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Species distribution model (SDM) is a crucial tool for forecasting ranges of species
and mirroring habitat references and quality. Different types of species distribution
data have been commonly used in SDMs regarding different purposes and availability,
whereas, the influences of data types on model performances have not been well
understood. This study considered three data types characterized by different levels
of organism information and cost in data acquisitions, namely presence/absence (P/A),
ordinal data, and abundance data. We developed a range of distribution models for
nine demersal species in the coastal waters of Shandong Peninsula, China, using
two modeling algorithms [the Generalized Additive Model (GAM) and Random Forest].
Firstly, we evaluated the performances of all models on predicting species occurrence
(i.e., habitat suitability or range boundaries), and then compared the models built with
ordinal data and abundance data on projecting ordinal predictions (i.e., relative density
or habitat quality). Their predictive abilities were assessed through cross-validation
tests with diverse performance measurements. Overall, no data type is superior in all
situations, but combined with two algorithms, the abundance data slightly outperformed
the ordinal data and P/A data unexpectedly exerted reliable performances. Specifically,
the effectiveness of data type for two application purposes of SDMs substantially varied
with modeling algorithms, revealing that GAMs always benefit most from ordinal data
and the opposite was true for Random Forest. For some small resident organisms with
moderate prevalence, rough distribution data might be adopted for providing reliable
projections. Our findings highlight the importance of clarifying the objectives of SDMs
when choosing data types for species distribution modeling.

Keywords: bottom trawl survey, ordinal data, SDM, predictive performance, generalize additive model, random
forest

INTRODUCTION

Anthropogenic disturbance and climate change have stimulated the destruction of marine habitat
and loss of biodiversity worldwide (Pereira et al., 2010; Bellard et al., 2012). To inform marine
management and biological conservation, species distribution models (SDMs) that correlate with
species occurrence or abundance with environmental factors to define species niches have been
adopted as common tools to predict the spatial distribution of the concerned species. To fulfill the
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role of informing the management, the predictive performance
has always been a critical concern in the applications of SDMs
(Guisan and Zimmermann, 2000). It is acknowledged that the
predictive capacity is challenged by many issues, including the
selection of modeling techniques, assumption deficiency, lack
of biotic factors, spatial/temporal scales, and inherent traits
of the species being modeled (Elith et al., 2006; McPherson
and Jetz, 2007; de Araújo et al., 2014). Additionally, the
successful prediction of SDMs is essentially dependent on data
quality, such as data resolution, inclusion of critical variables,
observation errors, and detectability of species (Guisan et al.,
2007; Osborne and Leitão, 2009; Austin and Van Niel, 2011;
Fernandes et al., 2019).

This study focuses on the effects of data types, i.e., the
types of response variables on the predictive performance of
SDMs. We considered three types of response data typically used,
including occurrence data [i.e., presence/absence (P, binomial
data), graded abundance data (e.g., low/medium/high, ordinal
data), and abundance data (discrete or continuous data), which
contained different levels of information from low to high].
Amongst these data types, occurrence and abundance data are
the most commonly used; the former indicates the patterns of
species distributions (Fukuda et al., 2012) and the latter contains
more information about sizes of population and dynamics
of range of the species (Howard et al., 2014). Ordinal data
is recorded coarsely in graded classes, less commonly used
but gaining growing popularity in dynamic distribution and
multispecies distribution modeling (Mieszkowska et al., 2013;
Howard et al., 2014). Despite their differences in information
quality, the model outputs from three data types can be useful
for guiding marine management. For example, presence/absence
or probability of occurrence can be used for habitat suitability
evaluation, species range–size identification (Thuiller, 2004), and
marine protected area (MPA) designation (Sundblad et al., 2011),
whereas, the prediction of abundance and relative abundance
are more frequently used for monitoring the dynamics of the
populations of species (Beck et al., 2010; Acevedo et al., 2017),
delineating high quality habitat (Pearce and Ferrier, 2001), and
forecasting the center of gravity of species distributions (Thorson
et al., 2017). From a management perspective, however, raw
predicted outcomes such as abundance may not be necessary for
specific application purposes, such as habitat evaluation and MPA
designation, for which suitability indices or relatively high/low
values may be sufficient for decision making. Therefore, different
data requirements should match with the different predictive
objectives of SDMs.

The nature of different data types raises substantial concerns
in model development. For instance, different types of data
come with different costs in data collection, thus more sampling
efforts are required to develop abundance-based models. In
addition, abundance data may not be available in many cases,
whereas, occurrence and ordinal records can be collected with
fewer efforts from sources other than planned surveys, such as
museum, atlases, citizen science, and remote sensing (Guillera-
Arroita et al., 2015). Particularly for habitat research of marine
fish species, sometimes there had been no abundance data
observed by conventional fisheries surveys. A feasible alternative

is the coarse estimate of occurrence distributions and categorical
abundance (such as “high, middle, or low”), which could be
provided by global range maps from authoritative websites
(Zhang et al., 2019), or even information from untrained local
fishermen. Although it is established that poor information of
distribution data leads to inaccurate forecasts, pertinent literature
provided mixed results on comparing predictive powers of the
models built by occurrence and abundance data (Gutiérrez
et al., 2013; Howard et al., 2014). This divergence may be
related to a variety of factors, such as characteristics of the
ecosystem, spatial/temporal scales, performance metrics, and
modeling techniques., whereas, the observation errors of different
data types may also play an important role (Guillera-Arroita et al.,
2015). Specifically, data with more details, such as abundance,
may be more vulnerable to errors from the observation process
and imperfect detection compared to the occurrence and
ordinal data (Gutiérrez et al., 2013), and the errors possibly
cause problems in model estimations. It is therefore of great
importance to understand the role of contained information in
the development and distribution projections of SDMs.

The present study aims to evaluate the effect of three data types
on model performances with respect to two application goals
of SDMs (the prediction of the occurrence of marine organisms
and graded abundance) across a variety of species and modeling
algorithms. Most relevant studies on the types of response
variables mainly focused on terrestrial organisms (Brotons et al.,
2004; Mateo et al., 2010; Gutiérrez et al., 2013; Howard et al.,
2014); however, distribution modeling on marine species should
be paid equally if not more attention, regarding the difficulty and
the accuracy of marine survey data. We considered two well-
established modeling approaches, the regression algorithms and
the machine learning algorithms (ML algorithms). The regression
methods, such as generalized additive models (GAMs), allow
for simulating species habitat associations straightforwardly, but
need to assume data distribution functions based on different
types of ecological data (Olden and Jackson, 2002); the ML
algorithms can tackle complex species responses and variable
interactions and be free of distribution assumptions of statistical
responses (Elith and Leathwick, 2009; Gobeyn et al., 2019).
We observed abundance data of fisheries from a bottom trawl
survey in the coastal waters of the Shandong peninsula, China,
using nine demersal species with various ecological traits as the
target of modeling. The predictive abilities of the models were
evaluated with regard to the two predictive application goals
using cross-validation and multiple accuracy metrics. This study
may be contributive to successful model prediction with respect
to different data types and provide guidance to perform cost-
effective designs for data collection in management practices.

MATERIALS AND METHODS

Data Collection
The species relative abundance data were collected from across
the coastal waters of the Shandong peninsula, China (area
in between 35◦N–38.5◦N and 119◦E–124◦E) in August 2017
(Figure 1). We carried out a bottom trawl survey at 111 sampling
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FIGURE 1 | Map of survey stations in the coastal waters of Shandong Peninsula.

stations (Figure 1), using otter trawl vessels equipped with the
bottom trawl nets with heights of 7.53 m, widths of 15 m and
cod-end mesh sizes of 17 mm. The tow duration by the trawl
is about 1 h at a speed of 2–3 knots in daylight. The weight
of fish (biomass, i.e., the abundance data) at each site was
standardized to a constant effort of 1 h haul at 2 knots (i.e., CPUE
of kn∗h). The abundance data were logarithmically transformed
to avoid the skewed distributions in modeling (Brosse et al.,
1999; Xue et al., 2017). We selected nine demersal species
for model development and collected biological and ecological
information that are important for species distribution modeling
(Luan et al., 2020), including migratory behavior, body size,
and prevalence (Table 1). The target species were assigned into
two taxon categories: fish and shrimp. The migratory behaviors
encompassed three classes: regional movements regarded as long-
distance migratory (LM) behaviors, migrations between deep and
shallow waters that were treated as short distance migratory (SM)
behaviors, and locally nomadic movements that were regarded
as sedentary (L) behaviors (Sui et al., 2017). The body sizes
were qualitatively assigned into four categories according to
observed gaps in the distribution of the individual weights of
the organisms that were measured during the survey: small,
medium, medium–large, and large. Species of different traits were
compared to evaluate the effect of data types on the predictive
performance of the models.

The candidate environment predictors in distribution
modeling consisted of sea bottom salinity (BS), sea bottom
temperature (BT), water depth (DP), and sediment type (SD).
The temperature, salinity, and depth were recorded by the CTD
system (XR-420) at the beginning of each tow in each sampled

station. The sediment type included three categories, sand, sandy
silt, and sand–silt–clay, which follow Shepard’s nomenclature
of sediments (Shepard, 1954; data were unpublished and
were provided by the College of Environmental Science and
Engineering, Ocean University of China). We also considered
two geographical coordinates (longitude, LN and latitude, LT)
as the explanatory variables, which can serve as surrogates of
unobserved environmental factors, given the existence of Yellow
Sea cold-water mass. We used the variation inflation factor

TABLE 1 | Summary of biological traits of the nine demersal
species being modeled.

Species Migratory
behavior

Body size Taxon Prevalence

Metapenaeopsis dalei SM Small Shrimp 0.405

Apogonichthys lineatus SM Medium Fish 0.414

Oratosquilla oratoria L Medium-large Shrimp 0.586

Pholis fangi SM Medium Fish 0.820

Conger myriaster LM Large Fish 0.369

Chelidonichthys kumu LM Medium-large Fish 0.369

Chaeturichthys
stigmatias

L Medium-large Fish 0.396

Amblychaeturichthys
hexanema

L Medium Fish 0.459

Lophius litulon L Large Fish 0.486

The traits included migratory behavior, body size, taxon, and prevalence. Migratory
behavior was divided into three categories (L, locally nomadic; SM, short-distance
migratory; LM, long-distance migratory); body size, four categories (small, medium,
medium to large, and large).

Frontiers in Marine Science | www.frontiersin.org 3 October 2021 | Volume 8 | Article 771071

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-771071 October 19, 2021 Time: 16:4 # 4

Luan et al. Data Types Influence Model Performance

(VIF) to examine the collinearity between predictive variables
before model construction (Parra et al., 2017). The VIF value of
a variable that was higher than 3 implied substantial correlations
with other variables and was thus omitted.

Here, we assumed three scenarios that presented the
availability of the three data types (i.e., response variables)
(Table 2). Our trawl surveys in the coastal waters of the
Shandong peninsula collected abundance data, and we created
occurrence data and ordinal data through the transformations
of the abundance in our analyses. It should be noted that
the occurrence data and ordinal data may be collected from
other sources in practical use, and the transformation is only
needed for our evaluation study. Firstly, the ordinal categorical
abundance was obtained by binning the abundance data, for
which a “k-means cluster” binning strategy in R “arules” package
was applied to convert continuous abundance into ordinal
categorical abundance with five classes (0, 1, 2, 3, and 4)
(Supplementary Appendix Figure 1). The interval boundaries
for discretization among nine target species were calculated
automatically and listed in Supplementary Appendix Table 1.
For the occurrence data, every site that had an abundance
category > 0 received a binary occurrence value of “1” (i.e.,
the presence of species), while the remained sites were coded
as “0” (i.e., the absence of species). The generation of P/A and
ordinal abundance mimic the situations in which abundance
data were not available. In each scenario, the available data
type was served as the response variable in the modeling
process (Table 2).

Statistical Modeling Algorithms
As the comparison among data types may be biased due to
different modeling algorithms, we utilized two established-
well modeling algorithms, GAM and RF, to developed
models based on the three data types. The algorithms are
described below.

The generalize additive model (GAM) is a semiparametric
regression method featured by additive constituents and
“smooth” functions (Hastie and Tibshirani, 1990). The merits
of GAMs are flexibility in tackling non-linear and non-
monotonic relationships. Here, we dealt with different types of

TABLE 2 | The workflow of models built with three types of data (three scenarios)
for achieving two predictive goals.

Model input Model output
(model

predictions)

Predictive
goal I (binary
occurrence)

Predictive
goal II

(abundance
grades)

Scenario 1 Abundance Abundance Results
transformed to

P/A

results
transformed to

ordinal

Scenario 2 Ordinal data Ordinal data Results
transformed to

P/A

Unchanged

Scenario 3 P/A data P/A or
probability of
occurrence

Unchanged Unfeasible

response variable through setting the error distribution of GAMs
with binomial family for presence/absence data, “ocat” family
proposed by Wood et al. (2016) for ordinal categorical data,
and gaussian family for log-transformed abundance data. Its
formulation is expressed as:

g (Y) = α+

n∑
i=1

fi(xi)+ ε

where, g() is the monotonic link function that establishes a
relationship between the mean of the response variable and
predictive variables, and fi is the spline smoothing function of
each explanatory variable xi, which enables to flexibly describe
non-linear relationships (Guisan et al., 2002). In the equation α

is the intercept, n is the number of explanatory variables, and ε is
the residual error term.

Random Forest (RF) (Breiman, 2001) served as a
representative of the ML algorithms due to its improving
predictive performances (Cutler et al., 2007; Olaya-Marín et al.,
2013; Li et al., 2017). RFs were implemented according to the
following steps: (i) draw ntree sets of bootstrap samples and mtry
random subset of predictors to product non-pruned regression
and classification tree learners (ii) at each node of trees, the
predictor was selected for the best binary split and the samples
were partitioned recursively until the root node contained a
bootstrap sample of data (iii) the predictions from the trees
were averaged in the case of regression trees or tallied using a
voting system for classification trees (Liaw and Wiener, 2002;
Luan et al., 2018). In our study, we applied the randomForest()
in the randomForest package in R program. If the response is
a factor, randomForest performs classification; if the response
is continuous (that is, not a factor), randomForest performs
regression. Note that randomForest does not handle ordinal
information in the categorical responses (Breiman, 2001).
Additionally, the number of trees (ntree) was set to 2000, and we
trained models with different mtry values and chose the optimal
mtry = 1 when RF performed best.

For all the models, significant predictors were selected using
a stepwise variable selection procedure, in which the model was
updated by adding the variables one-by-one, starting with a
null model. The applied criterion of variable selection varied
from different algorithms and data types. For GAMs, “deviance
explained” and AIC among the nested models were used
in model selection and to examine the variable importance
(Jensen et al., 2005; Li et al., 2017). For RFs, the out-of-bag
estimate of error rate was applied for modeling the P/A and
ordinal categorical data, whereas the percentage of variance
explained by the model (“variance explained”) was used for
the abundance data, accordingly (Breiman, 2001). After the
stepwise variable selection, all optimal fitted models with different
combinations of significant environmental variables using three
data types for the nine species were listed in Supplementary
Appendix Table 2. Here, the significant environment covariate
sets in optimal models may vary depending on the aspect
of distribution, i.e., the types of distribution data. Thus,
our study aims to select the most simplistic models with
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the best fitting capacity to further obtain corresponding
predictive performance.

Performance Evaluation
The predictive performances of the models (both GAM and RF)
based on P/A, and ordinal and abundance data were evaluated
under predictive goal I (binary occurrence) and predictive goal
II (abundance grades), respectively, followed by the procedure
in Table 2. Regarding the capacity of forecasting the binary
occurrence (goal I), the models trained by the three data
types (three scenarios) were compared, for which the outputs
of the ordinal and abundance-based models were transformed
into presence/absence according to the same rule as in data
transformation (section “Data Collection”) to allow for the direct
comparison. Regarding the ability to project the abundance
grades (goal II), only models trained by ordinal and abundance
data (scenario 1 and 2) were compared, as the abundance grades
could not be obtained from occurrence models. The output of
abundance-based models was transformed into the categorical
abundance to compare predictive accuracies of abundance
classifications (Table 2).

The model performance evaluation was implemented using
the cross-validation approach, in which 75% of the data were
randomly sampled as training data for model fitting, while the
remaining 25% were used as testing data to make predictions (i.e.,
model outputs) and evaluation. This cross-validation process was
conducted for 100 replicates, and a number of predictive accuracy
measures were estimated by comparing the model predictions
with the observations in the testing dataset (Liu et al., 2011).

The accuracy of predicting binary occurrence (predictive goal
I) was assessed applying four metrics of discrimination capacity,
Cohen’s Kappa (Cohen, 1960), the area under the curve (AUC)
of the receiver operating characteristic (Fielding and Bell, 1997),
sensitivity (Se), and specificity (Sp), which were widely used
in SDM validations (Liu et al., 2011). Among them, Cohen’s
Kappa measures the agreement between observations and
predictions comparing it with the expected agreement by chance,
ranging from −1 to 1 with Kappa value below 0 indicating a
prediction no better than random. Kappa values > 0.75 indicate
excellent prediction, 0.4–0.75 for good predictions and <0.4
for poor predictions. AUC is a threshold-independent metric,
independent of species prevalence (McPherson et al., 2004; Liu
et al., 2011). Its values range from 0 to 1, with 0.5 indicating
random sorting and 1 indicating perfect prediction (Swets,
1988). Se refers to the probability that a known presence is
correctly predicted, and Sp indicates the probability that the
model correctly predicts the absence of species.

The accuracy of predicting abundance grades (predictive goal
II) was assessed by applying weighted Kappa (Cohen, 1968)
regarding the discrimination capacity among abundance grades
(Janitza et al., 2016). The weighted Kappa can recognize the levels
of classification mistake from models by assigning the weights
for the degrees of disagreements between ordinal classes (i.e., the
“distances” between the true classification and the predicted one)
(Ben-David, 2008).

The differences in the predictive performance among data
types, modeling algorithms, and species being modeled were

tested by multiway ANOVA, for different performance metrics
separately. Here, we selected AUC (for predictive goal I) and
weighted Kappa (for predictive goal II) as the dependent
variables, and three influencing factors (i.e., data type, algorithm,
and species) as the independent variables. We considered that the
two performance measures indicate the relatively comprehensive
accuracy index in the performance evaluation process. The
interaction between data types and algorithms was examined
to detect whether the effect of data types might vary among
algorithms. We estimated the effects of each factor according to
the coefficient in multiple linear regression models of the same
structure. All analyses were implemented in R.

Comparisons of Predicted Spatial
Distributions
We used the finite volume coastal ocean model (FVCOM) to
simulate the hydrological environmental data covering the whole
studied area for forecasting the spatial distributions. The FVCOM
was developed and its implementation was detailed by the
published literature (Xing et al., 2020). In this study, the 42,975
simulated environmental information grid points were extracted
from the FVCOM hindcasts in August, 2017. We applied the
RF built with the three species data types to generate spatial
distribution maps, in which the spatial predictions from distinct
response data were transformed into binary distributions (i.e.,
distribution range) or abundance grades for direct comparison.
We examined comparisons of one target species for accurate
spatial mapping.

RESULTS

Predictive Performances on Species
Occurrences
The predictive performances on species occurrences were
compared between models trained with three types of response
data applying two modeling algorithms, and the results of
O. oratoria were firstly shown as an example (Figure 2). The
rank order of data type in predictive accuracy did not vary
between AUC and Kappa, but had variances between sensitivity
(Se) and specificity (Sp). Specifically, RFs showed that occurrence
data achieved relatively great capacity (moderate sensitivity and
specificity and overall best discrimination capacity (i.e., the
highest values of AUC and Kappa)). On the contrary, abundance
data led to the highest sensitivity but the lowest specificity. When
using the GAM algorithm, the models trained with ordinal data
displayed the best performances, and the results of sensitivity and
specificity were consistent with that of RF.

Overall, in terms of AUC, the results of the nine species
suggested that occurrence data led to the best predictive
performances when RF was used, followed by abundance data,
and ordinal data might result in substantially worse performances
(Figure 3). On the contrary, when GAM was used for modeling,
ordinal data could contribute to the best predictive performances.
Meanwhile, there were remarkable divergences between data
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FIGURE 2 | The accuracy metrics for predicting occurrence of O. oratoria between the models based on three data types in two modeling algorithms.

types among three species, encompassing P. fangi, C. myriaster,
C. kumu.

The predictive performances were further evaluated among
the nine species, which was divided into two groups for better
comparison (Figure 3). Species group1 included C. stigmatias,
M. dalei, A. lineatus, A. hexanema, and O oratoria, representing
small–medium shrimp and fish with limited dispersal ability. This
group showed a similar level of model performances in terms of
different data types (i.e., three scenarios). On the contrary, species
group2 exhibited larger discrepancies in predictive accuracy
between data types. This group included C. myriaster, C. kumu,
L. litulon, P. fangi, representing medium-large organisms with
long-distance migration. Combination of the results from RF and
GAM, uses of ordinal data generally contributed to the poorest
model performance amongst three data types when modeling
species group 2.

Predictive Performances on Abundance
Grades
The predictive performances on abundance grades were
compared between models utilizing abundance and ordinal data,
and the results of L. litulon were shown as an example. Given the
challenge of multilevel prediction, both of the models yielded
remarkable misclassification. The abundance-based models were
more discriminating for the medium-ranked classifications but

had substantial error rates in the lowest and highest grades.
By contrast, ordinal-based models had a greater capacity to
classify the lowest and highest classes, but underestimated the
probability of medium-ranked classes. Besides, the prediction
of abundance-based models tended to bias to presence whereas
ordinal-based models were more likely to predict absence of
species occurrence (Figure 4). The resultant comparisons of
predicted classifications from other eight species using two data
types were analogous to that of L. litulon (see Supplementary
Appendix Figure 2).

The metric of ability to predict abundance grades, weighted
Kappa, were compared between uses of ordinal and abundance
data across the nine species, which were assigned to the same
species groups as section “Predictive Performances on Species
Occurrences.” Regarding RFs, the weighted Kappa indicated
that abundance data could marginally improve predictions
compared to ordinal data (Figure 5). Regarding GAMs, ordinal-
trained models performed better in terms of weighted Kappa,
except C. myriaster that abundance-trained models predicted
more accurately.

In addition, the differences in predictive accuracy between
data types were more remarkable when using GAMs compared
to that of RFs (Figure 5). For the GAM algorithm, there
were discrepancies between uses of two data types in six
species cases, expect for M. dalei, A. hexanema, and L. litulon.
While most species in the two groups showed less difference
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FIGURE 3 | The accuracy metric (AUC) of models trained with three data types for 9 demersal species in terms of predicting occurrence.

FIGURE 4 | The ordinal categorical predictions of L. litulon from the models using two data types.

between the two data types in the RF algorithm, with the
exception of M. dalei, which showed better discrimination
capacity using abundance data.

The Effects on Predictive Performance
ANOVA showed that the performance metric AUC varied
significantly between algorithm (P<0.01) and species (P<0.01),
whereas the effect of data types was insignificant (P>0.05)

(Table 3). Specifically, according to the estimates fitted by the
multiple linear regression, RF algorithm significantly provided
better predictive accuracy than GAM. In terms of species, there
was a large difference in AUC among species being modeled, and
M. dalei was better predicted than other species, following by
A. lineatus.

The interaction between the effects of data types and
algorithms was highly significant (P<0.01), implying the relative
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FIGURE 5 | The accuracy metric (weighted Kappa) of models trained with two data types in terms of predicting abundance grades.

predictive accuracies of each data type varied between RF and
GAM (Table 3). When applying the RF algorithm to predict

TABLE 3 | The effects of data type, algorithm and species on performance metric
(AUC) for predictions on binary occurrence by ANOVA.

Factor SSE P-value Variable Estimates

(Intercept) 0.677

Data type 0.00304 0.206 Occurrence −0.019

Ordinal 0.005

Algorithm 0.01601 <0.001∗∗∗ RF 0.037

Species 0.23508 <0.001∗∗∗ A. lineatus 0.111

C. kumu 0.093

C. myriaster −0.004

C. stigmatias −0.054

L. litulon 0.063

M. dalei 0.131

O. oratoria 0.090

P. fangi −0.048

Data type: Algorithm 0.01355 0.004∗∗ Occurrence: RF 0.034

Ordinal: RF −0.043

SSE indicated the sum of square errors in the AUC values. The interactions
between data type and species were insignificant and not shown in the
table. Intercept represented the effect of one variable that did not appear
in each influencing factor. Estimates indicated the positive or negative effect
of each variable comparing to the “Intercept.” *Indicates significant difference
(0.01< P < 0.05), **indicates significant difference (0.001 < P < 0.01), ***indicates
extremely significant difference (P < 0.001).

the binary occurrence, P/A data generated better predictions
(0.748, estimated coefficient in the regression model) than
abundance (0.714), followed by ordinal data (0.671). For the
GAM algorithm, models built with ordinal data marginally
outperformed (0.682) the counterparts with abundance data
(0.677) and occurrence data (0.658).

In terms of weighted Kappa (to predict abundance grades),
algorithm and species had a significant influence on predictability
(P < 0.01), respectively, Whereas, there were no significant
differences among data types (P > 0.05) (Table 4). Regarding
species, the model performance was the highest for M. dalei,
followed by O. oratoria. Similar to the results of AUC, the
interaction between the effects of data type and algorithm was
significant for the variance of weighted Kappa (P < 0.05), i.e.,
for RF, the abundance-based models (0.444) performed better
than ordinal-based models (0.375), and the converse was true
for GAM (abundance: 0.377, ordinal: 0.442). Combined with the
results of the two algorithms, abundance data exhibited slightly
better discriminations.

Comparisons of Spatial Mapping
The predicted spatial distributions of one target organism
(M. dalei) by RFs with distinct response data types were mapped
according to the two predictive goals for visual comparisons. For
projecting the distribution ranges (predictive goal I) (Figure 6),
in the southern waters of the study area, the inaccurate ordinal
data showed an inferior capacity to identify the presences than
other data (Figure 6B). Besides, models built with abundance
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TABLE 4 | The effects of data type, algorithm and species on performance metric
(weighted Kappa) for predictions on abundance grades by ANOVA.

Factors SSE P-value Variable Estimates

(Intercept) 0.377

Data type 0.00849 0.072 Ordinal 0.065

Algorithm 0.00940 0.061 RF 0.067

Species 0.48283 <0.001∗∗∗ A. lineatus 0.102

C. kumu 0.051

C. myriaster −0.184

C. stigmatias −0.132

L. litulon −0.057

M. dalei 0.202

O. oratoria 0.117

P. fangi 0.012

Data type: Algorithm 0.01074 0.048∗ Ordinal: RF −0.069

*Indicates significant difference (0.01 < P < 0.05), **indicates significant difference
(0.001 < P < 0.01), ***indicates extremely significant difference (P < 0.001).

and ordinal data overestimated the range size of M. dalei in the
northern waters. For predicting the abundance grades (predictive
goal II) (Figure 7), the discrepancy in spatial predictions between
the two data types was greatly obvious, especially in the southern
nearshore and the northern waters. The ordinal-based model
tended to simulate higher abundance for M. dalei and showed
worse predicted classifications in the northern area (Figure 7B).

DISCUSSION

Increasing uncertainty in the predictability of SDMs and
extensive applications toward forecast impelled researchers to
enhance the understanding of model assessment. Selection
of response dataset types essentially makes a difference
in model performances, and unquestionably, higher data
quality contributes to greater model projections. However, the
limited availability of accurate observations has quickened a
growing utilization of georeferenced distribution data for model
simulations. Most notably, some applications only required
provisions of rough abundance grades or distribution ranges and
boundaries. Thus, the model capacity we concerned was not to
quantitatively predict accurate abundance, but to qualitatively
describe the distribution patterns of an organism. In this
context, we assumed three scenarios based on the availability
of the three data types to clarify whether less informative
data types could be reliable for qualitative predictions without
implements of the sampling survey. In general, our results
illustrated that the effect of data type on predictability was varied
across modeling methods, species and two predictive application
goals, and even in some cases, P/A data were more reliable
for providing occurrence projections as well as ordinal data
were marginally better (but insignificantly) for distinguishing
abundance grades since abundance data failed to perform better.
Whereas, combined with two algorithms, ANOVA showed that
the abundance data was slightly better than the ordinal data. Why
abundance data might not necessarily bring outperformances?
Preliminarily, due to the complexity and dynamics of the marine

environment (Oppel et al., 2012), abundance observations in
fisheries surveys tend to contain higher uncertainty originating
from observation error, imperfect detectability and improper
sample designs (Pearce and Ferrier, 2001; Briscoe et al., 2019),
which may undermine the processes of model fitting and offset
the advantage of rich information. Apart from the possibility of
sampling deficiency, the convincing biological explanation is that
environmental factors that are influential for species occurrence
may not be the same for species abundance, for instance, a higher
suitability of habitat at a location might not be correlated with
a larger number of individuals and long persistence time for
species presence (Acevedo et al., 2017). The argument behind
this explanation is that the relationship between habitat suitability
and abundance has been widely debated (Pearce and Ferrier,
2001). In this study, the higher specificity index revealed that
uses of ordinal data were prone to predict the absence of a
species, which was supported by the viewpoint from VanDerWal
et al. (2009) that habitat suitability could indicate the upper
limit of abundance and abundance is low with decreased habitat
suitability. Whereas, using abundance data showed converse
consequence, which might attribute to the methodological aspect
that abundance-based models hardly predicted a zero abundance.
Moreover, distribution models could more easily capture the
responses of species occurrence to the environment at larger
spatial scales and coarse resolutions than the responses of
abundance (Pearce and Ferrier, 2001; Fukuda et al., 2012).

Implications
The fact that the effects of data types on model performances
may be case specific implies that proper response data with the
cost-effective collection process may be considered for achieving
specific habitat research objectives. Specifically, when binary
occurrence details serve as the predictive target to satisfy the
applications, such as identifying habitat preferences (Thuiller,
2004) and planning for spatial conservation (Guisan et al., 2013)
(i.e., requirement for prediction precision are relatively low),
the P/A data can be recommended as the reliable input of
SDMs when abundance is unavailable. Meanwhile, when grades
of abundance serve as the target to inform the applications,
such as delineation of habitat quality, assessment of MPA effects,
and forecasting the center of gravity of species distributions
(Pearce and Ferrier, 2001; Fukuda et al., 2012; Thorson et al.,
2017), using the relatively coarse abundance categories combined
with designated modeling techniques (like GAM) may be an
alternative to the application of accurate abundance data, if
survey funding and time are limited.

Furthermore, the effects of data types on model predictive
performance vary among demersal species, probably implying
that their intrinsic traits have an impact on the influence of
data types on predictive performances. Particularly, for the
targets of predictions on occurrences, the shrimps and non-
resident fish with moderate prevalence (i.e., species group1)
showed fewer discrepancies in predictability among data
types, suggesting that the effort to obtain response data
for these species could be largely mitigated. Furthermore,
our finding agreed with the idea from recent literature,
that the predictive accuracies of P/A-based models were
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FIGURE 6 | The predicted (color circles) distribution ranges of M. dalei by RF for uses of three species data types in the coastal waters of Shandong Peninsula. The
overlying hollow circles indicates the observed stations with absence, and the overlying cross indicates observed stations with presence.

FIGURE 7 | The predicted (color circles) abundance grades of M. dalei by RF for uses of two species data types in the coastal waters of Shandong Peninsula.

more sensitive to species prevalence than abundance-based
models (Fukuda et al., 2012; Howard et al., 2014) and presented
marginally inferior performance when modeling species with
relative low/high prevalence (Figure 3).

The ANOVA analysis revealed that the effects of data types
on predictive accuracy might substantially depend on distinct

algorithms applied, which might associate with the distinct
data processing behaviors (Marmion et al., 2009). With the
implementation of GAM, the better performance with the
ordinal data might benefit from applying an appropriate error
distribution assumption (i.e., “ocat” family). Regarding the RF
algorithm, the classical RF by randomForest package is incapable
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of recognizing the ordinal nature of data, (i.e., treats the ordinal
variable as nominal). Notably, RF showed consistent resultant
rankings of data types among all modeled species compared
to GAM, possibly resulting from its “bagging” and “ensemble”
ideas for creating many sampling sets that could produce stable
predictions (Breiman, 2001).

Limitations and Perspectives
Although our assessment framework was implemented
reasonably from a practical viewpoint, there existed some
limitations. First, our analysis compared the model performances
based on different data types but of the same sample size.
However, an important fact is that with the same survey cost
and sampling intensity spent or the same effort applied in
obtaining information from georeferenced data sources, more
recorded points of occurrence data can be collected than that
of abundance data. This implies that our comparisons provide
only a baseline and the models based on information-poor data
may perform better in practice than that in our simulations.
Besides, it is also acknowledged that the SDMs simulated species
potential distributions based on the concept of the fundamental
niche (Hutchinson, 1957) without consideration of abiotic
factors and interspecific relationships (Kearney and Porter,
2009). Thus, there was no guarantee that the same comparing
results can be brought out if the realized niche was required
to be projected. Being unable to cover the geographical extent
and ranges of migratory and generalist species might bring out
little understanding of their environmental adaptions in the
habitat patches, influencing models to correctly determine the
species responses to habitat. As a consequence, some conclusions
may require further validation before being applied in different
marine ecosystems and spatial scales.

As the traditional correlative SDMs in our study might fail
to take full advantage of the information details in abundance
data, we recommend that the application of spatial abundance
information to dynamic SDMs or dynamic range models by
including explicit demographical processes, such as population
dynamics and dispersal in distribution modeling (Keith et al.,
2008; Mieszkowska et al., 2013; Briscoe et al., 2019), thus
allowing for a time series of future abundance and expected
persistence times of local populations. We can foresee that with
the emergence of novel algorithms, further model simulations,
and assessment for other types of response data could supply
additional approaches to settlement ecological questions.

CONCLUSION

Ecologists have always been eager for better datasets, especially
long-term temporal data of species abundance covering an
appropriate spatial scale and frequency (Joseph et al., 2006),
as quantitative data are essentially richer in information than
qualitative data. Additionally, as an increasing number of
global databases are available to provide periodic atlases, more
detailed data may be more important in the future. Nevertheless,
our designed evaluation process put the results into new
perspectives on the selection of datasets. Significantly, this

study demonstrated that no data type was superior in any
situation, and the effect of data types substantially varied by
the algorithms implemented. The mixed results possibly related
to the complex dynamics of marine ecosystems and influencing
factors on occurrence–abundance relationship (Nielsen et al.,
2005; Gutiérrez et al., 2013), suggesting that matching data types
for the predictive targets of the SDMs should be based on specific
circumstances, depending on algorithms, and species groups
of diverse ecological traits. Our implications would possibly
alleviate the pressures from suspicion of the reliability of rough
distribution data to an extent. We also underlined the importance
of richer data content in model constructions and simulations,
despite a slight advantage in applying abundance data.
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