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Characterizing habitats and species distribution is important to understand the structure
and function of cold seep ecosystems. This paper develops a deep learning model for
the fast and accurate recognition and classification of substrates and the dominant
associated species in cold seeps. Considering the dense distribution of the dominant
associated species and small objects caused by overlap in cold seeps, the feature
pyramid network (FPN) embed into the faster region-convolutional neural network (R-
CNN) was used to detect large-scale changes and small missing objects without
increasing the number of calculations. We applied three classifiers (Faster R-CNN +
FPN for mussel beds, lobster clusters and biological mixing, CNN for shell debris
and exposed authigenic carbonates, and VGG16 for reduced sediments and muddy
bottom) to improve the recognition accuracy of substrates. The model’s results were
manually verified using images obtained in the Formosa cold seep during a 2016
cruise. The recognition accuracy of the two dominant species, e.g., Gigantidas platifrons
and Munidopsidae could be 70.85 and 56.16%, respectively. Seven subcategories of
substrates were also classified with a mean accuracy of 74.87%. The developed model
is a promising tool for the fast and accurate characterization of substrates and epifauna
in cold seeps, which is crucial for large-scale quantitative analyses.

Keywords: cold seep, substrates, epifauna, Faster R-CNN, FPN, VGG16

INTRODUCTION

Cold seeps have been documented throughout global oceans along both active and passive
continental margins (Sibuet and Olu, 1998). The fluids are enriched with reduced compounds
from seabed support in distinctive chemoautotrophic ecosystems (Brooks et al., 1984; Kennicutt
et al., 1988). Since their discovery in the Gulf of Mexico in 1983 (Paull et al., 1984),
cold seep ecosystems have become “hotspots” of deep sea research due to the special
lifestyles of animals, unique adaptations to extreme environments, and important roles in
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global geochemical cycles (Cordes et al., 2009; Joye, 2020).
Most active cold seeps are generally characterized with a vast
biomass but low diversity and are dominated by large symbiont-
bearing invertebrates (Menot et al., 2010). These invertebrates
are considered the ecosystem engineers and influence the
sediment environment, provide physical structure and modulate
geochemistry through oxygenation (pumping) and ion uptake
activities (Levin, 2005). To understand the structure and function
of cold seep ecosystems, it is essential to comprehensively
describe the distribution of the major habitats and epifauna.
However, the topography of cold seep areas is usually complex
and heterogeneous. Additionally, the epifauna present a patchy
distribution as influenced by discontinued and scattered seep
points. It is difficult to obtain complete and comprehensive
community information in a traditional way (physical collection,
such as epibenthic sled, grab, etc.) due to the region’s high
randomness and low representation (Levin et al., 2000).
Alternatively, Sen et al. (2016) used multibeam backscatter and
bathymetry to obtain complete data for cold seeps. Improved
camera (MacDonald et al., 2003; Hsu et al., 2018; Sen et al., 2019)
and video technologies (Sen et al., 2016) were also applied, but the
subsequent data processing was time-consuming and laborious.

Deep learning is considered one of the major breakthroughs in
the artificial intelligence over the past decade and has been widely
used in multiple fields including image analysis, target detection,
and computer version (Han et al., 2020). This method can be
divided into three steps. First, the deep neural network is used
to automatically extract features from the target. Then, the model
is trained using manually annotated datasets. Finally, the trained
model is used to identify the target. Compared with error-prone
human performances, deep learning has the unique capability of
reducing time and workloads while providing higher reliabilities
and accuracies (Raphael et al., 2020). Major deep learning
models include convolutional neural networks (CNN; Albawi
et al., 2017), recurrent (Cho et al., 2014) and recursive neural
networks (Goodfellow et al., 2016), and generative adversarial
networks (Creswell et al., 2018). The CNN uses convolutions
(special linear operations) in at least one layer of the network
instead of typical matrix multiplication operations, which is to
process data with grid-like structures. Recurrent neural networks
are used to process sequential data and can learn nonlinear
features of sequences with high efficiencies. The potential use
of recurrent neural networks for learning inferences has been
successfully applied to networks with data structure inputs.
Generative adversarial networks are based on microgenerators
and solve problems by learning new samples from the training
set. Generative adversarial networks are based on a game theory
scenario in which generators must compete with adversaries
(discriminators).

With the development of deep learning, an increasing number
of target detection and recognition method have been applied to
marine research. The CNN is an efficient deep learning model
that can be used to extract profile feature information as it can
reduce the network structure complexity as well as the number
of parameters through local receptive fields, weight sharing,
and pooling operations, while also actively extracting high-
dimensional features from big data (Chen et al., 2021). CNN

image processing was customized by Zuazo et al. (2020) to
extract biological information of the bubblegum coral Paragorgia
arborea from times series. Elawady (2015) used a CNN to
classify deep-sea coral reefs, which could achieve autonomous
coral repairing combined with autonomous underwater vehicles.
The Fast R-CNN was applied by Huang et al. (2019) to detect
and identify marine organisms with three data augmentation
methods expanded a small number of samples. Lu et al.
(2017) used the “You Only Look Once: YOLO” approach
to recognize and track marine organisms including shrimp,
squid, crab and shark. While each of these methods has
certain advantages, they show weakness for small-sized target
identification and accuracies in cold seeps due to the high habitat
heterogeneity caused by complex carbonate rocks and dense
organism collections. To adapt to the special environment of cold
seeps, it is necessary to develop a new algorithm for substrates and
epifauna recognition.

When performing multi-scale target detection, traditional
algorithms generally use reduced or expanded images as inputs
to generate feature combinations that reflect features at different
scales (Adelson et al., 1983). The mainstream deep learning
networks currently adopt a single high-level feature for detection.
However, the reduced pixel information in small targets make
them easily lost in the down-sampling processing. The dominant
associated species in cold seeps are relatively smaller in size with
a greater community density. Embedding the feature pyramid
network (FPN; Lin et al., 2017) structure into the Faster R-CNN
(Ren et al., 2015) is a potential solution to improve the detection
of small and medium-sized targets.

This paper develops a model to accurately identify substrates
and the dominant associated species in cold seeps. Image of the
Formosa cold seep collected in the South China Sea were used to
train and verify the model.

MODEL BUILDING

Image Collection and Data Set
Production
An imaging and laser profiling system mounted on a remotely
operated vehicle (ROV) was used to collect a series of adjacent
images with geographic coordinates by the R.V. Kexue in
2016. ROV traveled at a speed of 1.5–2 knots and 2–3 meters
above the seabed. Nine images per second was shot and these
images can distinguish individuals larger than 1 cm. Geographic
coordinates and the same object identifier in adjacent images
were used to splice an initial mosaic. The mosaic color was
finally uniformed to produce the Mosaic (Figure 1A). For the
subsequent training experimental data set and model verification,
the Mosaic was divided into 19,516 small images (cut by 200
× 200 and removing blank images). The upper part of the
Mosaic was manually tagged for the data set and the other parts
were used for the model verification experiment. Tagging targets
(Figure 1) primarily includes: (1) the dominant associated species
[Gigantidas platifrons (G. platifrons) and Munidopsidae], (2) hard
substrates (mussel beds, lobster clusters, biological mixing, shell
debris, and exposed authigenic carbonates) and soft substrates
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(reduced sediments and muddy bottom). The classification of
substrates is specified in Table 1.

Model Framework
Faster Region-Convolutional Neural Network +
Feature Pyramid Network Algorithm for Epifauna
Detection
To find an algorithm suitable to detect cold seep epifauna,
we considered two-stage (Faster R-CNN base model and our
improved model) and single-stage [including SSD300 (Wang
et al., 2017) and YOLOv3] detection algorithms to test the same
epifauna dataset. The results showed that the two-stage detection
model performed better for the average precision (Table 2). Thus,

it was more suitable to detect and count cold seep epifauna.
However, two-stage detection models are not suitable for real-
time target detection because of their relatively lower speeds
over single-stage detection. Compared with the original Faster
R-CNN structure and other algorithms, the improved algorithm
developed in this paper has a higher detection accuracy. Although
the detection time increases, the improvement was acceptable
relative to the performance. The Fast R-CNN + FPN model was
chosen for the recognition of cold seep substrates and epifauna.

The pyramid form of the CNN used in the FPN effectively
generates multi-scale feature expressions under a single image
view. The FPN structure was designed with a top-down structure
while lateral connections fused the shallow high-resolution
feature map with the deep feature map having rich semantic

FIGURE 1 | (A) Mosaic (20,000 m2) of Formosa ridge cold seep from 2016. The outline represents the area where images were obtained and the red frame is the
training set. The hard substrates are: (B) mussel beds, (C) lobster clusters, (D) biological mixing, (E) shell debris, and (F) exposed authigenic carbonates. The soft
substrates are the (G) reduced sediments and (H) muddy bottom. The dominant species in cold seep are (I) Gigantidas platifrons and (J) Munidopsidae.

TABLE 1 | Definitions and descriptions of the two main substrates (seven small classifications).

Substrata classifications Description

Hard substrates (Carbonate rocks) Mussel beds (B) Large number (>50 ind./m2) of G. platifrons and small number (<20
ind./m2) of Munidopsidae

Lobster clusters (C) Large number (>50 ind./m2) of Munidopsidae and small number (<20
ind./m2) of G. platifrons

Biological mixing (D) Large number (>20 ind./m2) of Munidopsidae and G. platifrons

Shell debris (E) Open and empty mussel shells or white shell hash

Exposed authigenic carbonates (F) Bare and hard authigenic carbonate rocks or boulders, or isolated
pieces of carbonate rock surrounded by sediment

Soft substrates Reduced sediments (G) Black or purple stained sediment

Muddy bottom (H) Significant ordinary argillaceous environment
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information. Embedding the FPN structure in the Faster R-CNN
allowed quickly building a feature pyramid with strong semantic
information at all scales that could significantly improve the
detection capability of the network for small-scale targets (Lin
et al., 2017). The FPN structure is showed in Figure 2, where
bottom-up usually refers to the forward computing process of
the backbone; top-down uses nearest-neighbor interpolation for
up-sampling on the higher-level feature map which could retain
the semantic information of the feature map to the maximum
extent; and the lateral connection adjusts the feature dimension
with a 1 × 1 convolution to ensure consistent corresponding
feature layer dimensions between the bottom-up process and
the top-down processes. Then, the 3 × 3 convolution operation

was aimed at eliminating the blending effect generated in the
feature fusion process.

Embedding the FPN structure in the Faster R-CNN fused
the deep and shallow features, which strengthened the feature
expression ability of the network and effectively improved
its accuracy for small target detection. In addition, ResNet50
(Szegedy et al., 2017) was used to replace the VGG16 (Simonyan
and Zisserman, 2014) as the backbone feature extraction network
of the Faster R-CNN to further improve the network capabilities.

The network architecture of the improved Faster R-CNN
algorithm is shown in Figure 3. The feature fusion maps for
different levels as extracted by the FPN were separately fed
into the region proposal network (RPN) network. This network

TABLE 2 | The comparison of different models.

Model Density of the dominant associated species (ind./m2) Number of images AP Speed/ms

SSD300 >50 100 <0.6 102

YOLOv3 >50 100 <0.6 63

Faster R-CNN >50 100 <0.7 159

Faster R-CNN+FPN >50 100 0.738 164

FIGURE 2 | Structure of the feature pyramid network (FPN) algorithm. Top-down structure was designed in the FPN structure while the lateral connections fused the
shallow feature map.

FIGURE 3 | Network architecture of the improved Faster region-convolutional neural network (R-CNN) algorithm, which contains the FPN and region proposal
network (RPN).
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generated anchor frames with different aspect ratios based on the
different feature map scale sizes and selected the corresponding
detection layer for the target. The region of interest (ROI)
pooled the corresponding region into a fixed-size feature vector
in the feature map based on the position coordinates of the
candidate regions.

We set a binary label for each anchor to judge whether it was
a target or not to train the RPN. We set a binary label for each
anchor to judge whether it was a target or not: we set a positive
label for all anchors whose intersection over union (IOU) was
greater than or equal to 0.7. We then set a negative labor for all
anchors with IOU less than 0.3 for the real box. The loss function
of a single image is defined as:

L ({Pi} , {ti})=
1

Ncls

∑
i

Lcls
(
Pi,P∗i

)
+ λ

1
Nreg

∑
i

P∗i Lreg
(
ti, t∗i

)
where i is the index of the candidate box in a batch of data, Pi is
the prediction probability of the i th candidate box as the target.
If the candidate box is positive, the real label Pi = 1; otherwise,
P∗i = 1. The λ is the normalized weight with λ = 10 set in the
experiment, and ti is the four parameterized coordinate vectors of
the prediction box and was the real box vector related to positive
samples. The Ncls is the batch size in the training process, Nreg is
the number of candidate boxes, and Lcls is the binary logarithm
loss and defined as:

Lcls
(
Pi,P∗i

)
= − ln

[
PiP∗i +

(
1− P∗i

)
(1− Pi)

]
s

The Lreg is the regression loss function and is defined as:

Lreg
(
ti, t∗i

)
=

∑
i∈|x,y,w,h|

smooth
(
ti, t∗i

)
where the smooth function is defined as:

smoothL1 (x) =

{
0.5x2 1

σ2 , |x| ≤ 1
σ2

|x|− 0.5, others

where x is the error of the border prediction and σ is used to
control the smooth area with a values of 3 in the experiment.

Substrates Recognition Algorithm
The complexity of cold seep substrates and the problems of color
bias, dark light and blur in underwater images made it difficult to
distinguish all substrate categories using a single classifier. This
paper adopted an integration strategy to improve the accuracy
of recognition and classification accuracies. In the classification,
several base classifiers responsible for distinguishing part of the
data were connected in series. The undifferentiated data went
to the subsequent base classifier to achieve the optimal results
in the iteration.

The associated substrate classification model framework
is shown in Figure 4. The first classification model was
the FPN embedded in the Faster R-CNN to classify and
count the biota. The images that did not satisfy the current
classification conditions were passed to the next CNN model,
which classified the zones of shell debris and exposed authigenic

carbonates. Then, the images that did not satisfy these
classification conditions continued to the VGG16 model for
binary classification which was responsible for identifying the
reduced sediment and muddy bottom zones.

The first base of the integrated classifier in the figure
consists of the improved Faster R-CNN and FPN from
the section “Faster R-CNN + FPN Algorithm for Epifauna
Detection.” The backbone network used for feature extraction
in the model, which could greatly improve the feature
extraction capability was replaced by VGG16 with ResNet50
as fused with the FPN. The first base classifier was mainly
responsible for biota classification. The FPN was embedded
into the Faster RCNN to reduce the redundant multi-
resolution feature map detection from the original structure
based on the realization of feature fusion. Nearest-neighbor
upsampling was used to fuse the shallow location and deep
semantic information of the network. With only a small
increase in computational costs, the detection accuracy of
the network for multi-scale targets was greatly improved.
Classification and identification allowed counting the epifauna.
Then, the zones of the lobster cluster, mussel bed and
biological mixing were distinguished using the substrate
classification rules.

The second base classifier consisted of the CNN which was
aimed primarily at the recognition and classification of the
shell debris and carbonate rock zones. This structure could
reduce the amount of memory occupied by the deep network,
effectively reduce the number of network parameters, and
alleviate the overfitting problem of the model. As a supervised
multilayer learning neural network, the implicit convolutional
and pooling layers were the core modules to realize feature
extraction in the CNN. The CNN improved the accuracy of
the network through frequent iterative training by minimizing
the loss function using the gradient descent method and
adjusting the weight parameters in the network layer by layer
in reverse (Albawi et al., 2017). The low hidden layer of
the CNN consisted of alternating convolutional and maximum
pooling layers, and the high level was a fully connected layer
corresponding to the implicit layer and logistic regression
classifier of a traditional multilayer perceptron. The input of
the first fully-connected layer was a feature map obtained
via feature extraction from the convolutional and subsampling
layers. The final output layer was a classifier for the input image
using logistic regression, Softmax regression, or support vector
machines. In this paper, a Softmax nonlinear classifier was used
to identify and classify the zones of shell debris and exposed
authigenic carbonates.

The third base classifier was aimed at the recognition
and classification of reduced sediments and muddy bottoms.
The VGG16 was composed of five convolutional layers, three
fully-connected layers, and an output layer. The layers were
separated by a maximum pooling layer and a ReLU activation
function for all implicit activation units. On one hand, the
convolutional layers with larger kernels could reduce the
parameters. On the other hand, these were equivalent to more
nonlinear mappings which could increase the expressive power
of the network (Simonyan and Zisserman, 2014). However,
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FIGURE 4 | Substrate classification model framework with the three classifiers of FPN, convolutional neural network (CNN), and VGG16 to identify the cold seep
substrates.

the nonlinear classifier Softmax was still used for identification
and classification.

Model Training and Verification
Epifauna Quantitative Identification Experiments
The Faster R-CNN can be divided into two parts: the RPN
and Fast R-CNN network. The former is a recommendation
algorithm for candidate boxes (proposal), and the latter is based
on the position of the box where the associated categories of
objects are calculated. The RPN was trained first, and the Fast
R-CNN was trained with the output (proposal) of the RPN. Fast
R-CNN was fine-tuned and used to initialize the RPN parameters,
which gives an iterative cycle.

The experimental data were 630 images (randomly selected
from the upper part of the Mosaic), and the MRLabeler v1.4
software was used for annotation. The model could achieve the
best effect when the learning rate was 0.001, the weight decay
was set to 0.0004, the anchor scaling multiple was set to (8, 16,
32), and the scaling ratio was (0.5, 1, 2). To avoid overfitting,
the impulse gradient was used with impulse of 0.9. The entire
experiment was conducted on a Linux CentOS 7 server, and two
NVIDIA GeForce GTX 1080ti graphics processing units (GPUs)
with 12GB of memory were synchronized. The in-depth learning
framework was implemented with tensorflow version 1.11.0 on
the GPU. During training, the positive samples were labeled with
IOU values greater than 0.7 and negative samples for those less
than 0.3. The optimal model was saved after training and used to
count the test data set.

The results of each experiment were evaluated using the
Recall, Precision and Accuracy (AP). The Recall and Precision
are defined as:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

where the definitions of TP, TN, FP, and FN as shown in
Table 3 denotes true-positive, true-negative, false-positive, and
false-negative identifications, respectively. The Precision denotes
the proportion of all targets predicted to be correct and the
Recall denotes the proportion of targets identified by the correct
localization to the total number of targets.

Substrate Identification and Classification
Experiments
The MRLabeler v1.4 software was used to label the 1,501
images (randomly selected from the upper part of the Mosaic)
in the experimental data set. The specific classification of
substrates is shown in Table 1. A total of 303 images were
obtained from the biota data set, including 15 images of
lobster clusters, 240 images of mussel beds, and 48 images of
biological mixing areas. There were 1,198 images of abiotic
areas, including 284 of shell debris areas, 107 of exposed
authigenic carbonates, 19 of reduced sediments and 788 of
muddy bottoms.

The training parameters were set so the first base classifier
was the same as the FPN + Faster R -CNN model in the section
“Faster R-CNN + FPN Algorithm for Epifauna Detection.” In the

TABLE 3 | Obfuscation matrix for specified categories.

Ground truth predictive Positive Negative

Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

TABLE 4 | Experimental results of the dominant associated species.

Folds Recall Precision AP

G. platifrons 0.745 0.719 0.720

Munidopsidae 0.876 0.755 0.756
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second and third base classifiers, the convolution kernel was 3× 3
and the step size was 1. To ensure optimal performance of each
classifier, every detector was trained separately.

Accuracy Verification Experiment
A total of 6,000 images randomly selected from the remaining
parts of the Mosaic were used to test the error in the model. The
error mean for epifauna was calculated as:

E =

∑n
i |

xir−xin
xin |

n

where i is the image index, n is the number of images, and xir
and xin are the number of epifauna in the images identified by
the model and manually counted, respectively. The error mean of
the substrates is determined by whether the substrate is correctly

identified. The Surfer software was used to show the distribution
of substrates and epifauna.

TRAINING AND VERIFICATION RESULTS
AND DISCUSSION

Model Training Results
The results show that the Recall, Precision and AP of the
Munidopsidae were all greater than the G. platifrons (Table 4).
The experimental model training achieved a mean average
precision of 73.8% on the epifauna dataset, and the recognition
accuracy of G. platifrons and Munidopsidae were 72.0 and 75.6%,
respectively. The experimental results are visualized in Figure 5.
The experiments indicate that the improved algorithm greatly

FIGURE 5 | Recognition results for G. platifrons and Munidopsidae as represented as green and pink frames, respectively.

TABLE 5 | Experimental results of the substrates on the test set where (B) to (H) represent the different substrates defined in Table 1.

Category n FPN false detection CNN false detection VGG16 false detection Total number of false checks Accuracy

B 240 – – >0.8

C 15 – – >0.8

D 48 8 8 0.83

E 284 14 34 48 0.83

F 107 0 13 13 0.87

G 19 0 1 1 2 0.89

H 788 0 10 16 26 0.97
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FIGURE 6 | Error mean for different densities about the dominant species and the number of images with different errors.

FIGURE 7 | Error means for different substrates.

enhances the accuracy of recognition and counting of cold seep
epifauna over other existing methods (Table 2).

The accuracy of the ensemble classifier was more than
80% (Table 5), and the soft substrates (reduced sediment
and muddy bottom) had relatively higher accuracies
than hard substrates. Thus, the accuracy of cold seep

substrate classification could be greatly improved using the
proposed algorithm.

Model Verification Results
The FPN structure embed into the Faster R-CNN was
well adapted to the identification difficulties caused by the
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FIGURE 8 | Spatial distribution of G. platifrons and Munidopsidae. The results for G. platifrons with (A) manual counting and (B) model identification, and for
Munidopsidae with (C) manual counting and (D) model identification. The large black and gray colored region are hard and soft substrate, respectively.

FIGURE 9 | Spatial distribution of different substrates, with (A) manual counting and (B) model identification, respectively.

particularity of cold seeps. Although single-stage detection
algorithms have relatively fast speeds compared with two-stage
approaches, these are not suitable for the detection and counting

of cold seep epifauna due to the lower average precision. The
dominant species (G. platifrons and Munidopsidae) were the
main objects of interest. The recognition results indicate that this
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model weas helpful to detect cold seep epifauna (G. platifrons
and Munidopsidae) with a relatively high recognition accuracy
(Figure 5). Our study showed that the recognition errors of
G. platifrons were lower than Munidopsidae with a range of
0 to 300% and a mean of 29.15%. The recognition errors for
Munidopsidae were higher with a range of 0 to 1,650% and
a mean of 43.84%. Without calculating the limited epifauna
areas, the error means of the two species reached 26.88 and
39.11%, respectively. The different error ranges of G. platifrons
were relatively uniform while the Munidopsidae had large
differences with concentrations in 0–10 and >50% (Figure 6).
Except for the density of 11–20 individual/m2 (ind./m2) for
Munidopsidae, there were high error means in the range of
0–50 ind./m2 for these two species. The error means were all
reduced in the range of 50–100 ind./m2. The G. platifrons had
the lowest error mean for 151–200 ind./m2 at 19.37 ± 43.70%,
while the Munidopsidae for 81–90 ind./m2 had an error of
27.73 ± 24.65%. Both species had low errors at relatively high
densities. This also means that our model could meet the
needs of cold seep scientific research with dense epifauna. The
complexity of cold seep environments and epifauna density
were the main reason for changes in the recognition accuracy.
The difficulty of identifying G. platifrons was that their shells
were similar in color to their surroundings, which created
high false positives for the background carbonate rocks. The
irregular shape and lamination were the main difficulties for
Munidopsidae recognition. The image processing (such as
sharpening and contrast stretching) and algorithm still require
further improvements.

Several classifiers with different emphases improved the
accuracy and interpretability of cold seep substrate classification.
Two main substrates (hard and soft) and seven small
classifications were defined in Table 1. A total of 480 images of
biotas and 5,520 images of abiotic zones were tested, and the
error mean of all substrates reached 25.13%. Biological mixing
(2.44%), muddy bottom (15.95%), mussel beds (18.54%), and
shell debris (28.17%) had relatively lower error means while
the exposed authigenic carbonates (40.55%), lobster clusters
(51.72%), and reduced sediments (76.30%) had higher error
means (Figure 7). The color of the reduced sediments (black
and purple) and the exposed authigenic carbonates (gray) were
easily confused with the dark surroundings. So, the model
may be improved in conjunction with the application of image
enhancement technologies.

The recognition and statistical results provide the spatial
distribution of substrates and epifaunas in the entire mosaic
(Figures 8, 9). Overall, the model identifications of substrates
and epifaunas were nearly the same as manual processes.
For epifauna, the identification results showed that the total
number of G. platifrons and Munidopsidae were 1,75,661 and
24,157 ind. while there were actually 2,15,512 and 37,422
ind., respectively. The identifications in high-density areas were
insufficient while some areas with no epifauna showed an
excess of false positives. For the substrates, except for the
relatively high differences in reduced sediments, the substrate

identification was nearly the same as manual operations. The
proposed model could be an effective method for the recognition
and classification of substrates and epifauna regardless of the
number of images.

CONCLUSION

This paper developed a model to automatically identify and count
cold seeps substrates and the dominant associated species. The
approach can significantly improve the accuracy of mapping
habitats and species distributions, which ensures the sustainable
exploitation and utilization of cold seeps. Considering the high
heterogeneity of cold seep areas, this will help further cold seep
research. The use of the Faster R-CNN + FPN and several
integrated classifiers were proven as effective to solve this
problem. The classification and recognition of substrates in cold
seeps were first applied. To improve the accuracy, future work
will focus on image enhancements and algorithm improvements.
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