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Species distribution models (SDMs) are commonly used in ecology to predict species
occurrence probability and how species are geographically distributed. Here, we
propose innovative predictive factors to efficiently integrate information on connectivity
into SDMs, a key element of population dynamics strongly influencing how species
are distributed across seascapes. We also quantify the influence of species-specific
connectivity estimates (i.e., larval dispersal vs. adult movement) on the marine-
based SDMs outcomes. For illustration, seascape connectivity was modeled for
two common, yet contrasting, marine species occurring in southeast Australian
waters, the purple sea urchin, Heliocidaris erythrogramma, and the Australasian
snapper, Chrysophrys auratus. Our models illustrate how different species-specific
larval dispersal and adult movement can be efficiently accommodated. We used
network-based centrality metrics to compute patch-level importance values and include
these metrics in the group of predictors of correlative SDMs. We employed boosted
regression trees (BRT) to fit our models, calculating the predictive performance,
comparing spatial predictions and evaluating the relative influence of connectivity-
based metrics among other predictors. Network-based metrics provide a flexible
tool to quantify seascape connectivity that can be efficiently incorporated into
SDMs. Connectivity across larval and adult stages was found to contribute to
SDMs predictions and model performance was not negatively influenced from
including these connectivity measures. Degree centrality, quantifying incoming and
outgoing connections with habitat patches, was the most influential centrality
metric. Pairwise interactions between predictors revealed that the species were
predominantly found around hubs of connectivity and in warm, high-oxygenated,
shallow waters. Additional research is needed to quantify the complex role that habitat
network structure and temporal dynamics may have on SDM spatial predictions and
explanatory power.

Keywords: centrality measures, fragmented habitat, graph theory, machine learning, predictive model, seascape
connectivity
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INTRODUCTION

Conservation of biodiversity is a priority in management plans
for conservation scientists and managers. Understanding species’
spatial distribution patterns is critical to identify important
habitats and improve management strategies (Monk et al., 2010;
Foltête et al., 2012). Classic strategies used in conservation to
manage species include the establishment of protected areas and
reserves around key habitats. Today, connectivity is considered
essential, and plays a fundamental role in characterizing the
importance of protected areas within a broader network of
habitat patches (Agardy, 1994). The movement of individuals
among habitat patches (either as larvae or as adults), or
connectivity, ensures species persistence and is critical to
determine population dynamics, particularly when species are
distributed across fragmented habitat patches (Hanski, 1998).

Species distribution models (SDMs) represent a key tool for
the prediction of species distributions, driven by environmental
parameters. SDMs have been applied to marine, freshwater and
terrestrial species and demonstrated to perform well in predicting
the geographic distribution of species in various contexts (Elith
and Leathwick, 2009). Distribution modeling techniques have
developed using presence/absence or abundance data, but recent
research has focused on proposing methods which perform well
when presence-only data are available (Elith et al., 2006). Though
it can be hard to detect model errors and uncertainties in these
cases, best practices are necessary to ensure that SDMs have
strong predictive capability (Robinson et al., 2017). Correlative
SDMs provide a valuable approach to predict distribution across
a land/seascape, broadly applicable across diverse fields such as
ecology, evolutionary biology and conservation biology (Pearson,
2007). Species distribution modeling approaches have been used
to address different marine-related research goals (Robinson
et al., 2017), for instance describing essential fish habitat (Monk
et al., 2010), assessing the impact of climate change (Jones
and Cheung, 2015), understanding habitat distribution shifts
(Gormley et al., 2015), studying the spread of invasive species
(Báez et al., 2010) or better designing conservation strategies
(Adams et al., 2016).

Appropriate environmental parameters are crucial for the
robust development and realistic predictions of SDMs, but
global marine environmental datasets are often of coarse
spatial resolution and coastal data are often missing or
inaccurate. However, extensive work has been done to make
data more reliable and available to researchers for marine
species distribution modeling, such as Bio-ORACLE global
environmental dataset (Tyberghein et al., 2012). Environmental
parameters used in SDMs most often represent static in situ
characteristics (e.g., annual mean temperature). But, the spatial
distribution of populations is often equally as dependent on
the dynamics or variability in these parameters (e.g., changes
in weekly maximum temperature). In marine systems, larval
dispersal is a critical component in population dynamics
(i.e., population connectivity), fundamental for persistence of
metapopulations inhabiting fragmented landscapes (Hanski,
1998) and in source-sink dynamics (Pulliam, 1988). Marine
connectivity results from larval dispersal or adult movement

and is governed by dynamic oceanic environmental variables
as well as life history and biological attributes (Cowen and
Sponaugle, 2009). This connectivity can largely determine the
geographic range, as well as the presence/absence within habitat
patches. As a result, when modeling the spatial distribution of
populations, it is important to consider this dispersal as well
as adult movement among habitat patches (Foltête et al., 2012).
Movements of reef fishes are associated to diel movements
within their home range and longer migrations toward spawning
sites (Meyer et al., 2010). For fish, movements are also a
density dependent process, where fish move to suboptimal
habitats in response to variations in population density (Rose
et al., 2001). Even though habitats might be suitable for
their intrinsic environmental characteristics and potential value
to the metapopulation, they might be difficult to reach and
therefore not effectively contribute to the population. Habitat
fragmentation can also impact connectivity, as well as species
distributions. Smaller or more distant patches will be less
functionally connected with surrounding habitats, increasing
the isolation and vulnerability to extinction (O’Hara, 2002).
In these isolated habitat patches, marine populations are
often demographically closed, and species’ persistence depends
on replacement through local retention of larvae, whereby
larvae are released and settled back to the natal habitat
patch (Burgess et al., 2014). SDMs rarely directly consider
dispersal of species (Robinson et al., 2011), effectively ignoring
this potentially important process. Clearly, including dispersal
dynamics and population connectivity into the study of species
distributions is critical.

Seascape connectivity, representing the functional
connectedness of marine habitat patches, combines
environmental attributes and the geographic configuration
of the seascape with information on the ability of the species
to move (Weeks, 2017). Several studies utilize cost-surfaces
incorporating the influence of ocean currents on marine
species movements to determine least-cost paths connecting
marine habitats of the same type, taking advantage of terrestrial
examples (Caldwell and Gergel, 2013; Fischer et al., 2015). An
increasingly popular approach to quantify seascape connectivity
is based on biophysical models used to determine connectivity
in marine systems, coupled with graph theory to study structure
and properties of connectivity networks. Spatial predictions
of population connectivity across the seascape are created
based on habitat characteristics, ocean currents’ velocity and
species-specific biological parameters (Treml et al., 2008).

A well-known and appropriate framework to represent and
analyze connectivity takes advantage of graph theory. Habitat
connectivity, and all of its complexities, can be summarized as
a network, where habitat patches are nodes and the presence
and strength of connections between patches are represented
by links or edges in the network (Urban and Keitt, 2001). In
landscape and seascape ecology, network algorithms have been
used in understanding and managing habitat fragmentation,
reserve design and conservation planning (Urban and Keitt,
2001; Bodin and Norberg, 2007; Minor and Urban, 2007; Estrada
and Bodin, 2008; Grober-Dunsmore et al., 2009). Few studies
in landscape ecology effectively integrated graph-based metrics
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into SDMs to summarize landscape connectivity, although these
studies have been limited to terrestrial systems and simplified
connectivity, including connectivity estimates improved the
predictive performance of the SDMs (Foltête et al., 2012).
These approaches have been used for terrestrial species impacted
by urban development (Tarabon et al., 2019) and by linear
infrastructures such as roads and railways (Clauzel et al., 2013;
Girardet et al., 2013). This method focused on connectivity
metrics such as recruitment, flux and betweenness centrality
and predicted accurate species distributions (Foltête et al.,
2012; Clauzel et al., 2013; Girardet et al., 2013). Among these
metrics, betweenness centrality demonstrated to be a relevant
SDM predictor (Clauzel et al., 2013). Throughout much of this
work, network-based centrality measures have received much
attention for summarizing patch-level connectivity attributes
and determining patch-level contributions and metapopulation
importance. Among these centrality metrics, betweenness
centrality (BC) (Freeman, 1978; Newman, 2005) has often
been used in the context of habitat prioritization and species
conservation to identify stepping-stones habitats (Urban and
Keitt, 2001; Bodin and Norberg, 2007; Estrada and Bodin,
2008; Bode et al., 2008; Bodin and Saura, 2010; Carroll
et al., 2012). BC is defined as the number of shortest paths
within an entire habitat network that pass through a given
node and may indicate common or important stepping-stones
habitats critical for maintaining network-wide connectivity.
Eigenvector centrality (Bonacich, 1987), a similar network-
wide measure of the most “influential” nodes in a network
has also been used to identify important habitat patches in
connected landscape networks (Estrada and Bodin, 2008) and
has been shown to strongly correlate with metapopulation
persistence (Watson et al., 2011). A local centrality measure,
degree centrality, quantifies the number of incoming and/or
outgoing connections and determines which habitat patches may
act as local highly connected hubs of connectivity (Minor and
Urban, 2007). These centrality measures may be ideal proxies for
a habitat’s connectivity importance and offer a useful pathway
for integrating the connectivity process into SDMs (Foltête et al.,
2012).

The main aims of this study are (i) to illustrate how
centrality metrics, suitable proxies for seascape connectivity, can
be incorporated in traditional marine-based SDMs and (ii) to
test whether including connectivity in these models influences
SDM predictions. This is the first study that uses a connectivity-
enhance SDM approach in the marine environment to evaluate
where, and to what degree, connectivity influences model
predictions. We aim to integrate graph-based network metrics
into SDMs for two types of marine species, a larval dispersing
benthic invertebrate and a highly mobile pelagic fish. Here, we
focused on two widely distributed marine species living across
the south-east coast of Australia. This region consists of a mosaic
of habitats and home to a broad group of species. We focused on
the Australasian snapper Chrysophrys auratus, a species of fish,
characterized by the ability to move across the region through the
whole lifespan, and on a marine invertebrate, purple sea urchin
Heliocidaris erythrogramma, where dispersal is limited to the
larval stage. We quantify patch-level metrics using graph theory

algorithms, defining centrality metrics for each habitat patch,
and we integrate these metrics into our marine-based SDMs. We
perform SDMs, comparing models’ results and evaluating the
contribution of seascape connectivity to models’ performance.
We assess the relative influence of centrality measures among
other predictive variables identifying which metrics mostly
influence SDMs. We investigate differences in the predicted
geographic ranges of distribution, understanding whether these
differences corresponded to critical areas for connectivity.

MATERIALS AND METHODS

Study Species
For this study we selected two representative and widely
distributed species of the south-eastern Australian coast, the
Australasian snapper, Chrysophrys auratus formerly known
as Pagrus auratus, and the purple sea urchin, Heliocidaris
erythrogramma, both usually associated with rocky reefs habitats
(Vanderklift and Kendrick, 2004; Pederson and Johnson, 2006;
Ling et al., 2010; Harasti et al., 2015; Terres et al., 2015).
Snapper represents an important resource for commercial and
recreational fisheries (Hamer et al., 2011). Purple sea urchin is
well-known because of its role in altering coastal habitat toward a
dominated urchin barren seascape (Ling et al., 2015).

Study Area
The spatial domain extends across the south-eastern coast of
Australia (Figure 1), from the south coast of New South Wales,
including Tasmania and Victoria waters, and as far west as
Kangaroo Island in South Australia. This region consists of a
mosaic of hard and soft bottom habitats, populated by a range of
diverse species. It spans from warm temperate waters in the north
to cooler waters around Tasmania. This region is also important
in terms of conservation values, including both protected species
and protected areas (Bax and Williams, 2000; Commonwealth
of Australia, 2015). Overall, the south-east Australian waters
have low productivity, however, there are localized spots of high
productivity at the edges of the continental shelf, where the
effects of currents, eddies and upwelling creates a rich habitat,
that is fished commercially and recreationally. In this work we
focused on the coastal areas of this region, which consists of rocky
reefs and soft sediments supporting a broad range of species
(Commonwealth of Australia, 2015).

We identified habitat patches using data available through
Seamap Australia National Benthic Habitat Classification Scheme
(Butler et al., 2017). Data from this dataset were downloaded at
state-resolution then merged. The extent of the study domain is
1,990 km × 1,850 km. We selected only habitats that are classified
as rocky reefs contained in the domain area, and we aggregated
habitat patches that showed a very limited size (of order of less of
1 km2) into a single patch, where possible. We defined 236 rocky
reefs patches across the whole region for an extent of 15,248 km2

of available habitat for the sea urchin and 264,050 km2 for the
snapper, which includes reefs surrounding area that could be used
by this species.
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FIGURE 1 | Map of the study area.

Seascape Connectivity for Snapper
(C. auratus)
To model adult snapper movements across the seascape and
quantify habitat connectivity, we (1) built a cost surface layer
based on magnitude and direction of oceanic currents, and
(2) completed a least-cost path analysis to quantify seascape
connectivity. The cost surface, required for the least cost path
analysis (LCP), assumed fish movement was influenced by
the magnitude and the direction of currents, with least cost
following the direction of currents. Magnitude and direction of
currents were derived from a global ocean circulation model
(HYCOM)1 using the Marine Geospatial Ecology Toolbox,
MGET (Roberts et al., 2010) in ArcGIS R© 10.5.1 (ESRI, 2017).
Data were aggregated into single annual cumulative cost layers,
representative of currents magnitude and currents direction
for the entire region (see Supplementary Figure 1). Following
examples from terrestrial habitat, first we created two cost
surfaces, one for currents’ magnitude and one currents’ direction,
quantifying the increasing relative cost of moving across the
seascape. Generally, due to the dominant eastward flow of
currents, the cost of moving in this direction was less than

1https://www.hycom.org

traveling westward (Caldwell and Gergel, 2013). We reclassified
both layers and assigned a relative score representing the cost
of traveling (Rayfield et al., 2010), ranging from 1 to 10, with a
score of 1 representing the least cost, while 10 represented the
greatest cost of travel, ten times more costly compared to cells
with a value of 1. Finally, we combined the currents magnitude
and currents direction cost surfaces, calculating the weighted
mean and defining one cumulative movement cost surface among
all study area, assuming parameters have equal weight. See
Supplementary Material for further details.

We performed LCP analysis using Linkage Mapper 2.0.0
(McRae and Kavanagh, 2011) a toolbox freely available for
ArcGIS R© 10.5.1 (ESRI, 2017). To add realism to the model, we
applied a maximum threshold of 100 km of traveled distance,
based on maximum swimming linear distances recorded from
acoustic tagging of snapper in South-east Australia (Fowler
et al., 2017). We modeled only ecologically meaningful corridors
among all habitat patches within the swimming range of
snappers. Our LCP analysis resulted in maps representing
seascape connectivity for adult snapper, with routes showing the
least costly paths among all habitat patches (nodes). This LCP
network was used to further quantify the structure of seascape
connectivity (see Supplementary Figure 3).
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Seascape Connectivity for Purple Sea
Urchin (H. erythrogramma)
For marine invertebrates such as H. erythrogramma, movements
across the seascape are largely determined by the larval dispersal
phase. We modeled larval connectivity using an existing spatially
explicit biophysical marine connectivity model (Treml et al.,
2012). In this model, we used (1) a map defining suitable rocky
reef habitat patches, same data as above for snapper, where all
the habitat patches are source and destination sites for larvae, (2)
data describing the ocean currents (HYCOM), and (3) species-
specific life history traits for H. erythrogramma (Supplementary
Table 1), obtained from the literature (Okubo, 1971; Rumrill,
1987; Lamare and Barker, 1999; Huggett et al., 2008; Swanson
et al., 2012; Williams and Hastings, 2013).

We simulated larval dispersal from 1992 to 2012 at a 3-
hourly time-step, using all the available data for all spawning
times. Clouds of larvae were released from source reef patches
and the likelihood of larval settlement to all destination patches
was estimated based on species-specific biological parameters
and ocean characteristics. The model output was a dispersal
matrix, recording the cumulative quantity of larvae released
from each source patch that survived and settled to each
destination patch, summarizing across all modeled dispersal
events and years, and scaled by the size of the available
habitat area. Migration matrices are commonly used to study
larval connectivity, for this reason the dispersal matrices were
converted to migration matrices, M, representing the proportion
of settled larvae arriving at each destination (columns in the
matrix) that came from each source patch (rows in the matrix).
The migration matrix was used to build a network of seascape
connectivity, where rocky reef patches correspond to graph nodes
and presence of larval connectivity was represented as graph
edges (Supplementary Figure 4).

Network Analysis and Spatial
Generalization of Centrality Measures
The species-specific connectivity data were used to quantify
patch-level metrics representing patch importance, a common
spatial ecology approach (Estrada and Bodin, 2008; Bodin and
Saura, 2010; Carroll et al., 2012). All metrics were calculated in
R (R Core Team, 2019) with the “igraph” package (Csardi and
Nepusz, 2006). For all patches, we calculated degree centrality,
betweenness centrality and eigenvector centrality. Centrality
metrics indicate how central a node is in a network, therefore
a node with a high value of centrality is expected to have high
habitat connectivity importance. Degree centrality is the number
of outgoing and incoming links with each node in the network.
Betweenness centrality is a measure based on shortest paths, and
it is calculated as the number of shortest paths between all pairs
of nodes in the graph that pass through that node (Freeman,
1978; Newman, 2005). Eigenvector centrality is a measure of
importance of a node, essentially identifying highly connected
nodes that are also connected to other highly connected nodes.
Compared to other centrality metrics eigenvector centrality
values are defined between 0 and 1, where a value of 1 is assigned
to the most influential node in the network and 0 to the least

influential. This metric assigns relative scores to all nodes in
the network and is estimated as the principal eigenvector of the
adjacency matrix defining the network (Borgatti, 2005).

Species distribution models require continuous explanatory
variables, therefore we interpolated our centrality estimates
across the seascape domain. The interpolation technique and
distance used was dependent on each species’ capacity to move
throughout the seascape. In the case of the purple sea urchin, with
its limited ability to move great distances following settlement,
centrality values were interpolated locally only and assigned to
all habitat cells in the focal rocky reef patch. For the snapper we
assigned the corresponding centrality value to each patch cell,
and due to the likelihood of movement at greater distances, we
extrapolated the centrality measure into the neighboring seascape
using a negative exponential function with respect to distance.
Consistent with the 100 km threshold used in the LCP analysis
(Fowler et al., 2017), a maximum dispersal distance of 100 km
corresponds to a probability of presence of p = 0.05 (Urban and
Keitt, 2001; Foltête et al., 2012). We multiplied this probability
by the centrality value of the habitat patch. Where values from
two or more patches intersect, the mean centrality value was used
in these intervening areas. The results are continuous centrality
surfaces which can then be appropriately integrated into SDMs.

Species Distribution Modeling and
Comparison of Models’ Performance
We developed SDMs for both species, including and excluding
the species-specific centrality surfaces. Species occurrences data
recorded inside our spatial domain were derived from the Atlas
of Living Australia [ALA] (2019, 2020)2, and contained reliable
occurrence data for species around Australia. Environmental
parameters were extracted using the “Bio-Oracle” package in
R, which contains many marine data layers for ecological
modeling (Tyberghein et al., 2012). Given that ALA data
cover a temporal period of more than 100 years, we cleaned
the data set to remove the oldest data and duplicates to
better align to the temporal extent of the environmental
data. For both species we selected only data from 1980. The
final presence data for purple sea urchin consists of 875
observations, distributed across the study area, with the largest
concentration within Port Phillip Bay, while snapper occurrence
data consists of 780 observations, distributed across Victoria,
South Australia and northern Tasmania, reflecting the known
habitat of this species.

We selected a group of ecologically important parameters
which were believed to contribute to the distribution of both
species. Temperature, chlorophyll A concentration, primary
production (measured as net primary productivity of carbon),
current velocity, dissolved oxygen data were summarized by the
long-term monthly mean, pH, bathymetry, and salinity were
downloaded from models or summarized in situ measurements
(for additional information see Supplementary Material). In
addition to these environmental data, we included the seascape
connectivity layers of betweenness centrality, degree centrality
and eigenvector centrality (Figure 2). Collinearity among

2https://www.ala.org.au
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FIGURE 2 | Maps of environmental and connectivity predictors used in the SDMs for purple sea urchin, H. erythrogramma (top), and snapper, C. auratus (bottom).
All Maps in WGS84.

predictors was quantitatively checked, and those with a Pearson
correlation threshold of 0.7 or greater were identified and one was
eliminated leaving the most ecologically meaningful parameter
in the model. Collinearity is a known source of uncertainty, and
when collinearity increases, the efficiency and statistical power of
the model decrease (De Marco and Nóbrega, 2018).

Among the many SDMs algorithms available, we used a
popular machine learning method, boosted regression trees
(BRT) (Elith et al., 2008). BRT is a form of logistical regression
using decision trees and a boosting algorithm, an optimization
technique that reduces predictive deviance by combining
numerous trees into a single model. BRT has a powerful
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predictive performance and it has features such as handling
different type of predictors, missing data, moderate collinearity,
and complex non-linear relationships (Elith et al., 2008; Cimino
et al., 2020). BRT also performs well for presence-only data
(Elith et al., 2006). To model presence-only data with machine
learning methods, a random sample of the background landscape
is taken to represent unavailable “absence” data. In each model
we defined 10,000 pseudo-absences, distributed equally across
the coastal areas within the study area, representative of the
potential species habitat. We followed the protocol for fitting
BRT established within the “dismo” package (Hijmans et al.,
2017) in R, to understand which was the best predictive model
and compare the significance of including seascape connectivity
in the models. We built a training dataset and a test dataset
by resampling presence and background data, allocating them
to cross validation (cv) folds. Evaluation was completed at two
levels, first we used 10-folds to evaluate the models, then for each
training fold a 5-folds internal cross validation procedure was
completed for tuning the parameters of the BRT model using
the “dismo” R package (Hijmans et al., 2020). Models’ settings
(Table 1) were selected according to the recommendations in the
literature (see Elith et al., 2008). The selected settings directly
affect the number of optimal trees. As a result, by keeping the
learning rate and tree complexity constant, we can optimize the
number of trees to fit a good model. The settings were selected
to aim for a model with a high number of trees, so the model
can reliably estimate our response (Elith et al., 2008). We used
cross-validation to evaluate the predictive power of the models
and assessed performance using AUC-ROC, or area under the
curve – receiver operating characteristics curve approaches.
Then, we quantified the relative influence of seascape centrality
metrics with respect to all other environmental variables to
assess their contribution in predicting species distributions. We
also quantified pairwise interactions between environmental and
connectivity variables and environmental variables themselves,
which is useful to define the most suitable environment for the
species (Elith et al., 2008). BRT automatically models predictor
interactions, allowing their magnitude, and therefore ranking,
to be calculated (Hastie et al., 2009). Interaction results can be
visualized as three-dimensional partial dependence plots.

For each species we present results for two connectivity-
enhanced models compared to a model without connectivity.
First, we investigated the effect of connectivity adding to
the model all centrality metrics (degree, betweenness, and
eigenvector centrality) to understand which metric has the largest
influence and we compared it to the model without centrality
metrics. Then, to minimize overfitting and maximize predictive

TABLE 1 | Boosted regression trees settings applied to all models.

Model settings

Tree complexity 5

Learning rate 0.005

Bag fraction 0.75

Maximum trees 10,000

performance (Duan et al., 2014), we selected the single centrality
metric with the largest relative influence in the model to remain in
the model during fitting and we explored the SDMs results when
we included or excluded connectivity. These additional models
help to understand the role of connectivity and whether the
SDM predictions were influenced by the number of connectivity
parameters included in the model.

Finally, we mapped the spatial distribution of species across
the study area to visualize and quantify differences in spatial
predictions. To evaluate if there is a statistical relationship
between centrality measures and models’ predictions, we tested
them for correlation. Spatial indicators were used to quantify
the differences in predicted habitat suitability from integrating
connectivity or excluding connectivity. An overlay analysis
was performed to identify areas within the SDM predictions
that corresponded to critical connectivity areas revealed in the
network analysis.

RESULTS

Seascape Connectivity
We estimated seascape connectivity for both species
(Supplementary Figures 2, 3) and no consistent spatial
trend existed between species, revealing different connectivity
structures across the seascape, according to species-specific
dispersal characteristics. All centrality measures showed some
spatial consistency within species, identifying similar areas
of high and low values, revealing that hubs of connectivity
(high degree centrality), populations stepping-stones (high
betweenness centrality) and critical nodes (high eigenvector
centrality) largely matched and were clustered in similar
locations. Purple sea urchin showed well-connected areas, high
eigenvector centrality and degree centrality, across north and east
Tasmania, eastern Victoria, and New South Wales coast, while
South Australia nodes had weak connections with the rest of the
domain (Figure 2). Purple sea urchin stepping-stone habitats are
clustered in central and eastern Victoria. Snapper connectivity
revealed high values of centrality for patches along north of
Tasmania and central Victoria coasts, while areas on the eastern
and western boundaries of the domain, along South Australia and
New South Wales coasts, showed less connectivity (Figure 2).

Species Distribution Modeling and
Comparison of Models’ Performance
The final SDMs included mean sea water temperature,
chlorophyll A concentration, primary production, bathymetry,
dissolved oxygen concentration, current velocity and centrality
measures (Supplementary Table 2). Salinity and pH were
removed for both species, due to strong correlation with
other environmental variables, specifically salinity was highly
correlated with temperature while pH was highly correlated
with temperature and current velocity. Note that centrality
measures displayed low correlation with the environmental
variables included in the models, although they displayed greater
correlation between centrality metrics, especially for snapper
(Supplementary Figures 4, 5).
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The optimal models’ results are summarized in Table 2. For
both species, SDMs used a tree complexity of 5, a learning rate of
0.005, bag fraction of 0.75, 5 folds for tuning and a maximum
of 10,000 trees. The optimal model for sea urchin used 4,300
trees for the model integrating all centrality metrics, 4,700 trees
for the model including degree centrality only and 5,700 for the
model without centrality metrics. Models showed good predictive
performance with same mean AUC score (0.95 ± 0.01) for all
models (with all centrality metrics, degree centrality only and
without connectivity). The optimal model for snapper used 4,000
trees for the model integrating centrality metrics, 3,300 trees
when only degree centrality is included in the model and 3,200
trees when seascape connectivity was excluded. The mean AUC
score was 0.91 ± 0.03 for the models including all centrality
metrics and degree centrality only while it was slightly lower
(0.90 ± 0.03) in the model without connectivity.

Environmental variables emerged as the most influential
predictors for both species. For the sea urchin bathymetry showed
the largest influence in all models, respectively, contributing
between 25 and 30% to SDMs predictions, followed by
temperature and dissolved oxygen which had a relative influence
between 13 and 17% across the three sea urchin models
(Figures 3A–C). Primary production, chlorophyll A and current
velocity had a lower contribution, with relative influence varying
between 7 and 15% (Figures 3A–C). For snapper, temperature
was the most influential variable contributing between 36.5
and 40% to SDMs predictions in all the models (Figures 3D–
F). Other environmental variables that showed an important
relative influence for snapper were current velocity (13.2, 15.2,
and 17.2%), followed by chlorophyll A (10.1, 11.6, and 13.3%).
Dissolved oxygen, primary production and bathymetry were less
influential with relative influence values varying from 7 to 11.5%
(Figures 3D–F).

Centrality measures had some influence across both
species with degree centrality emerging as the most important
centrality measure. For the purple sea urchin SDM, connectivity
contributed to a total of 18.6% to the final model, with degree
centrality having the largest relative influence (8.2%), followed by
betweenness centrality (7.2%) and eigenvector centrality (3.2%)
(Figure 3A). Degree centrality was more influential than current
velocity (7.3%) and similar to chlorophyll A concentration
(9.2%). Centrality measures showed pairwise interactions with
several of the environmental variables (see three-dimensional
dependence plots Supplementary Figures 7, 8). Eigenvector
centrality had the strongest interactions with current velocity

and primary production, degree centrality had interactions
with primary production and bathymetry, while betweenness
centrality interacted with temperature and bathymetry. For
snapper, all centrality measures had a lower relative influence
than the environmental parameters, and contributed at most 17%
to SDM predictions. Degree centrality was the most influential
among the centrality metrics, with a relative influence of 6.9%,
followed by eigenvector centrality (6.4%) and betweenness
centrality (3.6%) (Figure 3D). Centrality measures interacted
with environmental variables, and the strongest interactions were
with temperature for degree centrality and eigenvector centrality,
and bathymetry for betweenness centrality (Supplementary
Figures 7, 8).

We selected only the network-based metric with the largest
influence to reduce the number of variables and increase the
predictive power. Degree centrality was selected for both species,
and we therefore compared the SDM results between models with
and without degree centrality included (Table 2). Note that a
lower number of predictors is expected to result in an overall
increase in relative influence across all variables. In the purple
sea urchin model, the relative influence of degree centrality
was maintained among models, more influential than current
velocity and similar to chlorophyll A concentration, primary
production and dissolved oxygen (Figure 3B). For the sea urchin,
the order of variables based on relative influence remained
the same for the model including all centrality measures (e.g.,
Figures 3A vs. B), and degree centrality maintained a similar
order of influence, comparable to chlorophyll A and well above
the influence of current velocity. Degree centrality had some
interactions with all the environmental parameters, but the
strongest interactions were with bathymetry and high dissolved
oxygen (Supplementary Figures 7, 8). In the snapper model
the order of influence changed when only degree centrality was
used, moving ahead of primary productivity and bathymetry
in influence. The relative influence of degree centrality, when
used as the sole connectivity metric moved in front of both
primary productivity and bathymetry, and was comparable in
influence to dissolved oxygen concentration (Figure 3E). Degree
centrality interacted with all environmental variables, particularly
with warm temperature and high bathymetry (Supplementary
Figures 7, 8). Across all models and both species, connectivity
metrics appeared to maintain a relative influence between 9.5 and
18.5% on species distributions.

We predicted species distribution and compared maps of
habitat suitability, highlighting differences in species range

TABLE 2 | Optimal SDMs models results for each species.

SDM including all
connectivity variables

SDM including degree
centrality only

SDM excluding all
connectivity variables

Purple sea urchin

Number of trees 4,300 4,700 5,700

Mean AUC score 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01

Snapper

Number of trees 4,000 3,300 3,200

Mean AUC score 0.91 ± 0.03 0.91 ± 0.03 0.90 ± 0.03
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FIGURE 3 | Relative influence of environmental parameters and centrality metrics on SDM results for sea urchin H. erythrogramma (left) and snapper, C. auratus
(right). Fitting BRT including all centrality measures (A,D) or selecting only the most influential variable degree centrality (B,E), or excluding centrality (C,F). Relative
influence expressed in percentage (i.e., total influence sums up to 100%).
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(see Supplementary Figure 9 for habitat suitability predictions
for all models). Despite these models predicted somewhat
different species distribution range, when tested for pairwise
correlation, the differences in spatial distribution showed very
low correlation with the seascape centrality metrics for both
species (Supplementary Figure 10).

The impact of including (or not) connectivity in the
SDM predictions revealed geographic structure in terms of
the magnitude of increase or decrease in modeled habitat
suitability (Figure 4). For the purple sea urchin, most areas
showed a decrease in habitat suitability when connectivity was
included (i.e., these areas became less suitable in the model),
particularly for Port Phillip Bay in Victoria and Spencer Gulf
in South Australia and areas far from the coastline (Figure 4).
Areas of increased habitat suitability were smaller and focused
around “central” rocky reefs (Figure 4B). Located primarily
around high degree centrality sites in central and western
Victoria, north and east Tasmania and New South Wales
(Figure 4A). Rocky reef patches with high betweenness centrality
and eigenvector centrality did not correspond to key zones
revealed from SDMs results (Supplementary Figure 11). Snapper
habitat suitability predictions decreased for models including
connectivity, especially for areas far from the coast. Areas
associated to high degree centrality largely corresponded to
higher suitability, particularly along north Tasmania, central
Victoria and on the border between Victoria and New South
Wales and South Australia habitats (Figure 4D). Areas of
high eigenvector centrality in central Victoria and north
Tasmania also correspond to high degree centrality, while
there was no consistent spatial trend for betweenness centrality
(Supplementary Figure 11).

DISCUSSION

Seascape connectivity is essential for ensuring long term
species persistence and determining the distribution of species
(Engelhard et al., 2017; Weeks, 2017), and as a result is expected
to have a significant influence on predicting species distribution
with SDMs. Graph-based centrality metrics may influence SDMs
predictions and degree centrality appeared to be the most
important metric among the centrality measures.

Degree centrality was the most significant among the
centrality measures included in the model. Degree centrality
identifies hubs of high connectivity, and it is critically important
for benthic species dispersing only during the larval stage,
representing the quantity of larval connectivity, identifying
important sources and destinations of larvae (Treml et al.,
2015; Zamborain-Mason et al., 2017). Hotspots of connectivity
ensure persistence in marine metapopulations (Zamborain-
Mason et al., 2017; Cecino and Treml, 2021), and in this work
was also significant in defining the species spatial distribution,
showing that highly central nodes identified areas of greater
habitat suitability. Connectivity variables had interactions with
the environmental parameters revealing that the most suitable
habitat also corresponded to critical habitats for connectivity.
Quantifying interactions among variables helps to define more

clearly which is the most suitable habitat for the species (Elith
et al., 2008), showing how the effect of one environmental
predictor on a species changes according to the levels of
other predictors. Recognizing these environmental interactions
is critical to assess changing environmental conditions, and
integrating environmental and ecological interactions produces
more robust SDMs and improves understanding of causes of
species’ distributions (Guisan et al., 2006).

The results for degree centrality indicate that the sea urchin
is predicted to occur in shallow waters, around high oxygen
concentrations and in hubs of connectivity (degree centrality
values between 10 and 20 ecological linkages). Both depth and
connectivity are critical to define benthic species distribution,
while dispersal largely influences the spatial distribution and
range extension (Ling et al., 2009). Depth was found to influence
reproduction in sea urchin, where higher gonad index was
associated to individual occupying the intertidal zone compared
to sea urchins living in the subtidal zone (Basch and Tegner,
2007). The role of temperature as an influential predictor of sea
urchin distribution is particularly relevant to the management
of sea urchin species due to their range expansion along with
the tropicalization of south-eastern Australian waters and the
consequential loss of kelp. Using mechanistic species distribution
models, range shifts of sea urchins were predicted, revealing
how these shifts are driven by climate, therefore leading
to the contraction of habitat-forming species such as kelp
(Castro et al., 2020).

Snapper, in contrast, is predicted to be found around hubs
of connectivity (degree centrality of value 4 and 8), and
in warm shallow waters. Elevated temperature is associated
with increased larval size and survival influencing the snapper
adult population dynamics (McMahon et al., 2020). Adult
snapper movement appeared to concentrate around these
warmer habitats, where conditions are optimal for larval rearing
(Fielder et al., 2005). Current velocity emerged as another
influential environmental parameter influencing the snapper
SDMs (Figure 3). Current velocities proved to be critical to
distinguish between juvenile and adult habitat for New Zealand
snapper populations (Compton et al., 2012). Water column
features such as currents largely influence species distribution
predictions of south-east Australian nearshore temperate reef
fishes, while other environmental variables like bathymetry
appeared to be less important predictors (Young and Carr, 2015).

Machine learning methods such as BRT offer the advantage
of exploring not only model performance but also the extent
of each variable’s relative influence. If predictors have no
contribution, the model algorithm calculates the relative variable
influence as zero or near zero. In our species distribution
models, connectivity contributes to the model, yet the influence
on predictions was not as strong as key environmental
variables, such as temperature, currents and chlorophyll. As a
result, if centrality metrics were omitted, the resultant models
would have resulted in different habitat suitability predictions,
especially affecting their spatial range. When we included the
most influential metric, degree centrality, the influence of
connectivity on SDMs predictions increased together with the
other predictors remaining among the least influential variables,
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FIGURE 4 | Maps showing the geographic distribution of degree centrality (A,C) and differences in spatial predictions of habitat suitability (B,D) for sea urchin
H. erythrogramma (top) and snapper, C. auratus (bottom). Degree centrality (A,C) is shown as dots corresponding to the habitat patches centroids. Values of habitat
suitability are positive when predicted habitat suitability is larger for SDM incorporating connectivity compared to the SDM without connectivity. Values of habitat
suitability are negative when predicted habitat suitability is lower for SDM incorporating connectivity compared to the SDM without connectivity. Maps in WGS84.
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however, its influence showed a larger increase compared to other
environmental predictors. In both species the area under the
curve (AUC-ROC) of the models was close to one, indicating
that the model performance and predictions were very good
(Jiménez-Valverde, 2012). AUC scores were similar for models
with and without connectivity, suggesting no differences in
the models’ predictive performance, however, the spatial range
of habitat suitability predictions differed among the models,
indicating that differences between the models exist. This
apparent contradiction may be explained by the high accuracy
typical of machine-learning algorithms (Bucklin et al., 2015).
Independent to connectivity, the most influential environmental
drivers were bathymetry and temperature for purple sea urchin,
and temperature and current velocity for snapper (Figure 3),
commonly found to have large influence across many marine-
focused SDMs (Reiss et al., 2011; Tyberghein et al., 2012).

Despite the limited differences in habitat suitability
magnitude, when incorporating connectivity in SDMs’ spatial
predictions revealed reduced suitability primarily for deep
waters, defining a more restricted geographic range for snapper
and sea urchins, limiting the distributions to shallow coastal
waters. In addition, the inclusion of connectivity in the SDMs
increase to a small extent the suitability around several clusters
of connectivity hubs. Habitats with high degree centrality,
were identified in central Victoria, in proximity of Wilsons
Promontory particularly for snapper population, key habitats for
metapopulation persistence across species and corresponding
to marine protected areas and reserves (Cecino and Treml,
2021). This region significance is well known and includes
several ecological features, which define the structure of the
coastal communities. Eastern Victoria was identified as potential
biogeographic break for many taxa often associated with limits in
species’ ranges and changes in community assemblages (Colton
and Swearer, 2012). Habitat patches in northern Tasmania may
also be essential for ensuring connectivity between Tasmania
and Victoria coasts. In Eastern Tasmania, the oceanographic
mixing zone where subantarctic water masses, driven by westerly
winds, interact with eddies from the East Australian current,
lead to enhanced productivity, and phytoplankton blooms and
mass aggregations of coastal temperate taxa occur (Hosack and
Dambacher, 2012; Dambacher et al., 2012; Commonwealth
of Australia, 2015). Snapper’s hubs of connectivity in South
Australia are also consistent with key habitat sites for the snapper
fishery and for spawning grounds (Fowler and Jennings, 2003).

Both study species used for this work have somewhat limited
dispersal ability, especially in relationship to the extent of the
model domain. This choice of model domain was made to
highlight an ecologically and economically important Australian
seascape, and the influence of ocean dynamics and life histories.
However, further research effort may be needed where species
have extended home ranges, long-distance swimming capacity,
or where dispersal periods extend for many weeks or months.

Applying SDMs to marine species can be particularly
challenging. Challenges in understanding how species are
distributed across space arise when comprehensive sampling
is not possible, for example for species with high degree
of niche specialization, and/or restricted range (Araujo and

Guisan, 2006). Several issues are somewhat unique of the marine
environment. For example, a strong spatial bias in data collection,
since different effort is required to collect data in shallow
waters compared to deep waters, and the widespread spatial-
temporal bias in global satellite-derived ocean measurements,
due to unpredicted or unusual atmospheric properties affecting
the algorithm interpretation, and the lack of in situ data to
use for tuning (Robinson et al., 2011, 2017). In our models,
occurrence data collected from the Atlas of Living Australia
include data from early 1900s, while environmental data were
based on information collected from 2000 (see Supplementary
Material for details) and the connectivity models used ocean
current data for the period 1992–2012. This might result in
an underestimation of the importance of connectivity and its
influence on model predictions. Despite the large temporal extent
of the ALA data sets the oldest data largely corresponded the
distribution of occurrences recorded in recent years. However, we
focused our analysis on a cleaned and reduced data set, reducing
the temporal differences among species data, environmental
predictors and centrality metrics. The lack of true absence data
may be another limitation when developing SDMs, especially for
marine species, where presence data sampling is biased toward
coastal waters and areas near ports (Robinson et al., 2011).
Though we addressed this limitation to some degree by choosing
BRT methods, an appropriate procedure when working with
species presence and pseudo-absence data (Cerasoli et al., 2017).
We selected BRTs over presence-only methods such as Maxent
because BRTs allow for better control and quantification of
predictors interactions, allows appropriate model complexity and
tunes model parameters with internal cross-validation. Moreover,
the predictive performance of BRT are comparable to Maxent for
predicting presence-only species data (Valavi et al., 2021). BRTs
outperform other approaches like generalized linear and additive
models, as well as combine many decision trees to improve
model’s accuracy, include stochasticity, reducing variance and
improving predicting performance (Cimino et al., 2020). That
said, BRTs are often criticized for their tendency to overfit
models. Other limitations common to SDMs include changes in
habitat conditions due to climate change and human impacts,
and attempting to predict species around range shifts. For
exploited taxa like snapper, the distribution of fishing effort
likely influences species distribution and presence/absence data.
Our models could potentially be improved by including data on
fishing pressure and environmental changes to producing more
realistic spatial predictions.

Across two very different marine taxa, centrality measures
proved to be appropriate and flexible proxies to describe
seascape connectivity and can effectively identify hotspots
and stepping-stones of connectivity. Using these patch-level
metrics to describe seascape connectivity is an efficient
way to incorporate connectivity information into marine-
based SDMs. Centrality metrics proved to have a limited
contribution to SDMs, yet they contribute to define the
spatial distribution patterns and the most suitable habitat
patches. Importantly, centrality metrics interact with
other environmental predictors, highlight the suitability
of habitats combining environmental and connectivity
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characteristics. Connectivity is fundamentally important for
marine species and should be considered in models of species
distribution or abundance. Our new methods chart a pathway
forward for efficiently incorporating connectivity into marine-
based SDMs and open the door for exploring the broader
influence of dispersal and movement on species distributions.
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