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Sansha Bay (26.40−27.00◦N, 119.50−120.20◦E) is a typical semi-enclosed bay,
located in northern Fujian Province, China, and adjacent to the East China Sea.
The ichthyoplankton species composition and assemblage structure were investigated
based on monthly sampling at 25 stations in April−September 2019, covering
the important spring and summer spawning seasons in the region. Sampling was
conducted in the first 3−5 days of the full moon or new moon phases using a
standard plankton net through horizontal and vertical tows during daytime. In total,
25,819 ichthyoplankton samples were collected, of which 25,449 samples (i.e., 24,757
eggs and 692 larvae) were from horizontal tows. For horizontal tow samples, the
ichthyoplankton were classified into 58 taxa in 15 orders and 23 families with a
combination of external morphology and DNA barcoding analyses, from pelagic to
demersal and benthic species. The dominant order was the Gobiiformes, including 23
species (39.7% of all species). The dominant taxa, in terms of relative abundance and
frequency of occurrence, consisted of commercially important fishes, such as Setipinna
tenuifilis (Valenciennes, 1848) (Engraulidae), Epinephelus akaara (Temminck and
Schlegel, 1842) (Serraenidae), Collichthys lucidus (Richardson, 1844), Nibea albiflora
(Richardson, 1846) (Sciaenidae), Acanthopagrus schlegelii (Bleeker, 1854), and Pagrus
major (Temminck and Schlegel, 1843) (Sparidae), accounting for 78.9% of the horizontal
tow samples. Low-valued and small-sized fishes, such as Stolephorus commersonnii
Lacepède, 1803 (Engraulidae), Solea ovata Richardson, 1846 (Soleidae), Nuchequula
nuchalis (Temminck and Schlegel, 1845), and Photopectoralis bindus (Valenciennes,
1835) (Leiognathidae), were also dominant species, accounting for 11.4% of the
horizontal tow samples. The ichthyoplankton assemblage was categorized into five
different temporal assemblages based on the cluster and nonmetric multidimensional
scaling analysis, namely, April, May, June, July, and August−September (ANOSIM,
Global R = 0.656, p < 0.01) with the highest density and richness of ichthyoplankton
occurred in May. The spatial distribution pattern showed that the high density (ind./m3) of
ichthyoplankton occurred mainly in S12–S25 in Guanjingyang and along the Dongchong
Peninsula coastline into Dongwuyang, while low density occurred mainly in S01–S11 in
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the northwest waters of Sandu Island (ANOVA, F = 8.270, p < 0.05). Temperature,
salinity, and chlorophyll a were key factors structuring the ichthyoplankton assemblages
in Sansha Bay. In addition, this study revealed the changes of the ichthyoplankton
composition, density, and spatial distribution in Sansha Bay over the past three decades.

Keywords: abiotic and biotic factors, Chinese waters, DNA barcoding, fish eggs and larvae, spatial and temporal
distribution

INTRODUCTION

Fishes have various life stages, and different developmental stage
requires different foods, habitats, and environmental factors
(Rijnsdorp et al., 2009; Hamre et al., 2013; Petitgas et al., 2013;
Madeira et al., 2020). For example, ripe fishes are sensitive
to the hydrological conditions of the spawning grounds, such
as current, tide, water temperature, salinity and dissolved
oxygen, and prey availability and preference (MacKenzie et al.,
1996; Costa et al., 2002). Ichthyoplankton include fish eggs
and larvae, belonging to the early life stages. Due to their
absence of or weakness on independent swimming capabilities,
ichthyoplankton have a drifting nature with currents and tides
(Lechner et al., 2016; Downie et al., 2020). Understanding the
distribution patterns of different life stages and exploring the
abiotic and biotic factors influencing the distribution patterns are
crucial for assessing fish recruitment and stock restoration (Costa
et al., 2002; Santos et al., 2017). Achieving the sustainability of
fishery resources depends highly on the abundance and survival
of fish eggs and larvae (Oeberst et al., 2009; Llopiz et al., 2014).

The identification of unambiguous species from fish eggs and
larvae is challenging. It is mainly because of the high diversity of
species of fishes and the limitation of morphological observation
on different stages of eggs and larvae before metamorphosis (Li
et al., 2014; Zhang et al., 2015; Hsieh et al., 2016). For example,
eggs and larvae of Sciaenidae are difficult to identify to species
level through morphological features (Zhang et al., 1985; Zhan
et al., 2016), besides the challenges for identification of adult
sciaenids (Chu et al., 1963). DNA barcode, which delimits species
using a molecular marker (e.g., mitochondrial cytochrome c
oxidase subunit I gene, COI), has been widely applied to facilitate
the identification in all stages from egg to adult of fishes (Ward
et al., 2005; Ko et al., 2013; Becker et al., 2015; Harada et al., 2015;
Hou et al., 2021a). In recent studies, Kerr et al. (2020) successfully
identified 564 fish eggs to 89 taxa collected from northwestern
Cuba and across the Florida Straits using DNA barcode. Hou
et al. (2021a) successfully identified 931 fish eggs and 229 larvae
to 75 taxa collected from the Pearl River Estuary of China using
a DNA barcode. However, identifying ichthyoplankton correctly
through DNA barcoding relies highly on a powerful and accurate
database. It is necessary, but still challenging, to build up a DNA
barcoding library in a specific area.

The transitional region between the East China Sea and the
South China Sea through the Taiwan Strait, Fujian Province,
has a highly sinuated coastline forming many bays with some
typically semi-closed by peninsulas (Yu et al., 1988). In terms
of volumes of the marine capture fisheries, Fujian Province
ranks third in China, contributing to approximately 15.6% of the

national total marine capture volumes or 16.8% of the national
total marine fish capture volumes in the past decade, 2010−2019
(MOA, 2010–2018; MARA, 2019). Sansha Bay (26.40−27.00◦N,
119.50−120.20◦E) is located in Fujian Province (Figure 1A)
and connects with the East China Sea through the narrow
Dongchong Channel of about 3 km in width (Figure 1B). This
typical semi-enclosed bay is well-known because it was one of
the 12 traditional spawning grounds along Chinese coastal waters
for the large yellow croaker Larimichthys crocea (Richardson,
1846) (Sciaenidae) before the 1990s, a commercially important
species that formed large spawning aggregations (Chu, 1985;
Liu and Sadovy de Mitcheson, 2008). With the mariculture
and industrial development since the 1990s, marine pollution
has been exacerbated in Sansha Bay (Wang et al., 2019). The
current status of Sansha Bay as L. crocea spawning ground
function is unclear.

In Sansha Bay, species composition and assemblages of
ichthyoplankton, which are essential for the estimation of
spawning sites, reproductive seasons, and conservative strategies
(Parrish et al., 1981; Bailey and Houde, 1989; Oliveira
and Ferreira, 2008), remain insufficient attention. Species
composition and temporal and spatial distribution of fish
eggs and larvae were investigated only four times (i.e., 1990,
2007, 2008, and 2010) historically, mainly seasonally, and the
samples were identified by external morphology only (Dai,
2006; Wang et al., 2010; Shen, 2011; Xu, 2018), which may
lead to the missing of certain species and underestimate the
diversity of the real species. The results of these previous studies
showed that Sansha Bay was important for fish reproduction,
and fish egg and larva density (ind./m3) were high in spring
and summer. Moreover, the ichthyoplankton abundance of
traditionally important fishery species showed dramatic declines
over years. It merits further monthly and accurate studies with
multiple identification methods and a high spatial coverage
to evaluate the current status and long-term dynamics of
ichthyoplankton assemblages in Sansha Bay.

In this study, we designed 25 stations throughout Sansha
Bay for the ichthyoplankton collection. We conducted sampling
monthly from April to September in 2019 covering the
peak spawning seasons (i.e., spring and summer) mentioned
earlier and applied DNA barcoding technique for species
identification after external morphology examination, aiming
to obtain a relative accurate species composition, to provide
detailed characteristics of the ichthyoplankton assemblages,
and to analyze the influence of abiotic and biotic variables
on the distribution of ichthyoplankton in Sansha Bay. The
results can be used to evaluate the current status of this
traditional spawning ground and to compare the changes of
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FIGURE 1 | (A) Map of mainland China and (B) ichthyoplankton sampling stations (n = 25) in Sansha Bay, Fujian Province, China.
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ichthyoplankton composition and spatial distribution over the
past three decades in Sansha Bay.

MATERIALS AND METHODS

Ichthyoplankton Collection
Ichthyoplankton samples were collected from 25 stations
(S01−S25) (26.50−26.85◦N, 119.52−120.09◦E) in Sansha Bay,
Fujian Province of China (Figure 1B). The sampling was
conducted monthly from April to September 2019 within the first
3−5 days of the full moon or new moon phases during daytime.

The standard plankton net used for horizontal tows is 80 cm in
net opening diameter (i.e., 0.5 m2 net opening area) and 505 µm
in net mesh size (GB/T 12763.6, 2007). At each station, the net
was towed horizontally right below the sea surface with the speed
of approximately 2 km for 5−10 min.

The standard plankton net used for vertical tows is 50 cm in
net opening diameter (i.e., 0.2 m2 net opening area) and 505 µm
in net mesh size (GB/T 12763.6, 2007).

On board, ichthyoplankton samples collected were fixed with
the formaldehyde concentration of 5%. The samples were further
transferred to 95% ethanol solution within 12 h for the purpose
of DNA barcoding.

Collection of Abiotic and Biotic Factors
Sea surface temperature, salinity, dissolved oxygen, and pH
were measured using YSI EXO2 Multiparameter Sonde during
plankton sampling at each station.

Chlorophyll a (Chla) samples were collected and analyzed
in the laboratory through fluorospectrophotometry within 24 h.
For a sampling of vertical phytoplankton, the standard plankton
net used is 37 cm in net opening diameter (i.e., 0.1 m2 net
opening area) and 77 µm in net mesh size (GB/T 12763.6,
2007). On board, phytoplankton samples were fixed in Lugol’s
iodine solution with a concentration of 10%. For a sampling
of vertical zooplankton, the standard plankton net used is the
same as the vertical ichthyoplankton collection above. On board,
zooplankton samples were fixed in the formaldehyde solution
with a concentration of 5%.

Ichthyoplankton and Plankton
Identification
In the laboratory, all fish eggs and larvae collected were sorted
and pooled under a dissecting microscope (Zeiss Stemi 2000-
C, Germany) according to the external morphological features
(Zhang et al., 1985; Shao et al., 2001; Wan and Zhang,
2016). For each egg or larva with a specific morphological
feature, photo images were collected using the Leica M165FC
Fluorescent Stereo Microscope and Canon EOS 600D Digital
SLR Camera, and one or more samples were selected for
DNA extraction and barcode COI fragment obtaining. Sizes
of eggs and larvae were not measured because they were
fixed and dehydrated in 95% ethanol solution for at least 2
months before sorting.

Genomic DNA was extracted using the Takara MiniBEST
Universal Genomic DNA Extraction Kit Ver. 5.0 according to

manufacturer specifications and further used with no dilution
for amplification and sequencing. A PCR was conducted, and
the COI fragment was amplified using three universal COI gene
primer pairs (i.e., LCO1490−HCO2198, FishF1−FishR1, and
FishF2−FishR2) (Folmer et al., 1994; Ward et al., 2005) to obtain
the target COI gene fragment (about 630 bp). For each PCR
product, sequencing was performed using both corresponding
forward and reverse primers that are used for PCR (Sangon
Biotech, China).

Raw sequences were assembled using Bioedit 7.2. Assembled
sequences of fish eggs and larvae were identified using reference
sequences published in GenBank (NCBI)1 or by the Barcode of
Life Data System.2 To assign a sequence to a species, genus, or
family level, we required that the sequence matches with the
database by at least 99.60, 91.29, or 85.48%, respectively (Hou
et al., 2017). All sequences were further confirmed by ML and
NJ phylogenetic trees with sequences from the GenBank and
BOLD system using MEGA 6.06 with 1,000 bootstrap pseudo-
replications. Categorization of species taxonomy was followed as
suggested by Nelson et al. (2016).

Moreover, phytoplankton and zooplankton samples collected
were identified based on the external morphology under a
microscope (Liu et al., 2020a), following the taxonomic books in
the region (Guo, 2003; Lin, 2009; Zhang et al., 2010; Ding, 2013;
Slotwinski et al., 2014; Sun et al., 2015).

Plankton Calculations
In the laboratory, the densities of ichthyoplankton (i.e., eggs and
larvae) from horizontal tows were standardized:

A = N/V

where A is the density of ichthyoplankton (ind./m3), N is
the number of ichthyoplankton (individuals) per plankton net,
and V is the seawater volumes filtered into the plankton
net (m3).

V was calculated by a flow meter (HYDRO-BIOS) attached to
the center of the plankton net:

V = 0.3R × S

where R is the number of revolution noted from HYDRO-BIOS,
0.3R means that when the flow meter rotates one number, the net
moves 0.3 m based on HYDRO-BIOS product manual, and S is
the net opening area (m2).

The dominant species of ichthyoplankton (i.e., eggs and larvae
together) from horizontal tows were determined using the Index
of Relative Importance (IRI) (Pinkas et al., 1971; Zhu et al., 2002):

IRI = N%× F%

where N% and F% are relative abundance and frequency
of occurrence of a specific species, respectively. Species with
IRI ≥ 0.02 were considered to be a dominant species.

The three diversity indices, namely, the Shannon-Wiener
diversity index (H′), Pielou’s evenness index (J′), and

1https://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.barcodinglife.org
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Margalef ’s richness index (d), were calculated (Margalef, 1958;
Shannon and Wiener, 1963; Pielou, 1966) to evaluate the current
status of ichthyoplankton in Sansha Bay:

H
′

= −

s∑
i =1

Pi ln Pi

J
′

= H
′

/ln S

d = (S − 1)
/

ln N

where S is the total number of ichthyoplankton species, N is
the total number of individuals, and Pi is the proportion of the
number of individuals for a specific ichthyoplankton species to
the total number of individuals.

In addition, densities of phytoplankton and zooplankton
from vertical tows were also calculated as for ichthyoplankton
aforementioned:

A = N/V

where A is the density of phytoplankton (cells/m3) or
zooplankton (ind./m3), N is the number of phytoplankton (cells)
or zooplankton (individuals) per plankton net, and V is the
seawater volumes filtered into the plankton net (m3).

Data Analysis
We used only data from horizontal tows for further analyses for
at least two reasons. First, the number of eggs and larvae and
diversity of ichthyoplankton species from horizontal tows were
much higher than those of vertical tows in sampling during every
month. Second, the depths of sampling stations varied largely
from as shallow as 1 m to about 40 m. Therefore, the seawater
volumes filtered into the vertical tow nets varied largely that it
subsequently influenced the number of eggs and larvae and the
diversity of ichthyoplankton species collected. The vertical tow
samples were only used for species diversity supplements.

For the data analysis below and specific calculation above
(e.g., IRI), we combined the number of egg and larva samples
together (Zhang et al., 2016; Huang et al., 2017; Hou et al.,
2021a). A short hatchery period (i.e., hours to several days) and
limited independent swimming capability of larvae were also the
considerations for the combination of egg and larva data for
analyses (Woynarovich and Horváth, 1984; Pauly and Pullin,
1988; Lechner et al., 2016; Downie et al., 2020).

The one-way ANOVA test was conducted with the IBM
SPSS Statistics version 16.0 for revealing the significance of the
monthly changes of environmental factors, the diversity indices,
the spatial variation of average ichthyoplankton density, and
the variation of average species richness among 25 stations;
when necessary (ANOVA, p < 0.05, n > 2), a post hoc least
significant difference (LSD) test was added. The cluster analysis
and nonmetric multidimensional scaling (nMDS) based on
the Bray-Curtis similarity and square root average density of
ichthyoplankton were performed to clarify the temporal and
spatial distribution patterns of the assemblages. After the cluster
analysis, the tests for identifying the discrimination between

two observed sample clusters (SIMPEROF) and the similarities
(ANOSIM) were performed using PRIMER version 6.0 to assess
the significance and discrimination between sample clusters
(Clarke and Gorley, 2006).

The detrended correspondence analysis (DCA) and canonical
correlation analysis (CCA) or redundancy analysis (RDA)
were performed using CANOCO version 5.0 to analyze the
constrained relationships between environmental factors and
ichthyoplankton communities. Before the analysis, DCA was
performed to determine a suitable response according to the
maximum gradient of length (>4, CCA; 3−4, CCA or RDA; <3,
RDA) (Šmilauer and Lepš, 2014). Because the maximum gradient
length of DCA was 6.34 (>4), CCA was subsequently selected in
this study. Only species that occurred in >10% of the catches,
based on all species density, were included in the analysis to
reduce the effect of rare species. Data of species density were log
(10,000x + 1) transformed to minimize the dominant effect of
some species (Clarke et al., 2014). A Monte Carlo permutation
test with 999 permutations was performed to confirm the key
factors significantly affecting the assemblages (p ≤ 0.05; Arora
and Mehra, 2009; Hou et al., 2021a). The variance inflation
factor (VIF) was conducted to examine the collinearity between
independent environment variables. VIF < 10 indicated that
the environmental variables were not collinear and were fit for
CCA (Graham, 2003; Huang et al., 2017). The importance of
the environmental variables was measured by interset correlation
coefficients, when the value of interset correlation coefficients ≥|
±0.4| variables were regarded conservatively as biologically
important (Rakocinski et al., 1996; Ramos et al., 2017).

RESULTS

Abiotic and Biotic Factors
From April to September 2019, with the significant increase of sea
surface temperature (F = 290.20, p < 0.05), salinity also showed
an upward trend (F = 36.15, p < 0.05), while dissolved oxygen
(F = 168.23, p < 0.05) and pH (F = 283.25, p < 0.05) illustrated a
downward trend (Table 1).

Chla peaked in July, with significant intermonth variations
(F = 22.91, p < 0.05), and the densities of phytoplankton
(F = 17.47, p < 0.05) and zooplankton (F = 8.908, p < 0.05)
peaked in May and April, respectively (Table 1).

Ichthyoplankton Composition
A total of 25,449 ichthyoplankton samples, including 24,757
fish eggs and 692 larvae, were collected from horizontal tows.
A total of 370 ichthyoplankton samples, including 315 eggs and
55 larvae, were collected from vertical tows. The numbers of eggs
and larvae from horizontal tows were much higher than those
of vertical tows.

According to different morphological features, 619 fish eggs
and 192 larvae were selected for photography and further
DNA extraction, from which high-quality COI fragments were
obtained from 335 fish eggs (54.1%) and 117 larvae (60.9%). In
total, 60 taxa were identified, 52 at species level, including 26 from
eggs and 43 from larvae (Supplementary Table 1).
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TABLE 1 | Temporal variation in abiotic and biotic factors (mean ± SD, n = 25 stations) from April to September 2019 in Sansha Bay of Fujian Province, China.

Factors Unit April May June July August September

Temperature (T) ◦C 17.01 ± 0.49a 19.97 ± 0.37b 23.18 ± 0.35c 25.95 ± 0.45d 28.72 ± 0.57e 29.44 ± 0.45f

Salinity (S) 26.66 ± 1.75a 27.10 ± 1.66a 27.45 ± 2.02a 29.10 ± 1.65b 30.75 ± 1.38c 31.52 ± 1.28c

Dissolved oxygen (DO) mg/L 7.68 ± 0.18a 7.27 ± 0.25b 6.79 ± 0.31c 5.83 ± 0.36d 5.32 ± 0.65e 5.27 ± 0.46e

pH 8.11 ± 0.06a 8.13 ± 0.05a 7.98 ± 0.04c 7.95 ± 0.06c 8.05 ± 0.10b 7.55 ± 0.05d

Chlorophyll a (Chla) µg/L 0.64 ± 0.63a 0.28 ± 0.12a 0.53 ± 0.39a 2.21 ± 1.27c 1.12 ± 0.68b 1.33 ± 0.67b

Phytoplankton (Phy) 106 cells/m3 20.31 ± 7.30a 81.92 ± 60.37c 9.14 ± 3.65a 7.95 ± 4.37a 42.27 ± 55.93b 11.32 ± 10.95a

Zooplankton (Zoo) ind./m3 80.54 ± 89.52a 45.44 ± 34.02b 23.12 ± 22.87c 17.23 ± 10.76c 18.57 ± 16.36c 19.71 ± 15.18c

Values with different letters (a–f) indicate the significant difference at p ≤ 0.05 among months, and values with the same letter indicate that the difference was not
significant at p > 0.05.

From horizontal tows, 58 taxa were identified from 15 orders,
23 families with 51 taxa at species level; Gobiiformes was the most
diverse order, representing 39.7% of all taxa (Supplementary
Table 1 and Supplementary Figure 1). Additionally, four
larvae were identified at the genus level (i.e., Pseudogobius and
Rhinogobius in Gobiiformes, Hyporhamphus in Beloniformes,
and Hippichthys in Syngnathiformes), and three larvae at the
family level (i.e., Gobiidae in Gobiiformes and Blenniidae
in Blenniformes).

From vertical tows, 31 taxa were identified from 9 orders, 13
families with 27 at the species level, 3 at the genus level, and 1
at the family level (Supplementary Table 2). Among these, 29
taxa were also recorded in horizontal tow samples, and only two
species [i.e., Acentrogobius sp. and Lateolabrax japonicus (Cuvier,
1828)] were only found in vertical tow samples. Eggs and larvae
of two alien species, the red drum Sciaenops ocellatus (Linnaeus,
1766) (Sciaenidae) in Acanthuriformes and the gilthead seabream
Sparus aurata (Linnaeus, 1758) (Sparidae) in Spariformes, were
collected in horizontal tows, S. ocellatus eggs in August and
September and S. aurata larvae in June (Supplementary Table 1).
Eggs and larvae of L. crocea, a critically endangered species in the
IUCN Red List, were collected in April−June in horizontal and
vertical tows (Supplementary Tables 1, 2).

Ichthyoplankton from Engraulidae (two species), Soleidae
(one species), Serranidae (one species), Leiognathidae (two
species), Sciaenidae (two species), and Sparidae (two species)
were dominant (IRI ≥ 0.02; Table 2 and Supplementary
Table 1), accounting for 90.3% of the horizontal tow samples. The
yellow drum Nibea albiflora (Richardson, 1846) was dominant
in May−September 2019 with a peak of IRI in September
(IRI = 0.51).

The three diversity indices showed significant differences from
April to September (H′: F = 10.39, p < 0.05; J′: F = 2.54, p < 0.05;
d: F = 16.14, p < 0.05; Figure 2). The highest H′ and d were found
in May, while the lowest H′ and d were found in September; J′ in
August was significantly higher than the other months.

Temporal and Spatial Distribution
Pattern of Ichthyoplankton
The ichthyoplankton richness ranged from 11 species (July) to
32 species (May) in horizontal tows (Supplementary Table 1).
The average density of ichthyoplankton ranged from 0.18 ind./m3

(August) to 2.10 ind./m3 (May) (Figure 3).

The ichthyoplankton were classified into five representative
assemblages in the Bray-Curtis similarity at 36.79% (p = 0.001),
namely, April, May, June, July, and August−September
(Figure 4A). The results of nMDS (Figure 4B) are consistent
with those of the cluster analysis at the stress value < 0.2,

TABLE 2 | Dominant ichthyoplankton species (IRI ≥ 0.02) from April to September
2019 in Sansha Bay of Fujian Province, China.

Species April May June July August September

Setipinna tenuifilis 0.18 0.27 0.08

Stolephorus commersonnii 0.05

Solea ovata 0.14

Epinephelus akaara 0.04

Nuchequula nuchalis 0.07

Photopectoralis bindus 0.27 0.03

Collichthys lucidus 0.03 0.05

Nibea albiflora 0.48 0.43 0.32 0.04 0.51

Acanthopagrus schlegelii 0.26 0.04 0.02

Pagrus major 0.38 0.06

FIGURE 2 | Temporal variation of the three ichthyoplankton diversity indices
(mean + standard deviation [SD], n = 25 stations) from April to September
2019 in Sansha Bay. H′, Shannon-Wiener diversity index; J′, Pielou’s
evenness index; d, Margalef’s richness index. Values with different letters (a–c)
indicate the significant difference at p ≤ 0.05 among months, and values with
the same letter indicate that the difference was not significant at p > 0.05.
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FIGURE 3 | Temporal distribution of the ichthyoplankton richness and average
density (ind./m3) (n = 25 stations) from April to September 2019 by horizontal
tows in Sansha Bay of Fujian Province, China. Error bars: maximum and
minimum densities.

illustrating the reliability of the results (Clarke et al., 2014). The
R-statistic values by ANOSIM revealed the dissimilarity between
the five assemblages over time (sample statistic: Global R = 0.656,
p = 0.001; Supplementary Table 3). The ichthyoplankton
assemblages of April, May, June, and July differed significantly
from August and September, and no significant difference was
found between August and September.

Although the cluster analysis of spatial assemblage was not
significant (SIMPEROF, p > 0.05), ichthyoplankton density (total
taxa) (Figure 5) and richness (Figure 6) varied by station and
month. The highest density and species richness occurred in
May, from May-S22 and May-S01, respectively. High density
occurred mainly in S12–S25 in Guanjingyang and along the
Dongchong Peninsula coastline (i.e., southeast Sansha Bay) into
Dongwuyang (i.e., northeast Sansha Bay) in April−September,
except for August, and low density occurred mainly in S01–
S11 in northwest waters of Sandu Island in April−September
(ANOVA, F = 8.270, p < 0.05). Although the spatial patterns
for the species richness were not clear, it showed that around
Sandu Island, especially S02, S03, S05, and S06, had a relatively
high richness (ANOVA, F = 7.953, p < 0.05) during most of the
sampling period.

Relationship Between Ichthyoplankton
Assemblages and Abiotic and Biotic
Factors
The variance inflation factor (VIF) test and Monte Carlo
permutation test indicated that abiotic factors (i.e., T, S, DO,
and pH) and biotic factors (i.e., Chla, Phy, and Zoo) were not
collinear (VIF < 10) and contributed significantly to explain
ichthyoplankton assemblage structure (p < 0.05; Table 3).

The sum of all canonical eigenvalues occupied 18.12% of
the sum of all eigenvalues. The cumulative percentage variance
of species was 15.79%, and cumulative percentage variance of
species environment was 87.12% (Table 4). The first two CCA
axes (i.e., axes 1 and 2) explained 73.65% of the cumulative

percentage variance of species and 73.67% of the cumulative
percentage variance of species environment.

Abiotic and biotic factors explained 18.1% variation in
ichthyoplankton assemblages among months (Table 3). The main
factors affecting ichthyoplankton assemblages were pH, DO, Phy,
and Zoo, which were positively related with the first CCA axis in
April and May, and were T, S, and Chla, which were negatively
correlated with the first CCA axis while positively related with
the second CCA axis in July, August, and September (Figure 7A
and Table 3). Correlations between abiotic and biotic factors and
the distribution of ichthyoplankton species were depicted in CCA
(Figure 7B). Omobranchus punctatus (Opun) showed a close
relationship with Chla; Nibea albiflora (Nalb), Boleophthalmus
pectinirostris (Bpec), and Setipinna tenuifilis (Sten) were closely
associated with S and Chla; and Aulopareia unicolor (Auni),
Taenioides anguillaris (Tang), Gobiidae sp.-2 (Gibi2), and
Stolephorus niphonius (Scom) showed a positive relationship
with T but a negative relationship with pH. Acentrogobius
caninus (Acan), Tridentiger barbatus (Tbar), Parachaeturichthys
polynema (Ppol), Konosirus punctatus (Kpun) and Tridentiger
bifasciatus (Tbif), Pagrus major (Pmaj) and Larimichthys crocea
(Lcro) positively related with DO, pH, Phy and Zoo.

DISCUSSION

Ichthyoplankton Composition and
Variation
We reported the first results combining the external morphology
and DNA barcode technique to identify ichthyoplankton samples
collected from April to September 2019 in Sansha Bay, which
made the species richness increase significantly. In total, 60 taxa
were identified from horizontal and vertical tows in this study,
significantly higher than previous surveys (23−46 species in
1990−2010) from the same sampling area (Table 5). The high
ichthyoplankton richness in this study was mainly from Gobiidae
(21 species) and contributed to the application of COI gene
fragment analysis with the high detection rate at the species level,
rising from 39.1 to 74.2% (1990−2010) to more than 87.10%
(2019) (Table 5).

The development of local or regional fish species COI
barcodes library is highly recommended (Hou et al., 2021b).
We demonstrated the importance of the accuracy and integrity
of COI barcodes database in ichthyoplankton identification
following the morphological feature collection. The development
of a morphological database combining COI barcodes library
of ichthyoplankton is needed for future investigation reference
(Hubert et al., 2015; Hou et al., 2021a). In this study, we first
preserved the ichthyoplankton samples in 5% neutral formalin
and then transferred to 95% ethanol in less than 12 h. High-
quality COI gene fragments obtained from eggs and larvae were
54.1 and 60.9%, respectively.

The 60 ichthyoplankton taxa identified in this study inferred
the underestimation of the ichthyoplankton diversity in Sansha
Bay because many fish larvae have a vertical distribution pattern
on a diel basis (Ahlstrom, 1959; Rodríguez et al., 2006; Auth et al.,
2007). Although we realized the importance of both day and night
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FIGURE 4 | (A) Dendrogram resulting from the cluster analysis and nonmetric multidimensional scaling (nMDS) ordination of spatial and (B) the temporal patterns of
ichthyoplankton assemblages in Sansha Bay of Fujian Province, China. Samples were collected from April to September 2019. In panel A, the black lines indicate the
significant difference at p ≤ 0.05, and the red lines indicate no significant difference at p > 0.05.

sampling for understanding the ichthyoplankton composition
and assemblage, night sampling was not applied mainly for safety
considerations. Moreover, adhesive eggs are not able to collect
using plankton nets. In the future, sampling methods need to be
modified to obtain more ichthyoplankton samples.

The abundance of ichthyoplankton species (proportion of
individuals) in Sansha Bay has changed over time. For example, a
high abundance was found in the black sea bream Acanthopagrus
schlegelii (Bleeker, 1854) (22%) and the bighead hairtail

Trichiurus lepturus Linnaeus, 1758 (16%) in 1990, changed
to Labridae sp. (47.1%) in 2007, to Sciaenidae spp. (80.63%)
and Cynoglossidae spp. (14.18%) in 2008, and to Sciaenidae
(41.19%), Sparidae (33.67%), and Engraulidae (11.36%) in this
study (Dai, 2006; Wang et al., 2010; Shen, 2011). The shift of
major ichthyoplankton composition may be driven by intensive
fishery pressure, habitats loss, or climate change (Bui et al., 2010;
Fodrie et al., 2010; Shen, 2011; McCain et al., 2016; Curran
et al., 2021). In contrast, the sampling frequency (monthly
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FIGURE 5 | Spatial variation of ichthyoplankton density from April to September 2019 in Sansha Bay of Fujian Province, China.

FIGURE 6 | Spatial variation of ichthyoplankton species richness from April to September 2019 in Sansha Bay of Fujian Province, China.

or seasonally), spawning ground, and station setting may also
influence the ichthyoplankton composition. The temporal and
spatial variation of high ichthyoplankton density was detected
from 1990 to 2019 (Figure 8) in Sansha Bay.

Spawning Activities in Sansha Bay
This study confirmed that Sansha Bay is an important area for
fish reproduction, for pelagic, demersal, and benthic species,
including some commercially important species. One of the
most traditionally important fishery species in Sansha Bay was
L. crocea, a well-known species from spawning and overwintering

aggregations in Chinese coastal waters (Liu and Sadovy de
Mitcheson, 2008). It was documented that L. crocea migrated
into Sansha Bay in May and June to spawn through the narrow
Dongchong Channel (Chu and Wu, 1985). Eggs and larvae of
L. crocea were collected in May, June, August, October, and
November (Dai, 2006; Shen, 2011; Xu, 2018), confirming the
existence of two spawning seasons (spring and autumn) in the
region (Liu and Sadovy de Mitcheson, 2008). In this study, eggs
and larvae of L. crocea were collected in April−June because
only spring spawning season was focused (Supplementary
Tables 1, 2), and mature females and mature males were also
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TABLE 3 | Results of Monte Carlo test of F-ratios and the interset correlations of environmental variables with the first two canonical correlation analysis (CCA) axes.

Factors Explains % Contribution % F P-value VIF Axis 1 Axis 2

Temperature (T) 8.6 47.5 12.1 0.002 7.35 –0.9865 0.1135

Salinity (S) 2.0 11.0 5.9 0.002 2.79 –0.5773 0.3198

Dissolved oxygen (DO) 1.1 6.1 9.0 0.002 6.90 0.8229 –0.3384

pH 1.3 7.2 6.0 0.002 2.24 0.6401 –0.0375

Chlorophyll a (Chla) 2.4 13.3 4.7 0.002 1.42 –0.4133 0.8048

Phytoplankton (Phy) 1.5 8.3 2.4 0.004 1.38 0.3291 0.0533

Zooplankton (Zoo) 1.2 6.6 2.5 0.02 1.51 0.2159 –0.2252

Explains %: the percentage of the total variation explained by the explanatory variable; contribution %: the percentage of the variable contribute to the explanatory power.

TABLE 4 | Canonical correlation analysis relating ichthyoplankton assemblages to abiotic and biotic factors in Sansha Bay of Fujian Province, China.

Axis 1 Axis 2 Axis 3 Axis 4 Total inertia

Eigenvalues 0.5551 0.1818 0.1537 0.1097 6.3351

Species-environment correlations 0.9458 0.7120 0.7086 0.5972

Cumulative percentage variance of species data 8.76 11.63 14.06 15.79

Cumulative percentage variance of species-environment relation 48.35 64.18 77.57 87.12

Sum of all unconstrained eigenvalues 6.3351

Sum of all canonical eigenvalues 1.1482

caught in April−June by fixed nets in Sansha Bay following
the confirmation by gonadal histology (Liu et al., 2020a). It is
the first record that L. crocea also spawned in April. Further
understanding the reproductive dynamic and migration pattern
for L. crocea in the Sansha Bay will help us assess the stock status
of this critically endangered species (Liu et al., 2020b).

Two sciaenid species, namely, the bighead croaker Collichthys
lucidus (Richardson, 1844) and N. albiflora, have been of
commercial importance in Fujian waters (Chu and Wu, 1985).
Juveniles and adults can be caught by fixed nets in Sansha Bay
throughout the sampling period of April−September (Liu et al.,
2020a). Ichthyoplankton samples (eggs as majority) of C. lucidus
and N. albiflora were collected in May, June, and August and in
April−September, respectively, with dominant in May and June,
and in May−September, respectively (Supplementary Table 1
and Table 2). However, ichthyoplankton of C. lucidus and
N. albiflora were not collected in previous studies in 1990, 2007,
2008, and 2010 (Dai, 2006; Wang et al., 2010; Shen, 2011; Xu,
2018). Based on the external morphology identification of these
previous studies, it was possible that the eggs and larvae of the
two species were grouped as Sciaenidae species. In contrast, the
reproductive dynamics of C. lucidus and N. albiflora have not
been examined in Sansha Bay; therefore, it is unclear if their
reproductive behavior has changed over time. For C. lucidus,
the spawning and peak spawning seasons in Pearl River Estuary,
approximately 800 km south of Sansha Bay, were December–
July and May, respectively (Ou et al., 2012). For N. albiflora, the
spawning and peak spawning seasons in Xiangshan Bay (Zhejiang
Province), approximately 400 km north of Sansha Bay, were
May−July and June–July, respectively (Lin et al., 2013). The
variation on spawning seasons of the same species in different
geological locations merits further assessments.

In Fujian waters, seabreams (Sparidae) such as A. schlegelii and
the red seabream Pagrus major (Temminck and Schlegel, 1843)

mainly spawned in February−April and October−December,
respectively (Chu, 1985). The eggs and larvae of A. schlegelii were
collected from April to August in Sansha Bay (Wang et al., 2010;
Shen, 2011; Xu, 2018; this study), indicating the species has a
longer spawning season, extending from spring to summer. For
P. major, the eggs and larvae were collected in November 1990
(Dai, 2006) and in April and May 2019 (this study) in Sansha
Bay, indicating the existence of spring and autumn spawning
seasons of the species.

In the East China Sea, the spawning season of T. lepturus
is March−August, producing pelagic eggs, and the spawning
grounds are known offshore of Chinese waters (Chu, 1985;
Nakamura and Parin, 1993; Xu and Chen, 2015). However,
T. lepturus was dominant in ichthyoplankton samples (eggs) in
May and August 1990 in Sansha Bay (Dai, 2006), inferring its
possible spawning grounds in nearshore and semi-closed bays.
It was not collected in 2007, 2008, 2010, and 2019 surveys
covering its spawning season in Sansha Bay (Wang et al., 2010;
Shen, 2011; Xu, 2018; this study). Nearly 100% of T. lepturus
collected in Sansha Bay using fixed nets were young juveniles
(3.2−46.1 cm total length, TL) in May−September 2019 (Liu
et al., 2020a). Although the spawning ground function of
T. lepturus in the Sansha Bay is still not clear, its nursery ground
function is clear.

The Indo-Pacific king mackerel Scomberomorus guttatus
(Bloch and Schneider, 1801) and the Japanese Spanish mackerel
S. niphonius are pelagic, forming spawning migrations from deep
waters to shallow waters in spring and spawning in May and
June in Sansha Bay (Wu, 1985). Ichthyoplankton of S. guttatus
and S. niphonius were collected in June 2010 (Xu, 2018), and
in April and May 2019 (this study), confirming the spawning
ground function of the Sansha Bay for the two species.

Ichthyoplankton of two alien species were first collected
in Sansha Bay in this study; eggs of S. ocellatus in August
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FIGURE 7 | Canonical correspondence analysis (CCA) diagram for
ichthyoplankton assemblages (A) and species (B) with abiotic and biotic
factors in Sansha Bay of Fujian Province, China. The abbreviations in panel (B)
are species names shown in Supplementary Table 1. The dominant species
are shown in blue and bold. Sten, Setipinna tenuifilis; Scom, Stolephorus
commersonnii; Sova, Solea ovata; Eaka, Epinephelus akaara; Nnuc,
Nuchequula nuchalis;, Pbin, Photopectoralis bindus; Cluc, Collichthys lucidus;
Nalb, Nibea albiflora; Asch, Acanthopagrus schlegelii; Pmaj, Pagrus major; T,
temperature; S, salinity; DO, dissolved oxygen; Chla, chlorophyll a; Phy,
phytoplankton; Zoo, zooplankton.

and September 2019, and larvae of S. aurata in June 2019
(Supplementary Table 1). The two species were introduced into
China for mariculture purposes from United States in 1991 and
from France in 2001, respectively, and juveniles and adults have
dispersed in coastal waters of China (Wang and Ji, 1996; Liu

et al., 1998; Wang et al., 2006; Lin et al., 2020; Zhang, 2020). It
is likely that S. ocellatus has established reproductive wild stocks
in Chinese waters (Lin et al., 2020). Both species are commonly
cultured in floating cages in Sansha Bay, and their juveniles
(S. ocellatus: 35.8 cm TL, n = 1; S. aurata: 3.7−31.2 cm TL, n = 9)
were collected using the fixed nets in 2019 (Liu et al., 2020a). This
study revealed that S. ocellatus and S. aurata can reproduce and
may be able to establish spawning population in Sansha Bay.

Ichthyoplankton Assemblages
Five main temporal ichthyoplankton assemblages were
apparently separately in Sansha Bay. The densities of
ichthyoplankton along Dongchong Peninsula coastline into
Dongwuyang (S12–S25) were higher than those in the northwest
waters of Sandu Island (S01–S11) with the significant high
salinity (this study) and high tidal currents speed (Lin et al.,
2018), and the dominant species were from Engraulidae
[S. tenuifilis], Soleidae (Solea ovata Richardson, 1846), Serranidae
[Epinephelus akaara (Temminck and Schlegel, 1842)], Sciaenidae
(N. albiflora and C. lucidus), and Sparidae (A. schlegelii and
P. major), including pelagic, demersal, and benthic species. The
results indicated that these species may prefer spawning in waters
with high salinity and strong currents, or fish eggs and larvae
were dispersed to there by currents.

The spatial distribution patterns of ichthyoplankton varied
over the past three decades in Sansha Bay, and three zones can be
considered as core areas (Dai, 2006; Wang et al., 2010; Shen, 2011;
Xu, 2018; this study; Figure 8). First, it is around Sandu Island.
The high ichthyoplankton density area was in the north in 1990,
then, shifted to the east in the late 2000s, and was not important
in 2019. Second, it is in Guanjingyang waters with an extension
to the Dongchong mouth. The high ichthyoplankton density was
found in 2008, 2010, and 2019. Third, it is in Dongwuyang waters.
The high ichthyoplankton density was found in 1990, 2007, 2010,
and 2019. Overall, the high ichthyoplankton density areas remain
the same in Guanjingyang and Dongwuyang over the past three
decades and reduce largely from 1990 in Sandu Island water.

Influence of Abiotic and Biotic Factors
Studies revealed that both abiotic and biotic factors shaped
the fish assemblages (including fish reproduction stocks and
ichthyoplankton) (Olivar, 1990; Marshall and Elliott, 1998;
Pombo et al., 2005; Zhang et al., 2015; Hsieh et al., 2016;
Rodriguez, 2019). Temperature and salinity influence fish
distribution through the different preferences and tolerances
of the species. Temperature is likely to be the dominant
factor influencing the variability of migration, spawning, and
recruitment (Gibson et al., 1993; Marshall and Elliott, 1998) and
the abundance and distribution of phytoplankton, zooplankton,
and ichthyoplankton (Siokou-Frangou et al., 1998; Rautio, 2001;
Hsieh et al., 2005; Gogoi et al., 2021). In this study, seven
abiotic and biotic factors, including T, S, DO, pH, Chla, Phy, and
Zoo, significantly structured the ichthyoplankton assemblages in
Sansha Bay, and temperature was also the dominant factor and
then salinity and Chla.

Fish spawning and nursing behavior could be affected by
spatial and temporal distribution of preys (Cushing, 1990).
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TABLE 5 | The interannual variations of the number of species and the average density (ind./m3) (mean ± SD, n = 4 in 1990 and 2007, n = 2 in 2008, and n = 6 in 2010
and 2019) of fish eggs and larvae throughout the years in Sansha Bay of Fujian Province, China.

Survey year (survey month) No. of
species

Detection rate at
species level

Average egg
density (ind./m3)

Average larva
density (ind./m3)

Sampling
stations

Sampling
methods

References

1990 (Feb, May, Aug, and Nov) 26 69.2% 0.042 ± 0.031* 0.036 ± 0.041* 16 Vertical Horizontal Dai, 2006

2007 (Feb, May, Aug, and Nov) 23 39.1% 0.365 ± 0.670* 0.490 ± 0.765* 12 Vertical Horizontal Wang et al., 2010

2008 (May and Nov) 35 51.5% 4.920 ± 9.377* 0.175 ± 0.253* 14 Vertical Horizontal Shen, 2011

2010 (May, Jun, and Aug–Nov) 40* 31** 67.5%* 74.2%** 1.310 ± 1.2058*
4.331 ± 8.564**

0.928 ± 0.940*
0.131 ± 0.171**

41 Vertical Horizontal Xu, 2018

2019 (Apr–Sept) 31* 58** 87.10%* 87.93%** 0.457 ± 0.305*
0.855 ± 0.686**

0.118 ± 0.073*
0.024 ± 0.011**

25 Vertical Horizontal This study

*Data from vertical tow net.
**Data from horizontal tow net.

FIGURE 8 | The high ichthyoplankton density areas from 1990 to 2019 in Sansha Bay of Fujian Province, China.

Besides, food suitability and availability have been proposed
as major factors to determine the survival of early-stage larval
fishes, e.g., the main foods of fish larvae are phytoplankton
(diatoms, flagellates, and ciliates) and zooplankton (pelecypods,
euphausiids, Mysidacea, and copepods) (Govoni et al., 1983;
MacKenzie et al., 1996; Platt et al., 2003; Guevara et al., 2005;
Nakagawa et al., 2007; Ajiboye et al., 2011; Abo-Taleb, 2019).
The dominant species of phytoplankton and zooplankton in May

and June (peak spawning season) in Sansha Bay were mainly
from Bacillariophyta and copepods (Liu et al., 2020a), all of
which may play important roles as feeds for fish larvae and
young juveniles to further impact the distribution pattern of
ichthyoplankton in Sansha Bay.

Chla, representing the primary productivity, is associated
with phytoplankton and zooplankton abundance and always
has a positive correlation with phytoplankton abundance
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(Felip and Catalan, 2000). In this study, the red tide forming
species Noctiluca scintillans (Macartney) (Kofoid and Swezy,
1921) bloomed in May 2019, which was without chloroplast and
purely phagotrophic (Balch and Haxo, 1984; Zhang et al., 2020),
resulting in apparently high abundance of phytoplankton and low
concentration of Chla (Nakamura, 1998). Moreover, N. scintillas
can feed on phytoplankton, zooplankton, and even fish eggs and
larvae (Nakamura, 1998; Quevedo et al., 1999; Umani et al., 2004);
therefore, the impact of biotic factor Chla related with N. scintillas
might have a negative correlation with Phy, Zoo, and certain
ichthyoplankton species (Figure 7).

Although seven abiotic and biotic variables were integrated
for analysis, only 18.1% of the variability observed in
ichthyoplankton was explained (Table 3), which suggested that
other factors could influence the ichthyoplankton assemblage,
e.g., ocean currents, substrates, and human activities (Bascompte
et al., 2005; Lopes et al., 2006; Daskalov et al., 2007; Muhling et al.,
2008; Vilchis et al., 2009; Zhou et al., 2011; Vandendriessche et al.,
2016).

CONCLUSION

In this study, 60 taxa ichthyoplankton were identified from
horizontal and vertical tows by combining DNA barcoding and
external morphology from April to September 2019 in Sansha Bay
of Fujian Province, China. Among these, 52 taxa were identified
at species level, 5 taxa at genus, and 3 taxa at family level.
The 10 dominant species were from Engraulidae (S. tenuifilis
and Stolephorus commersonnii), Serranidae (E. akaara),
Leiognathidae (Photopectoralis bindus and Nuchequula nuchalis),
Sciaenidae (N. albiflora and C. lucidus), and Sparidae (P. major
and A. schlegelii). The temporal distribution of ichthyoplankton
were divided into five assemblages, namely, April, May, June,
July, and August−September with a high density occurred mainly
in Guanjingyang and along the Dongchong Peninsula coastline
into Dongwuyang. The temporal and spatial patterns were closely
related to both abiotic and biotic factors. Temperature was the
main factor influencing the assemblage structure and then Chla
and salinity. Other factors, such as ocean currents, substrates,
and other anthropogenic activities still need further investigation.
Currently, little is explored to understand the entire life cycles of
the dominant and commercially important fish species in Sansha
Bay and its adjacent waters, the East China Sea. To achieve
effective fishery stock management, understanding different

life stages and their habitat uses, and the connectivity among
different life stages are highly recommended.
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