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Ascidians, particularly those highly invasive ones, are typical fouling organisms to cause
significantly negative ecological and economic influence in coastal ecosystems. Stolon,
which is the unique structure of some solitary ascidians to complete the essential
process of adhesion, possesses extremely high tolerance to environmental stresses
during biofouling and invasions. However, the mechanisms underlying environmental
tolerance remain largely unknown. Here, we used the quantitative proteomics
technology, isobaric tags for relative and absolute quantitation (iTRAQ), to investigate the
molecular response to environmental challenges (temperature and salinity) in the stolon
of a highly invasive fouling ascidian, Ciona robusta. When compared with the control,
a total of 75, 86, 123, and 83 differential abundance proteins were identified under
low salinity, high salinity, low temperature, and high temperature stress, respectively.
Bioinformatic analyses uncovered the key pathways under both temperature and
salinity stresses, including “cytoskeleton,” “signal transduction,” and “posttranslational
modification,” which were involved in stolon structure stability, protein synthesis, and
stress response activation. Under the low salinity stress, the “extracellular matrix”
pathway was identified to play a crucial role by regulating cell signal transduction
and protein synthesis. To deal with the high salinity stress, stolon could store more
energy by activating “carbohydrate/lipid transport” and “catabolism” pathways. The
energy generated by “lipid metabolism” pathway might be beneficial to resist the low
temperature stress. The upregulation of “cell cycle” pathway could inhibit cell growth,
thus helping stolon conserve more energy against the high temperature stress. Our
results here provide valuable references of candidate pathways and associated genes
for studying mechanisms of harsh environmental adaptation and developing antifouling
strategies in marine and coastal ecosystems.

Keywords: ascidian, biofouling, invasive species, proteomics, salinity, temperature, environmental stress

INTRODUCTION

Biofouling, the undesired adherence of fouling organisms on various submerged surfaces, is one
of the most concerned environmental issues in global aquatic ecosystems (Bellard et al., 2013;
Ricciardi et al., 2017; Briski et al., 2018). More than 4000 species have been recorded as biofoulers
in both marine and freshwater ecosystems (Nakano and Strayer, 2014). Among these diverse
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organisms, mussels, barnacles, ascidians, sea stars, and tube
worms are the most representative taxa (Flammang et al., 2015;
Li X. et al., 2021). These taxa usually use their specialized
organs/structures, such as mussel byssus (Andrade et al., 2015),
sea star and sea urchin tube feet (Santos et al., 2013), ascidian
stolon (Li et al., 2019), and barnacle base plate (von Byern and
Grunwald, 2010), to firmly adhere to the surfaces of underwater
substrates to achieve their successful biofouling. In order to solve
the biofouling problem, it is a prerequisite to understanding the
adhesive processes of these organs/structures and the associated
mechanisms, as well as environment-organism interactions that
can affect the adhesive abilities of fouling taxa (Li et al., 2019).
In the last decade, numerous studies have confirmed that the
underwater adhesion is largely biomacromolecule-mediated, and
remarkable adhesive proteins, such as mussel foot proteins
(Mfps), barnacle cement proteins, sea star footprint proteins,
and sea urchin tube feet cement secreted by the adhesive
organs/structures of these fouling organisms, have been identified
as the crucial elements for marine biofouling (von Byern and
Grunwald, 2010; Hennebert et al., 2012; Santos et al., 2013; Zhang
et al., 2017b). Despite the fact that environmental changes also
largely determine the successful biofouling (Chen et al., 2021),
limited information is available on their influential mechanisms,
particularly on the complex interaction mechanisms between
environmental factors and adhesion-related proteins.

Studies have illustrated that environmental changes can affect
biofouling by altering the expression and functions of adhesion-
related proteins. For example, the fouling ability of the barnacle
Balanus amphitrite decreased with temperature increased from
15 to 25◦C, and such decreased ability of biofouling was owing
to the expression changes of cement proteins (Johnston, 2010).
The expression of some Mfps reduced significantly in the foot of
Mytilus coruscus exposed to higher temperature, thus affecting
the byssus production and further weakening biofouling (Li
Y. F. et al., 2020). Other environmental stressors, such as pH
(ocean acidification), nanoparticles, and microplastics, can also
weaken the fouling strength by influencing adhesion-related
protein expression (Hu et al., 2015; Scott et al., 2019; Khan
et al., 2020; Shi et al., 2020). In addition, studies found that
several metabolic pathways associated with adhesion were also
involved in the response of the fouling organs/structures of
marine organisms to environmental changes. “Osmoregulation”
and “cell cycle” were identified as crucial common pathways in
the feet of Mytilus galloprovincialis and Mytilus trossulus under
salinity stresses (Lockwood and Somero, 2011). The pathways
of “metabolic pathway,” “focal adhesion,” and “cytoskeleton”
participated in the response to cadmium challenges in the foot
of Perna viridis (Zhang et al., 2017c). Available evidence from
these studies suggests that anti-stress strategies and associated
adhesion-related protein responses should be taxa- or even
organ/structure-specific in marine biofoulers, and more efforts
are needed to comprehensively investigate common and specific
mechanisms underlying environmental challenges.

Ascidians such as Ciona, Styela, Botrylus, and Didemnum
are fouling taxa in coastal ecosystems (Dijkstra and Simkanin,
2016). Even worse, many species of these taxa are highly invasive,
largely spreading the negative effects of biofouling and further

threatening local biological communities and global industries
including underwater facilities, shipping, and aquaculture (Cahill
et al., 2012; Zhan et al., 2015; Yan et al., 2017; Kim et al.,
2019). Among ascidians, C. robusta is a notorious invader for
its extremely high biofouling capacity mainly derived from
the rootlike fouling structure, the stolon (Li et al., 2019).
Stolon can enlarge the binding area between the ascidian
body and substrate surface by releasing adhesive proteins to
enhance the interfacial adhesion (Pennati and Rothbächer, 2014;
Ueki et al., 2018). The stolon can still maintain its structural
stability and underwater adhesive ability under various challenges
including temperature and salinity stresses, which has been used
repeatedly when studying the response mechanisms of ascidians
to environmental stresses (Renborg et al., 2014; Hawes et al.,
2018; Huang et al., 2019; Li et al., 2019). Former studies have
demonstrated that C. robusta body displayed high tolerance
to temperature and salinity stresses, which were related to
multiple layers of mechanisms such as rapid microevolution
and adaptation, phenotypic plasticity, and metabolism trade-off
(Renborg et al., 2014; Dijkstra and Simkanin, 2016; Hawes et al.,
2018; Huang and Zhan, 2020; Chen et al., 2021). As a special
adhesive structure, it remains unknown how C. robusta stolon,
particularly the adhesion-related proteins in stolon, actively
respond to environmental stressors. Recently, several adhesion-
related proteins have been identified from C. robusta stolon using
mass spectrometry technologies (Ueki et al., 2018; Li et al., 2019),
bringing us an opportunity to reveal the molecular response
mechanisms of C. robusta stolon to environmental challenges.

Isobaric tags for relative and absolute quantitation (iTRAQ)
has been widely applied in analyzing the effects of environmental
changes on fouling organisms at the proteomics level, mainly
because such technique has outstanding accuracy, high-
throughput, strong sensitivity, and dynamic detection ability
(Han et al., 2013; Ji et al., 2014; Zhang et al., 2015; Tang et al.,
2020). With this technique, this study aimed to reveal the
proteomic response of C. robusta stolon to temperature and
salinity challenges. We detected the changes in protein expression
in the C. robusta stolon exposed to different temperature and
salinity stresses. Subsequently, the functional annotation and
network analyses on these stress-related proteins were conducted
to reveal the common and differential response mechanisms of
this adhesive structure to environmental changes.

MATERIALS AND METHODS

Animal Collection and Experimental
Design
Ciona robusta adults (average length of 6 cm) adhered on
scallop cages were collected from the Longwangtang Aquaculture
Farm, Dalian, Liaoning Province, China (38◦49′′N, 121◦24′′E)
in September 2019. Collected ascidians were acclimatized in the
filtered (the size of the filter membrane is 0.45 µm) and aerated
seawater at 22 ± 1◦C, 30 ± 1 psu, and pH 8.1 ± 0.1 (natural
conditions at the collection site) for 1 week. They were fed with
the dried algae powder mixture of Spirulina sp. and Chlorella sp.
daily. After acclimation, we conducted a preliminary experiment
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to select suitable exposure time and level for temperature and
salinity stresses. The temperature gradient were designed as 5,
10, 30, and 40◦C, while the salinity gradient were designed as
12, 20, 40, and 50 psu according to the results obtained from
previous investigations (Carver et al., 2006; Bouchemousse et al.,
2016; Chen et al., 2018). Ascidian individuals were exposed to
the different gradients of environmental stresses for 1 week. The
analysis results showed that exposing C. robusta to the levels
of 12 psu, 40 psu, 10◦C, 30◦C for 120 h could represent the
low salinity, high salinity, low temperature and high temperature
stresses on this species. After preliminary experiment, the healthy
ascidians with obvious stimuli responses were randomly assigned
to five groups: control (C, 22◦C/30 psu), high salinity (HS,
22◦C/40 psu), low salinity (LS, 22◦C/12 psu), high temperature
(HT, 30◦C/30 psu), and low temperature (LT, 10◦C/30 psu).
Each exposure group contained three separate 20 L tanks as
replicates and 40 individuals in each replicate tank (Figure 1).
After exposure for 120 h, the stolon that was still attached to
the substrate surface was dissected from 18 individuals in each
tank and pooled together as a mixed biological replicate. A total
of 270 stolon tissues (18 individuals × 3 replicates × 5 groups)
were collected, and the residual seawater on the sampled stolon
surface was removed with the sterilized absorbent paper. The
stolon samples were then rapidly frozen with liquid nitrogen and
preserved at−80◦C until proteomics analysis.

Protein Preparation and Isobaric Tags for
Relative and Absolute Quantitation
Labeling
To extract the total proteins, the collected samples were ground
into powder with liquid nitrogen. A total of 3 mL radio-
immunoprecipitation assay buffer was added to the powder and
homogenized with a glass homogenizer. After centrifugation at
16,000 g for 30 min, the supernatant was deposited by adding
fourfold volume of cold acetone containing 10 mM DTT at
20◦C for about 3 h. Another centrifugation at 20,000 g for
30 min was performed at 4◦C and the supernatant was then
discarded. The collected precipitate was resuspended with 800 µL
of cold lysate containing a solution of 8 M urea, 30 mM 2-[4-
(2-Hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES),
1 mM PMSF, 2 mM EDTA, and 10 mM DTT, and then incubated
at 56◦C for 1 h (Lopez et al., 2017). The iodoacetamide was
rapidly added into the resuspended sample to obtain the solution
with the final concentration of 55 mM by incubating it at room
temperature for 1 h in the dark. Following a second round
of centrifugation at 20,000 g for 30 min at 4◦C, the protein-
containing supernatant was collected and stored at −80◦C for
subsequent analyses.

The purity of extracted stolon proteins was analyzed using the
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) method (Li et al., 2019), while the protein concentration
was determined using the Bradford method (Bradford, 1976).
Subsequently, the filter-aided sample preparation method was
used for protein digestion. In brief, a total of 100 µg of stolon
proteins was added into the 10 K tube for ultrafiltration. A total
of 200 µL of 50% triethylammonium bicarbonate (TEAB) buffer

was added to the obtained solution and then centrifuged at
14,000 g for 40 min at 4◦C, and this step was repeated once. The
protein mixture was then treated with 1 µg/µL of Sequencing
Grade Modified trypsin (Promega, Madison, WI, United States)
at 37◦C for 24 h. The target peptides were lyophilized with a
lyophilizer and collected into a new centrifuge tube. Finally,
the peptide samples were redissolved in 50% TEAB buffer.
Sample labeling was performed using an iTRAQ 8-plex reagent
kit (AB Sciex, Framingham, MA, United States) following the
manufacturer’s instructions. The isotopes 116, 117, 118, 119, and
121 were selected to label the stolon proteins in the control, LS,
HS, LT, and HT groups, respectively.

Mass Spectrometry Analysis
A set of iTRAQ-labeled samples were combined, desalted,
and vacuum-dried. The labeled peptide mixture was dissolved
with buffer A (10 mM ammonium formate, pH = 10) and
separated with a reversed phase C18 column (75 µm × 10 cm,
5 µm, 300 Å, Agela Technologies) mounted on an ultimate
3000 nano LC system (Dionex, Sunnyvale, CA, United States).
Finally, a total of 16 fractions were harvested and freeze-dried.
Each fraction was re-dissolved with 5 µL 0.1% formic acid
and passed through a Nano LC-MS/MS system at a flow rate
of 300 nL/min. The separated compounds were then eluted
into an Electrospray Ionization Orbitrap of the Q-Exactive
mass spectrometer (Thermo Fisher Scientific, Waltham, MA,
United States), setting in positive ion mode and data-dependent
manner with full MS scan at 350–2,000 m/z, full scan resolution
at 70,000, and MS/MS scan resolution at 17,500. The minimum
signal threshold for MS/MS scan was set at 1E + 5 and the
isolation width was set at 2 Da.

Differential Abundance Proteins
Identification
The raw data of MS analysis was converted into files with mgf
format using the Proteome Discoverer 1.4 software (Thermo
Fisher Scientific Inc., Bremen, Germany). The obtained clean
data was searched using MASCOT software (Matrix Science,
London, United Kingdom; version 2.3.0) to identify proteins.
The protein database for C. robusta in UniProt1 was used as
the reference database for protein identification as described by
a previously published protocol (Li et al., 2019). The summed
intensities of the matched spectrum were used for quantizing
the relative expression ratios of proteins, and one protein was
quantified using at least two spectra. Subsequently, these ratios
were transformed to log2 intensities (Kuplik et al., 2019). The
protein abundance differences between the exposed groups (LS,
HS, LT, and HT) and the control group were evaluated by
using t-test method combined with the Benjamini–Hochberg
correction (Ji et al., 2014). The DAPs, including the up-
regulated and the down-regulated proteins, were identified using
p-value < 0.05 and fold change ≥ 1.2 or ≤0.83, respectively. The
raw data obtained from LC-MS/MS have been uploaded to the
public repository iProX (ID: IPX0002919000).

1https://www.uniprot.org/taxonomy/7713
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FIGURE 1 | Schematic diagram of temperature and salinity challenges. HS, high salinity; LS, low salinity; HT, high temperature; LT, low temperature; control, natural
seawater.

Bioinformation Analysis
The functional annotation of the obtained DAPs was performed
using OmicsBean online program2, which includes the
enrichment functions of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG, Gene and
Consortium, 2000; Kanehisa et al., 2008). After removing the
invalid values and antilibrary data, a total of 75, 86, 123, and 83
DAPs in the four groups were identified. The hypergeometric
test was used to find the significantly enriched GO terms and
KEGG pathways with the criterion of p-value < 0.01. Clusters
of Orthologous Groups (COG) enrichment was also employed
to functionally classify the DAPs based on the orthology concept
(Tatusov et al., 2000). The Venn diagram online tool3 was used to
analyze the overlapped DAPs among different exposure groups.
According to the Venn results, the coexisting DAPs of salinity
and temperature stresses were evaluated by protein–protein
interactions (PPI). The PPI network analysis was conducted to
further clarify the inter-relationships and expression patterns
of the DAPs related to salinity/temperature challenges by
using the Search Tool for the Retrieval of Interacting Genes4

(version 11.0) and Cytoscape software5 (version 3.7.2) with
default parameters.

2http://www.omicsbean.cn
3http://bioinformatics.psb.ugent.be/webtools/Venn/
4http://string.embl.de
5http://www.cytoscape.org

RESULTS

Stolon Protein Analysis
A total of 33,068 MS/MS counts were generated from the
stolon across all five groups (control included). By searching
against the UniProt database, 3,930 unique peptides and 1,083
proteins were identified (Supplementary Table 1). A total of 597
(approximately 55.12%) of the identified proteins had at least
two unique peptides. Our results illustrated that most of the
proteins (approximately 75%) were composed of 100–700 amino
acids (Supplementary Figure 1), while 87.63% of the identified
proteins contained less than seven peptides (Supplementary
Figure 2). The molecular weight of most of the identified proteins
was less than100 kDa, accounting for 80% of the total proteins.
Moreover, 15 proteins with low molecular weight (<10 kDa)
and 135 proteins with high molecular weight (>100 kDa)
were identified (Supplementary Figure 3). The distribution of
protein coverage illustrated that the coverage with less than
5, 5–15, 15–30, and 30–100%, accounting for 37.65, 36.93,
18.12, and 7.30% of the total proteins in stolon, respectively
(Supplementary Figure 4).

Differential Abundance Proteins
Identification
For salinity stresses, a total of 75 DAPs including 49 up-regulated
and 26 down-regulated proteins were identified from the stolon
exposed to LS, while a total of 86 DAPs including 54 up-regulated
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FIGURE 2 | Analysis of the differential abundance proteins in the stolon of Ciona robusta exposed to temperature and salinity stresses. HS, high salinity; LS, low
salinity; HT, high temperature; LT, low temperature; C, natural seawater control.

and 32 down-regulated proteins were identified from the stolon
exposed to HS. For temperature stresses, a total of 123 DAPs
containing 79 up-regulated and 44 down-regulated proteins were
identified from the stolon exposed to LT, while a total of 83 DAPs
containing 51 up-regulated and 32 down-regulated proteins were
identified from the stolon exposed to HT (Figure 2). Venn
analysis showed that a total of 27 DAPs were overlapped in both
HS and LS groups, while 48 DAPs were overlapped in both HT
and LT groups (Figure 3). The detailed information on these
DAPs is shown in Supplementary Table 2.

Enrichment Analysis for the Differential
Abundance Proteins
Gene Ontology enrichment analysis on the DAPs showed that
these proteins were enriched into three categories (Figure 3
and Supplementary Tables 3–6): biological process (BP),
cell component (CC), and molecular function (MF). The
“Cytoskeleton” term was significantly enriched in both HS
and LS groups. The terms “extracellular region,” “cellular ion
homeostasis,” “cellular cation homeostasis,” and “extracellular
matrix structural constituent” were only enriched in the LS
group (Figure 4A). The terms “cytoskeletal part,” “cytoskeleton
organization,” and “proteolysis” were only enriched in the
HS group (Figure 4B). Meanwhile, the terms “cytoskeleton,”
“polymeric cytoskeletal fiber,” and “carbohydrate binding” were
enriched in both HT and LT groups. The terms “extracellular
space,” “calcium ion binding,” and “enzyme inhibitor activity”
were enriched in the LT group (Figure 4C). The significantly
enriched terms in the HT group were “microtubule,” “cell cycle,”
and “nucleoside-triphosphatase activity” (Figure 4D).

By performing KEGG pathway enrichment analyses, the
“extracellular matrix (ECM)” pathway was specifically enriched
in the stolon exposed to LS (Figure 5A), whereas the “transport
and catabolism” and “signal transduction” were the most
significant pathways enriched in the stolon exposed to HS

(Figure 5B). Furthermore, two pathways, including “signal
transduction” and “lipid metabolism,” were significantly enriched
in the stolon exposed to LT (Figure 5C), whereas the pathways
were “signal transduction” and “cell growth and death” in the HT
group (Figure 5D).

The DAPs identified from the stolon exposed to LS, HS,
LT, and HT were enriched into 16, 18, 19, and 17 COG
categories, respectively (Figure 6). Among these, the most
significant categories in the LS group were “signal transduction
mechanisms,” “cytoskeleton,” “extracellular structures,” and
“posttranslational modification, protein turnover, chaperones”
(Figure 6A), whereas the most significant ones in the HS group
were “cytoskeleton,” “signal transduction mechanisms,” and
“posttranslational modification, protein turnover, chaperones”
(Figure 6B). Meanwhile, the most significant categories in
the LT group were “posttranslational modification, protein
turnover, chaperones,” “signal transduction mechanisms,” and
“cytoskeleton” (Figure 6C), whereas they were “cytoskeleton,”
“posttranslational modification, protein turnover, chaperones,”
“cell cycle control, cell division, chromosome partitioning,”

FIGURE 3 | Venn diagrams showing the common differential abundance
proteins identified from the stolon of Ciona robusta exposed to salinity and
temperature stresses. (A) Salinity stresses and (B) temperature stresses. HS,
high salinity; LS, low salinity; HT, high temperature; LT, low temperature; C,
natural seawater control.
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FIGURE 4 | Gene ontology enrichment of differential abundance proteins in the stolon of C. robusta exposed to salinity and temperature stresses. (A) Low salinity,
(B) high salinity, (C) low temperature, and (D) high temperature.

“inorganic ion transport and metabolism,” and “signal
transduction mechanisms” in the HT group (Figure 6D).

Protein Interaction Analysis
A total of 27 and 48 DAPs were identified by using the PPI
method from the stolon exposed to salinity and temperature
stresses, respectively (Figure 7). After hiding the disconnected

nodes, only 22 and 29 proteins were correlated to each
other in the salinity and temperature networks, respectively.
Among these DAPs, one KEGG pathway “ribosome” was
significantly enriched under high and low salinity stresses,
while two KEGG pathways, “ribosome” and “phagosome,”
were significantly enriched under high and low temperature
stresses, respectively.

Frontiers in Marine Science | www.frontiersin.org 6 October 2021 | Volume 8 | Article 761628

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-761628 October 20, 2021 Time: 16:22 # 7

Li et al. Stolon Proteomic Response to Stresses

FIGURE 5 | Kyoto encyclopedia of genes and genomes enrichment analysis of the differential abundance proteins in the stolon of C. robusta exposed to salinity and
temperature stresses. (A) Low salinity, (B) high salinity, (C) low temperature, and (D) high temperature. The number represents the number of proteins enriched to
the pathways.

DISCUSSION

Proteomic Response to Salinity Stress
In aquatic species, salinity is a common environmental stressor
that can remarkably affect metabolism and osmotic regulation
of various organisms (Vargas-Chacoff et al., 2015). Marine
animals can maintain their most critical physiological functions
through multiple molecular mechanisms when exposed to

salinity stresses, despite that there are alterations in osmotic
pressure and cytoplasmic composition in their cells (Rautsaw
et al., 2020). In our study, the identified DAPs in C. robusta
exposed to both low and high salinity stresses were significantly
enriched in the pathways “posttranslational modifications
(PTMs),” “cytoskeleton,” and “signal transduction,” suggesting
the involvements of these pathways in the responses of stolon to
salinity stress.
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FIGURE 6 | Clusters of orthologous analysis of differential abundance proteins in the stolon of C. robusta exposed to salinity and temperature stresses. (A) Low
salinity, (B) high salinity, (C) low temperature, and (D) high temperature. The number represents the number of proteins enriched to the terms.

During their synthesis, package, and release, proteins are
successively modified. The PTMs, such as phosphorylation,
glycosylation, and hydroxylation, are crucial for controlling
protein conformation and increasing proteome complexity in
organisms (Cloutier and Coulombe, 2013). PTM is indeed a
common characteristic of numerous adhesive proteins of marine
organisms (Flammang et al., 2015). In these PTMs, protein
glycosylation has emerged as an important biochemical process
in marine bioadhesion. An example is the marine mussel adhesive
protein Pvfp-1, which has extensive threonine O-glycosylation
(Zhao et al., 2009). Protein hydroxylation was found in all the
plaque proteins (Mfp-1 to Mfp-6) of mussels and cement proteins
(Pc-1 and Pc-2) of tubeworms (Waite et al., 2005; Lee et al.,
2011). In addition, phosphoproteins have also been detected
from the mussel foot proteins such as Mcfp-5 and Mcfp-6 and
tubeworm cement proteins such as Pc-3A and Pc-B (Zhao et al.,
2005; Zhao and Waite, 2006). Our results here indicated that
the response of the C. robusta stolon to salinity stresses might
be regulated by PTMs (Figure 6). Such a finding provides new
evidence of PTMs to implicate in stolon attachment processes
of C. robusta, although the PTMs have not been detected in the
adhesive proteins of this species so far.

We found that several DAPs associated with salinity stresses
were significantly enriched in the “cytoskeleton” term (Figure 4).
Cytoskeletal proteins provide structural organization to cells in
eukaryotic organisms (Bogatcheva and Machado, 2020). They are
involved in transmitting important regulatory signals during cell
activation, keeping the cellular structure stable, and maintaining
signal communication between different cells (Bogatcheva and
Machado, 2020). Furthermore, the cytoskeletal proteins may
have major roles in adjusting biological rhythms by sensing

environmental parameters (Artigaud et al., 2014). Therefore,
C. robusta may adjust its cytoskeleton management strategy when
exposed to salinity stresses, thereby consolidating the cell growth
efficiency and further maintaining the structural stability of the
stolon. This may be a fact that the stolon can secret some adhesive
proteins that permanently glue the tunicate to the substrate under
harsh salinity stresses.

Signal transduction pathway is a vital biochemical process in
which cells convert extracellular signals from the surrounding
environments into intracellular specific reactions (Kling, 1998).
The signal transduction is initiated as one of the classic strategies
to deal with environmental salinity changes in most aquatic
animals (Buckley et al., 2006; Zhang et al., 2015; Dou et al.,
2018; Li Y. et al., 2021). In our study, the identified DAPs
were significantly enriched in “signal transduction” pathway,
indicating the importance of signal transduction in coping
with salinity stresses (Figure 5). Indeed, previous studies have
confirmed that signal transduction could help aquatic organisms
perceive their environmental changes (van der Geer, 2013).
Moreover, a study showed that signal transduction-related
pathways, such as G protein-coupled receptor, Ras GTPase, and
P13K/Akt/mTOR pathways, could regulate the response of the
oyster Crassostrea gigas to salinity stimulation (Zhang et al.,
2015). Li Y. et al. (2021) reported that the MAPK signaling
pathway was activated in the gills of the razor clam Sinonovacula
constricta after exposure to salinity stresses (Li Y. et al., 2021). All
these findings suggest that signal transduction-related pathways
were activated under salinity challenges. Our results here provide
one more layer of evidence to support this conclusion, further
confirming that the C. robusta stolon could respond to salinity
stresses by activating various signal transduction pathways.
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FIGURE 7 | Protein–protein interaction analysis of differential abundance proteins in the stolon of C. robusta exposed to salinity and temperature stresses.
(A) Salinity stresses. (B) Temperature stresses. The circles represent differentially abundant proteins (DAPs). Red circle: the DAPs enriched in the stolon exposed to
high salt/temperature stresses. Blue circle: the DAPs enriched in the stolon exposed to low salt/temperature stresses. Green circle: the DAPs enriched in the stolon
exposed to both high and low salt/temperature stresses. The thickness of the line indicates the strength of data support.

The “extracellular matrix (ECM)” term was significantly
enriched in the stolon exposed to low salinity. ECM is a complex
and dynamic structure that provides the scaffold wherein cells

are located. Apart from its function as the principal scaffold of
cells, ECM provides the signals regulating cell behaviors and
triggers multiple biological activities that are essential for tissue
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morphological homeostasis (Theocharis et al., 2016). A previous
study revealed that Botrylloides nigrum and Botryllus planus
ascidians exhibited dramatic morphological response to low
salinity stresses, including the expansions of cloacal cavities and
distensions of pharyngeal baskets and neural glands (Dijkstra
and Simkanin, 2016). Similarly, the changes in the ECM of
C. robusta stolon might enhance its defense ability to low
salinity stresses by regulating morphological homeostasis of
stolon. In addition, the ECM in stolon might not only provide
physical scaffolds but also regulate many cellular processes by
inducing growth, migration, differentiation, and morphogenesis
to respond to salinity changes, and this has been reported in
the rough skin sculpin Trachidermus fasciatus and the mud crab
Scylla paramamosain (Theocharis et al., 2016; Ma et al., 2018;
Zhang et al., 2020).

We also observed the significant enrichment of the DAPs
associated with the “transport and catabolism” in the stolon
exposed to high salinity stress. An earlier study on the sea
cucumber Holothuria leucospilota showed that the protein-
dominated catabolism was significantly enhanced under low
salinity stresses, whereas the carbohydrate- or lipid-dominated
catabolism was significantly enhanced under high salinity stresses
(Yu et al., 2013). The proteomic response of C. robusta stolon to
higher salinity might be consistent with that of sea cucumber,
and the response mechanisms of stolon to hypersaline stresses
likely rely on the activation of carbohydrate/lipid transport and
catabolism that can produce energy.

Proteomic Response to Temperature
Stress
Temperature is known to significantly affect marine organisms’
physiology (Pineda et al., 2012; Dong et al., 2019; Irvine et al.,
2019). Indeed, temperature changes can affect the adhesive
organs/structures of marine organisms. A typical case is byssus
adhesion reduction in mussels caused by heat treatment,
which has been considered an antifouling strategy for mussels
(Perepelizin and Boltovskoy, 2011). Our results here illustrate
that the stolon of C. robusta was also influenced by temperature
changes at the molecular level. We found the significant
enrichment of the term “cytoskeletal proteins” in C. robusta
stolon exposed to temperature challenges (Figure 4). Similarly,
earlier analyses showed that the changes in the abundance
of cytoskeletal proteins in the ascidians Ciona intestinalis and
Ciona savignyi were closely associated with thermal stresses
(Serafini et al., 2011). Studies on marine teleosts and invertebrates
also documented the recombination of the temperature-induced
cytoskeletal structure (Vornanen et al., 2005; Buckley et al.,
2006; Lockwood et al., 2010; Tomanek and Zuzow, 2010;
Jayasundara et al., 2015). Such available evidence suggests that the
cytoskeletal proteins in the C. robusta stolon might be involved
in temperature stress response through two mechanisms: the
alterations in cytoskeletal protein abundance and recombination
of the cytoskeletal structure.

Molecular chaperones are involved in the folding or
unfolding of proteins and the assembly or disassembly of larger
macromolecular complexes (Cloutier and Coulombe, 2013).

They are found in all cell types in animals, and their activities
are tightly regulated to maintain normal cell functions. Previous
studies showed that the higher steady-state levels of molecular
chaperones might underlie the capacity of C. intestinalis to out-
compete C. savignyi in warm habitats (Serafini et al., 2011).
Meanwhile, many molecular chaperones, including heat shock
proteins 24, heat shock proteins 90, and calcium-binding protein,
were likely to act as chaperones for maintaining the cytoskeletal
structure under temperature stresses, preventing the aggregation
of the denatured proteins (Lockwood et al., 2010; Lopez et al.,
2017). The significant enrichment of chaperoning molecules in
our study demonstrates that homeostasis regulation is a crucial
mechanism for the C. robusta stolon to respond to temperature
stresses. These molecular chaperones likely help the C. robusta
stolon achieve stable cytoskeletal structure.

Besides cytoskeleton and molecular chaperones, the term of
“calcium-binding proteins” was also significantly enriched in
the C. robusta stolon under both low and high temperature
stresses. Ca2+ is a highly universal intracellular signal regulating
several molecular pathways and cellular processes, including cell
proliferation, excitability, exocytosis, and transcription (Berridge
et al., 2003; Clapham, 2007). Intracellular calcium-binding
proteins can be divided into two categories. One category consists
of proteins with Ca2+-binding function, which can transport
Ca2+ across cell membranes and thus irreversibly regulate
the concentration of Ca2+ in the surrounding environments.
Another category can decode Ca2+ signals into functionally
specific signals (Carafoli et al., 2001). An investigation showed
that the signaling triggered via regulating the intracellular
Ca2+ concentration may be involved in the thermal response
of the oyster C. gigas (Zhang et al., 2015). We cannot
determine the specific functions of calcium-binding proteins
in C. robusta stolon, but the enrichment of these proteins in
our study suggests that calcium signaling in the stolon should
be one of the important molecular mechanisms in response to
temperature stresses.

The “phagosome” pathway was enriched in the stolon exposed
to both low and high temperature stresses in our study (Figure 7).
Phagocytosis is an important congenital defense mechanism for
macrophages against bacterial infections (Pradhan et al., 2018).
In eukaryotes, phagosomes can engulf potential pathogenic
microorganisms and apoptotic cells through binding to the
lysosome (Kinchen and Ravichandran, 2008). The enrichment of
DAPs in the “phagosome” pathway under temperature stresses
implies that temperature might be a remarkable environmental
factor leading to the apoptosis of stolon cells in C. robusta.
The phagosome is a highly dynamic organelle, even in healthy
individuals, and it can phagocytose billions of dead cells per
day. However, under stress conditions, they were more inclined
to eliminate apoptotic cells (Dean et al., 2019). Therefore, the
phagosome may assist in maintaining the homeostasis of stolon
cells and the structural stability via phagocytizing apoptotic cells
in the C. robusta stolon.

For most organisms, the dynamic equilibrium of lipid
metabolism is the fundamental physiological status in
maintaining vital activities (Gu et al., 2017). This means
that some lipids are constantly oxidized to meet metabolic needs,
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FIGURE 8 | The molecular mechanisms associated with the response of C. robusta stolon to salinity and temperature stresses. Red: temperature stresses. Blue:
salinity stresses. Green: interaction of temperature and salinity stresses. The shades of red and blue colors indicate the stress degree of temperature and salinity,
respectively. Light color: low salt/temperature stresses. Dark color: high salt/temperature stresses.

whereas others are synthesized and stored (Zhang et al., 2017a;
Gyamfi et al., 2018). Chilling stress is a common challenge
to many aquatic organisms, and responding to chilling stress
requires lipid metabolic reprogramming. Eventually, animals
usually generate more energy by degrading some lipids to
resist cold stresses (Brodte et al., 2008). The enrichment of the
“lipid metabolism” pathway has been found in many marine
organisms such as Eleginops maclovinus, M. galloprovincialis,
and Pelteobagrus vachelli in response to low temperature stresses
(Brodte et al., 2008). Our study illustrated that “lipid metabolism”
was the only pathway enriched in the C. robusta stolon exposed
to low temperature. Mechanistically, lipid metabolism may
provide more energy for the C. robusta stolon by suppressing
the lipogenesis capacity and enhancing the lipolysis capacity
during chilling stresses. Unlike the mechanism by which the
stolon responded to low temperature, the “cell cycle” term
exhibited a significant enrichment in the stolon in response
to high temperature stress. Heat is a common stress during
ascidian invasions and failure to adapt to this stressor can result
in programmed cell demise and decreased viability (Carafoli
et al., 2001). Previous studies found that marine organisms could
respond to heat stress via the arrested cell cycle progression. For
example, the marine teleost Gillichthys mirabilis could conserve
energy through inhibiting body cell growth and proliferation to
cope with thermal challenges (Buckley et al., 2006). C. robusta
may follow this mechanism and its stolon can inhibit cell growth
and eliminate the damaged cells, assisting stolon in preserving
energy to defend against high temperature stresses.

Common Response to Both Types of
Environmental Stresses
Despite the stress-specific pathways observed in this study,
the response to both temperature and salinity stresses was
not completely independent. Venn diagram analysis revealed

that “cytoskeleton,” “signal transduction,” and “posttranslational
modification” were the overlapping pathways in both salinity and
temperature stresses. The common response was also detected
by several studies, showing that ascidians mitigated adverse
environmental challenges through similar mechanisms (Serafini
et al., 2011; Huang et al., 2019; Li H. et al., 2020; Wei et al., 2020;
Chen et al., 2021).

Based on PPI analysis, the DAPs enriched in “ribosome”
pathway were changed significantly under both salinity and
temperature stresses, indicating that these stresses may affect
protein synthesis and metabolism in C. robusta stolon (Figure 7).
Marine organisms usually rely on the regulation of proteins
related to stress response, such as cytoskeletal proteins and
adhesive proteins, to maintain cellular homeostasis and limit the
adverse effects of harmful environmental stimuli (Vind et al.,
2020). Cytoskeletal proteins, which are used to sustain the
stable state of cellular/organ structure and communication, are
synthesized by ribosomes (Bashline et al., 2014; Bogatcheva and
Machado, 2020). Additionally, the proteins related to adhesive
functions in marine fouling organisms are also synthesized
by ribosomes (Lafontaine and Tollervey, 2001; Jimenez et al.,
2019). Previous studies have indicated the presence of adhesive
proteins synthesized by ribosomes in the stolon of C. robusta
(Li et al., 2019). The enrichment of “ribosome” pathway
in C. robusta may be helpful for the stolon to synthesize
some proteins associated with the defense against salinity and
temperature stresses.

CONCLUSION

By using iTRAQ technique, our study revealed the dynamic
proteomic response to salinity and temperature stresses
in the stolon of the highly fouling ascidian C. robusta.
Functional enrichment analysis recovered common and
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challenge-specific response pathways (Figure 8). In
addition to the common pathways such as “cytoskeleton,”
“signal transduction,” and “posttranslational modification,”
“extracellular matrix,” “carbohydrate/lipid transport and
catabolism,” “lipid metabolism,” and “cell cycle” play crucial
roles in dealing with the stresses of low salinity, high salinity,
low temperature, and high temperature, respectively. The
findings here illustrate that C. robusta stolon could respond to
environmental challenges by developing complex and diverse
molecular mechanisms. The pathways and associated proteins
obtained in this study provide candidate references for further
studies of molecular mechanisms of marine biofouling, local
environmental adaptation during invasions, and formulating
antifouling strategies in marine and coastal ecosystems.
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