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Protected species bycatch can be rare, making it difficult for fishery managers to develop
unbiased estimates of fishing-induced mortality. To address this problem, we use
Bayesian time-series models to estimate the bycatch of humpback whales (Megaptera
novaeangliae), which have been documented only twice since 2002 by fishery observers
in the United States West Coast sablefish pot fishery, once in 2014 and once in 2016.
This model-based approach minimizes under- and over-estimation associated with
using ratio estimators based only on intra-annual data. Other opportunistic observations
of humpback whale entanglements have been reported in United States waters, but,
because of spatio-temporal biases in these observations, they cannot be directly
incorporated into the models. Notably, the Bayesian framework generates posterior
predictive distributions for unobserved entanglements in addition to estimates and
associated uncertainty for observed entanglements. The United States National Marine
Fisheries Service began using Bayesian time-series to estimate humpback whale
bycatch in the United States West Coast sablefish pot fishery in 2019. That analysis
resulted in estimates of humpback whale bycatch in the fishery that exceeded the
previously anticipated bycatch limits. Those results, in part, contributed to a review of
humpback whale entanglements in this fishery under the United States Endangered
Species Act. Building on the humpback whale example, we illustrate how the Bayesian
framework allows for a wide range of commonly used distributions for generalized
linear models, making it applicable to a variety of data and problems. We present
sensitivity analyses to test model assumptions, and we report on covariate approaches
that could be used when sample sizes are larger. Fishery managers anywhere can use
these models to analyze potential outcomes for management actions, develop bycatch
estimates in data-limited contexts, and guide mitigation strategies.

Keywords: Endangered Species, Biological Opinion, fisheries management, rare event analysis, bycatch,
statistical analysis, whale entanglement, fisheries observer
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INTRODUCTION

Estimating the mortality of marine mammals and other protected
species incidentally caught during commercial fishing operations
(bycatch) is an important, but often, challenging task. Economic,
logistical, and other constraints make a complete census of
fishing effort and bycatch impractical in most cases (NMFS,
2004). Therefore, managers must rely on estimates of bycatch to
accurately assess marine mammal stocks (Wade, 1998), and to set
fishing impact reference points (Moore et al., 2013), population
recovery goals, and species-specific protective status. Estimates of
fishing mortality can define the conservation priorities for marine
mammals and help determine if mitigating fishing impacts is
necessary or if limited conservation resources should be applied
elsewhere. The rarity of bycatch events, which vary by fishery
and marine mammal species involved, makes it challenging to
develop robust bycatch estimates that are critical for setting
recovery goals and conservation priorities. Bycatch can be rare
for a number of reasons, including: fishing vessels and animals
only occasionally overlap in time or space; vessel-mammal
interactions are unobserved (i.e., cryptic; Gilman et al., 2013)
or observation rates are low (Moore et al., 2011; Wakefield
et al., 2018; Curtis and Carretta, 2020); fishers deliberately
avoid marine mammals; or simply because the species itself is
rare, sometimes as a consequence of fishery or other human-
induced mortality.

Robust estimation of rare bycatch events has been identified
as “. . .a central challenge to bycatch research” (Komoroske and
Lewison, 2015). The sample size necessary to accurately estimate
rare events is usually prohibitively large (Babcock et al., 2003;
Dixon et al., 2005; Amande et al., 2012; Wakefield et al., 2018).
The rarity of bycatch leads to a large number of zeros (non-
events) which, when modeled with standard methods, tends to
over- or under-estimate both the total number of mortalities as
well as the associated uncertainty of bycatch estimates (Lewin
et al., 2010; Carretta and Moore, 2014; Martin et al., 2015;
Wakefield et al., 2018; Parsa et al., 2020). Ratio estimators have
been widely used in bycatch estimation (Stratoudakis et al., 1999;
Borges et al., 2005; Walmsley et al., 2007). Ratio estimators
rely on the assumption that bycatch is proportional to some
metric or proxy of fishing effort, such as fishery landings (Rochet
and Trenkel, 2005) and the ratio is used to expand bycatch
estimates from the observed vessels to the unobserved vessels
in the fleet. Ratio estimators are ill-suited for highly variable
(i.e., over-dispersed) bycatch data, because events are too few to
accurately assess bycatch probability (McCracken, 2004; Amande
et al., 2012; Carretta and Moore, 2014; Martin et al., 2015).
In extreme cases where bycatch has never been observed, ratio
estimators predict zero probability of bycatch without properly
estimating the probability of an unobserved event (Carretta and
Moore, 2014), though tools exist to assess this probability (Curtis
and Carretta, 2020). In conservation scenarios where minimizing
the risk of harm to protected species is a priority, an estimate
of zero probability does not adequately capture the risk or the
consequences of unobserved bycatch.

Several modeling solutions have been proposed to better
capture the risk of rare bycatch events. Pooling across years of

estimates has been used in marine mammal stock assessments
and to set limits on bycatch (Carretta and Moore, 2014) and
pooling across similar vessels has been used in seabird bycatch
estimation (Parsa et al., 2020). However, the number of years
or vessels to pool, even when standardized among analysts, is
often based on expert opinion and unique to the situation or
dataset. Various forms of probability models have been employed
to estimate rare events; however, these methods often require
large sample sizes to overcome the lack of bycatch events (Lewin
et al., 2010; Stock et al., 2020). More recently, machine learning
techniques (i.e., random forests; Breiman, 2001) have been used
to estimate rare species distributions (Siders et al., 2020) and
bycatch (Carretta et al., 2017). Machine learning techniques can
reduce bias in rare event data, but are typically data-intensive
and can be challenging to interpret (Breiman, 2001). More
recently, Bayesian methods have gained traction as a model-
based alternative to using machine learning techniques for rare
bycatch events (Cosandey-Godin et al., 2015; Martin et al., 2015;
Parsa et al., 2020).

Humpback whales (family Balaenopteridae) are found in all
oceans of the world. They were listed as endangered under
the United States Endangered Species Act (ESA) in 1973 and
classified as depleted under the United States Marine Mammal
Protection Act (MMPA) in that same year (Carretta et al., 2020b).
Fourteen populations of humpback whales have been identified
(Bettridge et al., 2015). Of the 14 populations, four are listed as
endangered, and one is listed as threatened. Three populations
occur off the coasts of Washington, Oregon, and California –
the Hawaii population (not ESA-listed), the Mexico population
(ESA-threatened), and the Central America population (ESA-
endangered) (NMFS, 2020a).

One direct threat to humpback whales is entrapment and
entanglement in fishing gear (NMFS, 1991). Along with ship
collisions, fishing gear represents most of the serious injuries
and mortalities reported around the globe for humpback
whales (review in Carretta et al., 2020b). Pot and trap fishery
entanglements are the most frequently documented source of
serious injury and mortality of this species in United States
West Coast waters, and, starting in 2014, entanglement reports
began to increase (Carretta et al., 2020b). The specific population
of each individual humpback whale entangled in United States
West Coast fisheries are usually not known; however, NMFS
assumes that animals from ESA-listed populations (i.e., Mexico
and Central America) interact with these fisheries based on their
relative abundances along the United States West Coast (NMFS,
2020a).

We illustrate the use of Bayesian models to estimate humpback
whale entanglements in the United States West Coast pot fishery
targeting sablefish (Anoplopoma fimbria), which overlaps in
time and space with the three humpback whale populations
found on the United States West Coast (NMFS, 2020a). This
model-based approach minimizes under- and over-estimation
associated with using ratio estimators based only on intra-annual
data. Our framework also generates probability distributions
of unobserved entanglements in addition to estimates and
associated uncertainty for observed entanglements. Estimating
unobserved entanglements is particularly important in the case
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of United States West Coast humpback whales. Opportunistic
observations of humpback whale entanglements by the sablefish
pot fishery have been reported in United States waters, and these
numbers likely represent the minimum number of entanglements
that have occurred. However, due to the spatio-temporal biases
in these observations, they cannot be directly incorporated
into the models.

The NMFS began using Bayesian models to estimate
humpback whale bycatch in the United States West Coast
sablefish pot fishery in 2019. Here we demonstrate the use
of these methods to estimate the annual and 5-year average
bycatch of humpback whales and compare these estimates against
two management thresholds (NMFS, 2020a). We compare
our estimates of bycatch to management thresholds originally
developed in 2012 (NMFS, 2012) and subsequently revised in
2020 (NMFS, 2020a). We use the humpback whale example to
illustrate how the Bayesian framework allows for a wide range of
commonly used distributions for count data or other non-normal
data types, making it applicable to a variety of data and problems.
We also present sensitivity analyses to test model assumptions
and report on covariate approaches that could be used when
sample sizes are larger.

MATERIALS AND METHODS

To illustrate the use of Bayesian models, we employed fisheries-
dependent data from the United States West Coast sablefish pot
fishery. In this article, we focus on two sectors in the sablefish
pot fishery: the limited entry (LE) sector (∼ 90 vessels/year),
where fishers have individual quota to catch sablefish during
the seven month season (April–October), and the open access
(OA) sector (∼ 472 vessels/year), which is managed by per-
trip landing limits on sablefish and is open year-round. In both
the LE and OA sectors, a subset of vessels are monitored for
bycatch, and the observed portion of each of these fleets is used
to estimate bycatch for the entire fleet (observed + unobserved).
Estimates were obtained for each sector separately and then
the separate estimates were summed for comparison against
management bycatch thresholds. A third sector, the Catch Share
(CS) pot sector, also fishes along the United States West Coast.
In the CS sector, individual permit holders obtain and fish
individual quota for a number of groundfish species including
sablefish. Since its inception (2011), the CS program requires
100% monitoring on all trips. During 2011–2014, all CS pot trips
carried a fisheries observer for monitoring compliance purposes.
Since 2015, roughly 50% of the CS pot trips have been monitored
by fishery observers and the remaining trips are monitored by
cameras and other automated sensing devices (collectively known
as electronic monitoring, or EM). There has never been an
observed humpback whale entanglement in the CS pot sector;
therefore, we concentrate our analyses on the LE and OA sectors
that have had observed entanglements of humpback whales and
where monitoring is <100% of trips. Although no estimates of
historical entanglements in the CS pot sector have been made, the
potential risk of entanglements in the CS pot sector in the future
was considered in the 2020 Biological Opinion (NMFS, 2020a).

Data from the year when fishery observers were first
deployed (LE = 2002 and OA = 2003) until 2019 were
provided by the National Oceanographic and Atmospheric
Administration (NOAA) Northwest Fisheries Science Center
(NWFSC) Fisheries Observation Science (FOS) Program. The
FOS collects independent, at-sea fisheries data by deploying
trained scientists (a.k.a., observers) on commercial fishing vessels
along the United States West Coast, including in the LE and
OA sablefish pot fisheries (NWFSC, 2020c). During fishing trips,
observers record information about catch by species, including
at-sea discards, as well as the location and depth of fishing effort.
Monitoring the catch for marine mammal and other protected
species interactions and bycatch is the observer’s highest priority
(NWFSC, 2020c). FOS strives to deploy observers on 30% of LE
sablefish pot fishery trips, which has priority over the OA pot
fishery where target observation rates are 5–10%. Pot vessels in
both sectors are randomly selected for observation prior to the
start of the fishing season. Realized annual observer coverage
varies between 14 and 72% for the LE fleet and between 2 and
12% for the OA fleet, based on the percentage of total fleet-wide
landings (Somers et al., 2020a). Fleet-wide landings are estimated
from landing receipts, called fish tickets, generated when the fish
is purchased at the dock (Supplementary Text). Across all years,
the observed portion of the LE fishery deploys gear at an average
depth of 489 m and between roughly 36◦ and 48◦ north latitude,
whereas the observed portion of the OA pot fishery deploys gear
in an average depth of 485 m deep, typically between 32◦ and
47◦ north latitude. There have been slight inter-annual shifts in
average fishing depth in both sectors, with a greater proportion
of retained catches being from greater depths in recent years
(Supplementary Figure 1; see also Somers et al., 2020b). The two
observed humpback entanglements occurred when the pot gear
was being fished between a depth of 140 and 220 m.

Serious Injury and Mortality
Determinations
Serious injury and mortality designations were determined by
marine mammal experts (Carretta et al., 2020a) using established
guidelines. Under the MMPA and ESA, a “take” is defined as
any act that harasses, hunts, captures, or kills, or attempts to
harass, hunt, capture, or kill a marine mammal, including all
humpback whale entanglements, regardless of lethality. Fisheries
observer notes and data, and, when available, photographs
and video, recorded at the time of interactions, informed take
designations. Observers typically detail the nature of the injury
and changes in the animal’s behavior following its release. Noted
factors indicating a potential mortality could include evidence
of bleeding, broken bones, wounds, trailing gear, vomiting, and
abnormal behavior (NWFSC, 2020c).

Bycatch Estimation
Statistical Model
We used Bayesian models to estimate annual means and
variability of humpback whale bycatch within the LE and OA
sectors, for both the observed and unobserved portions of the
fleets. For any application of these methods to bycatch data,
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there are three parameterization choices to be made. First,
the effort metric on observed vessels must be chosen; effort
is used to expand estimated observed bycatch to unobserved
bycatch. For our application there are three possible choices as
a proxy for fishing effort: number of gear deployments, number
of gear units, or mass of landed catch [as weight in metric
tons (mt)]. Second, these models allow for constant or time-
varying bycatch rates, either as autoregressive processes or as a
function of covariates. Third, the bycatch-generating process or
data model must be specified; examples include Poisson, negative
binomial, or zero-inflated models. Even though our simulations
and code include options for fitting zero-inflated models, we
did not apply those to the humpback whale data because of
the limited number of observed takes. We formally compare all
combinations of the three effort metrics, two potential bycatch
rates, and two possible bycatch-generating models, Poisson
and negative binomial. We use methods from the R package
implementing Stan (Stan Development Team, 2021), loo (Vehtari
et al., 2020) as implemented in the R package, bycatch1 (Ward
and Jannot, 2021) to compare among models. Final estimates are
presented from the single model that best fits the data.

For each sector (LE and OA), the base model assumed
bycatch rate was constant and inferred annual expected mortality
conditioned on fishing effort, using a simple Poisson process
model (Martin et al., 2015), where the total number of observed
bycatch events were assumed to follow a Poisson distribution,

ntake,y ∼
(
λy = θ · Ey

)
where:
ntake,y = number of observed bycatch events (or take events) in
year y
λy = expected observed bycatch
θ = estimated observed bycatch rate
Ey = observed effort in year y

The estimated bycatch rate, θ, in the simplest scenario, is
assumed to be constant through time, but the quantity θ · Ey
includes parameter uncertainty because θ is estimated. Thus, a
time series of the expected observed bycatch can be generated
for a given species, with a given metric of effort. Fluctuations in
fishing effort through time then result in year-to-year variability
(percent observer coverage only affects the expansion). We used
a Bayesian implementation of this model (Martin et al., 2015) to
generate mean and 95% credible intervals (CIs) of the bycatch
rate parameter, θ, as well as for the expected bycatch in the
observed portion of the fleet, θ · Ey. For more information
regarding distributions and implementation in R and Stan (Stan
Development Team, 2021), please see the articles in the bycatch
package (Ward and Jannot, 2021).

We built upon the simplified model above with the goal of
finding the model that most accurately estimates bycatch and
variance. To do that, we compared models to: (a) find the
most suitable effort metric; (b) test the assumption that θ is
constant through time; and (c) compare distributions (Poisson
to negative binomial). Though our code allows for the inclusion

1https://ericward-noaa.github.io/bycatch/

of covariates, which may vary through time, we only considered
time-varying models that treat bycatch rate as a random walk
(in log space), θy ∼ Normal

(
θy−1, σθ

)
, where σθ is an estimated

parameter controlling the year to year variability.

Model Diagnostics and Selection
Before comparing among models, each model must be tested
for efficacy using the Pareto-K values. Theoretically, the Pareto
smooth importance sampling (PSIS) should converge to a mean
and variance for the distribution. However, due to the use of
random variables, convergence does not always emerge. General
rules of thumb for evaluating the Pareto-K statistics are that
“low” Pareto-K values (<0.5) indicate convergence of the mean
and variance “slightly high” Pareto-K values (0.5 ≤ K < 1)
indicate a model whose variance either does not converge
at all, or converges slowly, and “high” Pareto-K statistics
(K > 1) indicates neither the mean nor the variance converges
(Vehtari et al., 2019).

In addition to Pareto-K values, Leave One Out (LOO) can be
used to test for over-parameterization by generating a p-LOO
value which is compared to the number of parameters used in the
model. The parameters for the model include all the incorporated
covariates, as well as time, effort, and distribution. A p-LOO
less than the number of parameters denotes an appropriately
parameterized model.

Once a model is considered suitable, the optimal model can be
chosen by comparing among LOOIC estimates. For each sector
(LE and OA) there are a total of 12 possible models (three effort
metrics, two bycatch rates and two bycatch processes). Leave One
Out Cross Validation (LOOCV) is a widely used tool to identify
models with good predictive ability; this can be done in a Bayesian
framework, but could be slow depending on the number of folds
used. As an alternative, the loo package approximates LOOCV
by implementing LOO sampling, which tests the efficacy of the
model based on its predictive ability for new data (Vehtari et al.,
2020). LOO is based on PSIS. Importance sampling is typically
used when multiple distributions may be present, or when the
density of the distribution is only partially known (Vehtari et al.,
2019). Like more familiar model selection criteria, such as AIC,
the preferred model is the model with the lowest LOOIC estimate.

The 12 models within each fishing sector were tested, in the
order given below, and excluded if any of the following cases were
met:

1. Pareto-K > 0.7, as suggested by Vehtari et al. (2019)
2. p-LOO > 3 (the number of parameters)
3. LOOIC is not the minimum.

Sensitivity Analysis: Model Assumptions
To evaluate the ability of our approach to identify the correct
data-generating model, we performed a series of analyses on
simulated datasets. We simulated a time series (20 time steps)
using low or high mean bycatch rates (0.1 and 1.0, respectively),
and generated observations using either a Poisson or negative
binomial data model. For each simulated time series, we fit the
model using the Stan code in our bycatch package with three
different estimation models (Poisson, negative binomial, and
zero-inflated Poisson distribution). We repeated the diagnostics
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described above for each simulated time series. For each set
of estimation models fit to the same simulated dataset, we
calculated the lowest LOOIC value and difference between the
LOOIC estimate from each model and the lowest value. Smaller
differences correspond to greater data support, or a greater
similarity in predictive ability between a given model and the
model with the lowest LOOIC. We used 100 replicates for each
of the above combinations (1200 estimation models applied to
400 simulated datasets).

Sensitivity Analysis: Data Assumptions
Though our model selection procedure indicated that the sparsity
of the data prevented us from fitting complex models, we
performed a sensitivity analysis to explore how assumptions
about data, and specifically changes in how effort is distributed
across depth, may influence results. For each sector, we used
partitioning around medoids (PAM) clustering (Hennig, 2020),
with an unknown number of clusters, to identify groups.
Each sector supported two depth strata, and breakpoints were
similar across sectors (Supplementary Figure 1; 395.5 m for
LE sector and 360 m for OA sector). We repeated the primary
analysis described above, using the best model, and compared
results using data from all depths to the results obtained when
only including data from the shallower depth strata where
takes were observed.

Expanding Bycatch to Unobserved Portion of Fleet
Because observer coverage is less than 100% in both fishery
sectors, and variable through time, we need to expand the
estimated bycatch in the observed portion of the fleet, θ · Ey, to
the entire fleet, which includes unobserved vessels. One approach
for expansion would be to divide θ · Ey by the percent observer
coverage; however, this ignores uncertainty in the expansion.
We accounted for uncertainty in the expansion by estimating
the posterior predictive distribution of unobserved takes,
given unobserved effort and estimated parameters, P(Y∗|Y) =∫
θ

P(Y∗|θ, Y)P(θ|Y)dθ. We subtracted the observed effort from
the total effort to obtain the unobserved effort. We used these
simulated posterior predictive values to generate 95% CIs for the
predicted total bycatch in each year (adding observed bycatch
to the posterior predictive distribution of unobserved bycatch).
Details on the implementation of this in R can be found in the
bycatch package (Ward and Jannot, 2021). Fleet-wide bycatch of
humpback whales was estimated for each sector using observer
coverage data (Somers et al., 2020a).

Comparison to Management Thresholds
Both the 2012 and the 2020 Biological Opinions (NMFS, 2012,
2020a) specify annual and 5-year running average bycatch
limits. To compare our annual estimates to these management
thresholds, we estimated total bycatch (observed + unobserved)
for each sector separately, summed the LE + OA estimates and
compared the combined annual 2019 estimate to the annual
thresholds defined in the in the Biological Opinions (NMFS,
2012, 2020a). We then used the LE + OA summed annual
estimates to calculate the 5-year average total bycatch for 2015–
2019, and compared that estimate to the 2012 and 2020 5-year

average thresholds. Because our Bayesian estimates are inherently
probabilistic, we also generated probabilities of exceeding the
2012 and 2020 thresholds.

Statistical Software
The statistical software R (R Core Team, 2020) was used
to produce the analyses, tables, and figures in this report.
Specifically, we relied on the R packages bycatch (Ward and
Jannot, 2021) for modeling and simulation, ggplot2 (Wickham,
2016) for plotting figures, loo (Vehtari et al., 2020) for
model comparisons, and tidyverse (Wickham et al., 2019)
for data wrangling.

RESULTS

Estimated Bycatch of Humpback Whales
In both fishery sectors, the models that converged and had
the lowest LOOIC used a constant bycatch rate and a Poisson
process for bycatch (Table 1). Most models that treated observed
bycatch as originating via a negative binomial distribution, or
models that included time-varying bycatch rates did not meet the
convergence criteria; specifically, the variance of the random walk
was not identifiable. We did not estimate a single model for both
sectors combined because the fishing areas, targets, and tactics are
sufficiently different between the two sectors to warrant separate
models for each sector. When comparing the three measures of
fishing effort, in the LE pot fishery, the number of pots deployed
was the best proxy of fishing effort, whereas in the OA pot fishery,
the observed landings was the best proxy of effort (Table 1).

Humpback whales were observed entangled in United States
West Coast sablefish pot gear twice by fishery observers since
2002. The single 2014 entanglement in the LE pot fishery led to
an annual estimate in the most recent year of available data (2019)
of 0.13 entanglements (95% CI: 0.0–1.0; Table 2). The single 2016
entanglement in the OA pot fishery led to a 2019 estimate of 1.02
entanglements (CI: 0.0–4.0; Table 3).

The 2019 annual estimate of entanglements from the LE+OA
sectors combined was 1.15 (CI: 0.0–5.0). This estimate was
below both the 2012 and 2020 annual entanglement threshold
(Figure 1 bottom panel; 2012: 3 whales/year; NMFS, 2012, 2020a:
5 whales/year; NMFS, 2020a). The most recent estimated 5-
year average (2015–2019) of entanglements from the LE + OA
sectors combined was 1.60 (CI: 0.2–4.8; Tables 2, 3 and Figure
1). This estimate was above the 2012 5-year average threshold
of 1 animal/year (Figure 1 top panel; NMFS, 2012), but below
the 2020 5-year average threshold of 2.34 animals/year (NMFS,
2020a; Figure 1 top panel). Exceeding the 2012 5-year average
threshold contributed, in part, to the re-evaluation of the
original 2012 Biological Opinion and resulted in the revised
threshold value.

Both the annual and the 5-year average estimated takes
showed a peak in 2009, then trended downward until 2013
and then upward until 2017, after which the estimates level off
(Figure 1). The probability of exceeding the thresholds follows a
similar trend over time as the estimated takes and uncertainty,
with the entire probability trend shifting location along the y-axis
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TABLE 1 | Model diagnostics [convergence, LOOIC, and LOOIC standard error (SE)] by fishery sector for each fishing effort metric, time-varying, and bycatch
process model choice. Asterisk (*) indicates the model that both converged and had the lowest LOOIC.

Fishery sector Fishing effort metric Is bycatch rate time varying? Bycatch
process

Did the model converge? LOOIC LOOIC
SE

OA Number of pots deployed No Poisson Yes 10 6.9

OA Soak time No Poisson Yes 10.3 7.4

OA* Observed landings by weight No Poisson Yes 9.6 6.5

OA Number of pots deployed Yes Poisson No 11.6 8.2

OA Soak time Yes Poisson No 12.3 8.1

OA Observed landings by weight Yes Poisson No 10.8 7.4

OA Number of pots deployed No Negative
binomial

Yes 10.5 7.3

OA Soak time No Negative
binomial

No 11.5 8.3

OA Observed landings by weight No Negative
binomial

No 10.0 6.8

OA Number of pots deployed Yes Negative
binomial

No 12.0 8.2

OA Soak time Yes Negative
binomial

No 15.0 8.5

OA Observed landings by weight Yes Negative
binomial

No 11.2 7.6

LE* Number of pots deployed No Poisson Yes 11.3 8.3

LE Soak time No Poisson No 11.5 8.7

LE Observed landings by weight No Poisson No 11.7 8.6

LE Number of pots deployed Yes Poisson No 11.3 8.5

LE Soak time Yes Poisson No 12.3 9.4

LE Observed landings by weight Yes Poisson No 12.6 9.1

LE Number of pots deployed No Negative
binomial

No 11.7 8.4

LE Soak time No Negative
binomial

No 11.9 8.9

LE Observed landings by weight No Negative
binomial

No 11.8 8.5

LE Number of pots deployed Yes Negative
binomial

No 13.0 8.8

LE Soak time Yes Negative
binomial

No 13.5 9.4

LE Observed landings by weight Yes Negative
binomial

No 13.0 9.0

(probability) depending on the threshold (Figure 2). This results
in the probability of exceeding the bycatch thresholds higher
overall in 2012, when the thresholds were lower (three whales in
a single year or a 5-year average of 1/year) as compared to the
2020 thresholds (five whales in a single year or a 5-year average
of 2.34/year; Figure 2). Irrespective of the specific values of the
threshold (e.g., 2012 vs. 2020), the probability of exceeding the
5-year average threshold appears to always be greater than the
probability of exceeding the annual threshold (Figure 2).

Sensitivity Analysis: Model Assumptions
Our simulation results highlight that with short time series
(20 time steps) and sparse observations, data models that have
more parameters than the Poisson are generally not supported
(Figure 3). As expected, when data are generated from a Poisson
model, the Poisson estimation model generally has the lowest
LOOIC estimate, corresponding to more support for a Poisson
bycatch process (Figure 3). This result was true regardless of
the simulated bycatch rate, which controlled the sparsity in the

data. Sparse and over-dispersed data from a negative binomial
distribution is more challenging; with low mean bycatch rates
(0.1), we found more support for zero-inflated Poisson models,
whereas, at higher bycatch rates (1.0) the negative binomial
model was favored (smaller changes in LOOIC; Figure 3). This
indicates that the negative binomial model might not be the
best choice for sparse datasets. A benefit of many Bayesian
model selection tools, such as LOOIC, is that, in addition to
individual point estimates, standard errors can also be estimated.
As expected with short time series and sparse data, we found
that for many of our simulated replicates, standard errors
overlapped between models; the average difference in LOOIC
between models was 1.98, and average standard error across all
estimates was 8.16.

Sensitivity Analysis: Data Assumptions
Using the depth breakpoints identified for each sector
(Supplementary Figure 1; 395.5 m for LE sector and 360.0 m
for OA sector), we repeated our analysis using a model with a
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TABLE 2 | The data used to calculate humpback whale bycatch in the LE sablefish pot fishery collected by fishery observers (observed) and the estimated mean and
95% credible interval (CI: lower–upper) from the best model. The best model included a constant bycatch rate, a Poisson count process, and used the number of
observed pots deployed as fishing effort.

Year Sector Observed Estimated bycatch

Pots (#) Landings (%) Bycatch (#) Mean (#) CI (95%)

2002 LE 5438 23 0 0.1 0–2

2003 LE 9017 25 0 0.2 0–2

2004 LE 5378 13 0 0.2 0–1

2005 LE 13,822 46 0 0.1 0–1

2006 LE 10,708 34 0 0.1 0–1

2007 LE 5816 21 0 0.1 0–1

2008 LE 13,638 57 0 0.1 0–1

2009 LE 3883 14 0 0.2 0–1

2010 LE 11,294 28 0 0.2 0–1

2011 LE 9029 37 0 0.1 0–1

2012 LE 14,218 35 0 0.2 0–1

2013 LE 1934 14 0 0.1 0–1

2014 LE 7561 31 1 1.1 1–2

2015 LE 11,329 61 0 0.1 0–1

2016 LE 21,219 71 0 0.1 0–1

2017 LE 7852 31 0 0.1 0–1

2018 LE 18,424 72 0 0.1 0–1

2019 LE 17,518 50 0 0.1 0–1

TABLE 3 | The data used to calculate humpback whale bycatch in the OA sablefish pot fishery collected by fishery observers (observed) and the estimated mean and
95% credible interval (CI: lower–upper) from the best model. The best model included a constant bycatch rate, a Poisson count process, and used the total weight (mt)
of landings from all trips that carried an observer (observed) as fishing effort.

Year Sector Observed Estimated bycatch

Landings (mt) Landings (%) Bycatch (#) Mean (#) CI (95%)

2003 OA 2.9 2 0 1.0 0–4

2004 OA 17.0 9 0 1.2 0–5

2005 OA 10.7 3 0 2.5 0–9

2006 OA 7.9 2 0 2.8 0–10

2007 OA 8.8 3 0 2.1 0–7

2008 OA 10.4 4 0 1.8 0–7

2009 OA 8.8 2 0 3.2 0–12

2010 OA 10.7 3 0 2.5 0–9

2011 OA 18.9 7 0 1.9 0–7

2012 OA 9.1 7 0 1.0 0–4

2013 OA 6.3 9 0 0.5 0–3

2014 OA 11.7 8 0 1.0 0–4

2015 OA 14.6 7 0 1.4 0–6

2016 OA 15.3 7 1 2.5 1–7

2017 OA 24.9 12 0 1.3 0–5

2018 OA 17.2 10 0 1.1 0–5

2019 OA 16.7 11 0 1.0 0–4

Poisson distribution. Because the deep stratum for both sectors
had no observed takes, we focused on results for the shallow
stratum. Estimated observed bycatch rates for both sectors
highlighted that the expected observed takes using all depths
were very similar to expected observed takes using only the
shallow depths where takes had been observed (Supplementary
Figure 2). For the LE sector during the 2012–2013 period,

estimates using all depths were slightly greater than using
only the shallow depths, but these differences were because
of a sharp reduction in retained catch in the shallow sector
during this period (Supplementary Figure 1). The posterior
distribution of total takes (observed + posterior predictive
distribution of unobserved takes) was also similar between depth
scenarios (Supplementary Figure 3). The LE sector estimates
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FIGURE 1 | Estimated bycatch [number of individuals, 95% credible interval (CI)] of humpback whales in the United States West Coast sablefish pot fishery.
Estimates were made for LE and OA sectors separately and then the estimates from the two sectors were summed. The two Biological Opinions (2012 and 2020)
governing the incidental take of humpback whales in this fishery specified a 5-year average (top panel) in 2012 (dotted line) as 1 whale/year, and 2.34 whales/year in
2020. The specified annual take threshold (bottom panel) in 2012 (dotted line) was 3 whales/year and in 2020 (dashed line) was 5 whales/year.

ranged from 0 to slightly more than 1 animal irrespective of the
depth stratum and the OA sector estimates ranged from less
than 1 to slightly more than 2.5 animals, irrespective of depth
grouping (Supplementary Figure 3). In both sectors, estimates
were largest in the years when observed takes occurred, again
irrespective of the depth grouping (Supplementary Figure 3).
The 5-year average of takes and probabilities of exceeding
the 2020 5-year threshold of 2.34 takes/year (LE + OA)
also appeared to be insensitive to the depth grouping, with
similar trajectories in estimates from both depth scenarios
(Supplementary Figure 4).

DISCUSSION

This work demonstrates how Bayesian models can be used
to estimate rare bycatch events: in this case, humpback whale
entanglements in the United States West Coast sablefish pot
fishery. This approach can more accurately estimate bycatch
and uncertainty than other methods (e.g., ratio estimators;
Lewin et al., 2010; Carretta and Moore, 2014; Martin et al.,
2015) and yields probabilities for unobserved entanglements.

Our simulations show that when data are rare but not over-
dispersed, simpler bycatch-generating processes (i.e., Poisson)
are favored over more complex distributions (e.g., negative
binomial). However, as expected, when data are rare and over-
dispersed, more complex distributions need to be employed,
but the precise distribution depends on the sparsity of the data
(e.g., zero-inflated vs. negative binomial). For 2019, the most
recent estimates available, a Poisson process estimated a 5-year
average of 1.60 entanglements/year for 2015–2019, for both
sectors combined, which is less than the 2020 5-year average
threshold of 2.34 entanglements/year. However, the uncertainty
around that 5-year average estimate suggests that entanglements
could be as high as 4.8/year. Our analysis also suggests that the
results are not sensitive to assumptions about the data. Splitting
the data by depth and comparing the model using all depths to
the model using only the shallow depth stratum demonstrated
that bycatch rates, posterior predictive distributions, and the
probability of exceeding the 2020 threshold did not depend on
these stratification choices.

The NMFS began using Bayesian models to estimate
humpback whale bycatch in the United States West Coast
sablefish pot fishery in 2019. That analysis resulted in estimates
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FIGURE 2 | Probability of the 5-year average take estimate (top) or annual take estimate (bottom) exceeding the take threshold specified in the 2012 (dotted line) or
2020 (dashed line) Biological Opinion (BO) Incidental Take Statement. Currently these fisheries operate under the 2020 BO, which superseded the 2012 BO.

of humpback whale bycatch in the fishery that exceeded the
previously anticipated bycatch limits, in part, contributing to
a new review of the fishery and humpback bycatch risk under
the ESA. While the California/Oregon/Washington stock showed
long-term increases in abundance from 1990 to 2008, estimates
from 2008 to 2014 suggest a period of leveling-off, but data
from 2014 to 2018 suggest another period of population growth
along the United States West Coast (Carretta et al., 2020b;
Calambokidis and Barlow, 2020). The most recent Potential
Biological Removal (PBR) for humpback whales in United States
waters is 16.7 whales/year (Carretta et al., 2020b). Estimates of
mortality in the LE sablefish pot fishery are generally less than
one whale per year (Table 1), whereas estimates of humpback
mortality from the OA Fixed Gear pot fishery are between one
and three whale mortalities per year (Table 2). Together, these
two fisheries represent about 10% of the total PBR.

The goal of the MMPA is to reduce incidental mortality
and serious injury of all marine mammals to insignificant
levels approaching a zero rate. This goal has been defined as
the threshold for mortality and serious injury at 10% of PBR
for a stock of marine mammals (69 FR 23477). As a result,
we estimate that the mortality and serious injury associated
with the sablefish pot fishery is approaching this threshold by
itself, while numerous other sources of mortality and serious

injury are also occurring associated with other fishery and
non-fishery sources. For example, the number of confirmed
humpback whale entanglements from all sources was on the
rise from 16 confirmed entanglements in 2014 to 48 confirmed
in 2016 (Santora and Lawson, 2021), coinciding with the
time period in which the LE and OA sablefish pot fisheries
each recorded a humpback whale entanglement. Since 2016,
confirmed humpback whale entanglements have been between 17
and 34/year (Santora and Lawson, 2021).

Analytical Challenges
Despite the flexibility of the models presented here, there still
remain several challenges and limitations to this method. For
the two sectors presented here, we were able to successfully
compare models in terms of bycatch rates (time-varying vs.
constant) and some processes (Poisson vs. negative binomial).
However, this is unlikely to always be the case, and indeed
we were unable to compare all possible processes (e.g., zero-
inflated) using the humpback data and have encountered other
rare bycatch modeling scenarios where direct comparison was
impossible as none of the models passed the diagnostic criteria
(Jannot et al., 2021). In the case where all models failed, yet
bycatch estimates were still required for management purposes,
we chose the simplest form of the models (constant rate, Poisson)
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FIGURE 3 | Distribution of LOOIC differences for our model selection applied to simulated time series. Each boxplot represents 100 time series generated from each
level of the mean bycatch rate (0.1, 1), estimation model (“NB,” negative binomial; “P,” Poisson; “ZIP,” zero-inflated Poisson), and simulation model (Poisson, negative
binomial).

and compared among effort metrics (Jannot et al., 2021). None-
the-less, the specific nature of the data sparsity and dispersion
can hamper the optimal performance of the models and limit our
understanding of bycatch.

Another limitation of this method is the nature of the
data itself. In the examples we have provided, we rely almost
exclusively on observer data. In the LE and OA sectors presented
here, we have a plethora of information from observed vessels
that could provide insight into bycatch, such as multiple proxy
metrics of fishing effort (# pots, weight of landed catch), depth,
latitude, and duration as well as others. However, we have
much less comparable data from the unobserved portion of the
fleet which limits our understanding of the causes of bycatch,
because, for example, we have to assume that the fishing depth
distribution is similar among observed and unobserved vessels.
The “observer effect” posits that observed vessels can behave quite
differently than unobserved vessels (Hilborn et al., 2009; Faunce

and Barbeaux, 2011). Therefore, any inferences about humpback
whale bycatch must be tempered by the limited data available
from unobserved vessels and the potential for an observer effect.

Fisheries that are similar but have no observed recorded takes
also pose a challenge to this method. As mentioned above, there
is a third pot sector, the CS pot fishery. Since 2011, this fishery
has had 100% monitoring of catch at-sea. During 2011–2014
all CS pot fishery trips were monitored by fisheries observers.
Since 2015, while all trips are monitored, only roughly 50% of
trips have been monitored by observers and the remainder of
trips are monitored by EM (Somers et al., 2020a). To date, the
CS pot fishery has not recorded a humpback whale entangled
in pot gear since the fishery inception in 2011. Despite the
fishery being 100% monitored, there might still be unaccounted
for bycatch. For example, a humpback whale could become
entangled in pot gear while the gear was fishing, but unattended,
and then swim away with gear attached and therefore, be
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unobserved and undocumented, which is a plausible scenario
(see section “Unobserved Bycatch and Cryptic Mortality”). To
estimate bycatch in the CS fishery, we would have to assume that
bycatch rates are shared from either the LE or the OA fishery,
either by taking an average across the sectors, or using a more
precautionary approach, assuming the higher of the two bycatch
rates. While the gear used (pots, lines, and floats) in the CS pot
fishery is similar to the gear used in the LE and OA fisheries, CS
vessels do not fish precisely the same as either fleet. For example,
the LE fleet targets sablefish during a season (April–October)
whereas the CS fleet can fish all year. In terms of fishing effort,
CS vessels generally deploy similar numbers of pots as LE vessels,
which is more pots per gear deployment than OA vessels. Also
the CS fleet holds quota for other species besides groundfish,
whereas the LE and OA fleets can only land other groundfish
up to species-specific trip limits. In this way, the problem is
analogous to the observer effect, to make estimates for the CS
fleet, we would have to make untested assumptions about fishing
effort and the manner in which pots are fished in the CS fleet
based on information from the LE or OA fleet.

Unobserved Bycatch and Cryptic
Mortality
One of the advantages to the method we present here is that it
accounts for unobserved entanglements. Estimating unobserved
entanglements is particularly important in the case of west
coast humpback whales. Observers do not detect all humpback
whales that have been entangled in sablefish pot gear, given that
whales entangled in this gear type have been opportunistically
reported at various locations off the west coast (Saez et al.,
2021). Entanglements might go unobserved for multiple reasons.
For example, observers may not be present on a trip when
an entanglement occurs (only a portion of trips are observed;
Tables 1, 2). Whales could break free of the entanglement before
observation (Saez et al., 2021), and entangled whales could then
leave the fishing area with gear attached. In all three sectors (LE,
OA, and CS), it is common for vessels (with or without observers
present) to deploy gear at the fishing grounds and then leave the
area to let the gear fish. OA pot vessels very often place the gear in
a single location and then return throughout the year during days
of good weather to retrieve the catch, resetting the gear back to
its original location. In these cases, the gear is fishing unattended
for a period of time, which can vary from a few hours or days
potentially up to weeks (a.k.a. soak time). During these long soak
times, whales could become entangled in gear and swim away
without being observed.

Between 2006 and 2017, there were five confirmed reports
of humpback entanglements with sablefish pot gear (Saez et al.,
2021). These five observations are considered a minimum
estimate, due to the opportunistic nature of reporting at-
sea entanglements. These opportunistic observations are likely
biased because they are not a random selection of observations
in space or time. Thus, these observations cannot be directly
incorporated into the models presented here. A total of 17
opportunistic records of humpback whale entanglements in
fishing gear were reported in 2019. In the 2020 Biological

Opinion, a very small percentage (less than 5%) of entanglements
from 2011 to 2019 that were attributed to a fishery were
associated with sablefish pot gear (NMFS, 2020a). Seven of
the 17 reports could be attributed to a fishery but none (0)
of those were associated with sablefish gear. The remaining
10 entanglement reports could not be attributed to a specific
fishery. Based on this information, we assume that no more
than one of the 10 entanglements with unidentified fishing
gear would be expected to be associated with sablefish
gear. The Bayesian framework generates posterior predictive
distributions for unobserved entanglements in addition to
estimates and associated uncertainty for observed entanglements.
Therefore, estimates from these models do account for these
unobserved entanglements.

Assessing the number of unobserved pot or trap gear
entanglements of humpback whales from any fishery on the
United States West Coast is difficult due to the nature of
opportunistic reports (i.e., non-random) and the rarity of
systematically observed incidents (human or EM). Undetected,
a.k.a., cryptic, injury and mortality of marine mammals is
challenging to estimate, but progress has been made for several
populations (Williams et al., 2011; Peltier et al., 2012; Prado et al.,
2013; Wells et al., 2015; Carretta et al., 2016; Young et al., 2019;
Harting et al., 2021; Pace et al., 2021). Marine mammal carcass
recovery rates (= detection rates) have been estimated with
several approaches: tracking the fate of known individuals over
time (Wells et al., 2015); combining abundance estimates and
estimated annual survival in Monte Carlo simulations to estimate
carcass numbers available for detection (Carretta et al., 2016;
Harting et al., 2021), comparing observed stranding numbers
to estimated mortalities from population models (Pace et al.,
2021), comparing numbers of marked carcasses at sea with those
arriving ashore (Prado et al., 2013) and using drift models to
estimate the fraction of carcasses arriving ashore (Peltier et al.,
2012; Young et al., 2019). Generally, published estimates of
carcass recovery rates are quite low, ranging from near-zero for
some pelagic species such as killer whales and false killer whales
(Williams et al., 2011), <10% for common dolphins (Peltier et al.,
2012), 33% for an embayment population of coastal bottlenose
dolphins (Wells et al., 2015), 36% for North Atlantic right whales
(Pace et al., 2021), and 46% for Hawaiian monk seals (Harting
et al., 2021). Most species lack estimates of undetected mortality
and serious injury and, for pelagic species, at-sea sightings
and strandings provide minimum accounting of human-related
mortality and serious injury due to low probabilities of stranding
and detection (Faerber and Baird, 2010; Williams et al., 2011).

Our bycatch model includes estimates of interactions in
unobserved portions of the sablefish fishery, but both observed
and modeled interaction rates are based on time windows when
observers are present. These interaction rates may be negatively
biased because they exclude unobserved cases where whales
swam off with gear and subsequently incur serious injury or die
from chronic entanglement over a period of months (Moore and
van der Hoop, 2012). Estimates of interaction rates also exclude
unobserved cases of whales becoming entangled in lost gear,
which is a special case of “fishing effort” outside the purview of
observer programs. Baseline data on levels of lost gear generally
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shows that <2% of pot gear is lost (Supplementary Table 1), but
assessment of how and why gear is lost (rough weather vs. whales
swimming away with gear) is difficult.

Other United States West Coast
Fisheries
From 2011 to 2019, NMFS received and evaluated 170 separate
confirmed humpback whale entanglement reports from the
United States West Coast (excluding re-sightings; NMFS, 2019;
NWFSC, 2020b; Saez et al., 2021). With the limited exception
of a few reports from fishery observers, including the two
reports from sablefish fishery observers assessed here, most of
these reports are products of opportunistic, i.e., non-random,
sightings, and reportings from sources that include marine
mammal stranding and response networks, members of the
public, United States Coast Guard, law enforcement agencies,
and marine researchers. Given that the majority of entanglement
reports are opportunistic, NMFS assumes that many large
whale entanglements are not observed or, if observed, are not
likely to be reported except as required by fisheries observers
or EM programs. Therefore, it is likely that reports of large
whale entanglements represent an unknown fraction of the total
number of whales that have been entangled over time (Saez
et al., 2021). Currently, the number of total whale entanglements
that occur along the United States West Coast relative to the
number of entanglements reported is unknown (Saez et al., 2021).
However, rope scarring from entanglements with fishing gear
are evident on one third to one half of all humpback whales
(Calambokidis et al., 2008), which may provide insight on the
total number of whales that have been entangled at least once.

Numerous other United States West Coast commercial and
recreational fisheries have been associated with the origins of
whale entanglements reported through opportunistic sources,
including Dungeness crab, spot prawn, spiny lobster, and rock
crab pot or trap fisheries, along with various set and drift
gillnet fisheries (Saez et al., 2021). A cursory review of the
literature provided no other examples of the use of this method
in fixed gear fisheries to estimate large whale bycatch. Many
of these fisheries do not employ use of fishery monitoring
schemes like the sablefish pot fishery presented here. Unobserved
fisheries pose a challenge to estimating large whale bycatch.
The Bayesian method we present here relies on systematically
collected random samples of lethal entanglements in fishing
gear, a measure of observation effort, and a measure of total
fishing effort for the entire fleet. For the United States West
Coast sablefish pot fishery we used data from fishery monitoring
programs (e.g., human observers and EM) that systematically
collect data on whale entanglements. For unmonitored fisheries,
observed bycatch rates (θ) could be borrowed from observed
fisheries and applied to unobserved fisheries. However, this
would require having some measure of observed effort for the
entanglements (Ey) which is unlikely in unmonitored fisheries.
In many unmonitored fisheries, the only available data will be
a count of entanglements reported and some measure of total
fishing effort (number of: vessels, gear deployments, pot or
traps; gear soak time; and total fleet landings). Entanglement

estimates in most cases will not be collected systematically and
therefore not related to observational effort in any meaningful
way, making the Bayesian method presented here less than
ideal for unmonitored fisheries. However, one case where our
method might prove useful are species such as the North Atlantic
right whale, where a large proportion of the population has
been observed and identified by photograph (Knowlton et al.,
2012). In theory, if observation and entanglement rates could
be constructed from photographs (Knowlton et al., 2012) and
entangling gear appropriately assigned to a fishery with available
data on fishing effort, then bycatch estimates could be obtained
for that fishery.

CONCLUSION

Large whale entanglement and bycatch in fishing gear presents
a challenge to analysts and managers that need to estimate
the number of, and mitigate for, these low frequency events.
Currently, the most robust data estimates of whale entanglements
mainly comes from at-sea fishery observers or EM devices.
However, not all fisheries are monitored and for those fisheries
that are monitored, it is often the case that not all vessels
within a fishery are observed. The Bayesian method used here
provides robust estimates of both observed and unobserved
bycatch in partially monitored fisheries, thus overcoming some
of the challenges posed by rare event data. This method is
flexible and can be used on a wide-variety of commonly used
generalized linear models and provides reasonable estimates of
uncertainty around bycatch estimates as well as accounting for
undetected bycatch by providing estimates of bycatch when the
observed estimate is zero. More work needs to be done to develop
methods that use non-random opportunistic observations of
whale entanglement. However, the Bayesian time-series used
here provides managers and analysts with an important tool to
accurately assess the impacts of fishing on large whales.
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