts might lie in lagged correlations from regions of high
predictability, such as the SPG region. Changes in the SPG
affect the relative share of water masses in the Eastern North
Atlantic and result in large bio-geographical shifts of blue whiting
and a variety of other marine organisms ranging from phyto-
and zooplankton, to whales and seabirds (Drinkwater et al.,
2003; Hátún et al., 2009a). Additionally, SPG-driven changes of
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temperature and salinity travel downstream into the North Sea
(Núñez-Riboni and Akimova, 2017; Koul et al., 2019) and Barents
Sea, and thereby affect the abundance and productivity of some
local fish species and introduce predictability via adjective delays
(Akimova et al., 2016; Koul et al., 2021). Since retrospective
forecasts of the marine climate with MPI-ESM-hindcast in the
SPG region show significant skill (Brune et al., 2018; Brune and
Baehr, 2020), and Post et al. (2021) found a lagged response
between the marine climate south-west of Iceland and the
abundance of blue whiting and other boreal fish species in
Greenlandic waters, we envision a great potential for developing
coupled physical–biological forecasts of fish abundance and
distribution based on MPI-ESM in the North Atlantic and its
adjacent seas (Koul et al., 2021).

CONCLUSION

Using blue whiting as a case study, we show that MPI-ESM-
hindcast skilfully predicts the marine climate, specifically salinity,
in the North East Atlantic several years ahead, which translates
to predictability of distributional shifts in the species’ suitable
spawning habitat a year in advance. We find that the suitable
salinity for spawning proves to be a better proxy for the
suitable spawning habitat than applying a SDM. While the
definition of the suitable habitat is species specific and requires
careful consideration, many aspects from this study can be
generalised and are also applicable to other species. Hence, ESMs
bear great potentials for forecasting fish distributions in the
North East Atlantic.

One of the main advantages in delineating and forecasting
the suitable habitat with MPI-ESM is the ESM’s representation
of hydrographic processes, which is superior to the statistical
product EN4-analysis for the conducted analysis. The dynamic
consistency and ability of an ESM to consider hydrodynamics can
therefore offer advantages over a solely statistical oceanographic
data product, specifically for coupled physical–biological
forecasts in regions with distinct bathymetry, e.g., over
seamounts, plateaus or shelfs, which typically depict preferred
habitat features for many marine species, as seen for blue whiting.
Since skilful biological forecasts at inter-annual time scales, as
presented in this study, are beyond the prediction horizon of
the first generation of biological forecast products (Payne et al.,
2017), they present an innovation of marine biological forecasts.

Another insight from this study is the higher predictive
skill of deep-water salinity compared to temperature and its
impending importance as water mass and habitat characteristic in
the North East Atlantic. For many commercially important fish
species in the North Atlantic a wealth of observational records
exist and environmental drivers for distributional changes are
known (Trenkel et al., 2014; and references therein). This could
offer the possibility to delineate the species’ suitable habitat by
combining existing observations of the species in combination
with skilful observational oceanographic data sets. Moreover,
including salinity in coupled physical–biological forecasts could
offer a valuable contribution toward predicting distributional

shifts of marine living organisms and for creating novel marine
ecological forecasts.
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