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The yellowstripe scad, Selaroides leptolepis (Carangidae), is an important fish
commodity in the Tropical Western Pacific (TWP). It has a latitudinal Pacific range
from south of Japan down to northern Australia, with the highest concentration in
Southeast Asia. However, its TWP fishing grounds have long been a hotspot of
unsustainable exploitations, thus threatening the remaining wild populations. Despite
the species’ commercial significance, there is limited understanding of its genetic
structure and diversity. Herein, the genetic structure of S. leptolepis was examined
using mitochondrial COI and CytB sequences. Both markers denoted significant
genetic structuring based on high overall FST values. Hierarchical analysis of molecular
variance (AMOVA), maximum likelihood (ML) phylogenetic trees, and median-joining
(MJ) haplotype networks strongly supported the occurrence of two allopatrically
distributed lineages. These comprised of a widespread Asian lineage and an isolated
Australian lineage. Within-lineage distances were low (K2P < 1%) whereas across-
lineage distances were remarkably high (K2P > 6%), already comparable to that of
interspecific carangid divergences. Haplotype sequence memberships, high genetic
variations, and the geographic correlation suggested that the Australian lineage was
a putative cryptic species. Historical demographic inferences also revealed that the
species experienced rapid expansion commencing on the late Pleistocene, most likely
during the end of the Last Glacial Maximum (∼20,000 years ago). The present study
encouraged the application of lineage-specific management efforts, as the lineages
are experiencing different evolutionary pressures. Overall, accurate knowledge of the
species’ genetic distribution is fundamental in protecting its diversity and assuring
stock sustainability.

Keywords: yellowstripe scad, Carangidae, mitochondrial DNA, haplotype, COI (cytochrome oxidase I),
cytochrome B (CytB)

INTRODUCTION

The yellowstripe scad, Selaroides leptolepis, is an economically important fish commodity in the
Tropical Western Pacific (TWP). This species is highly exploited in Southeast Asian countries,
particularly Malaysia, Indonesia, the Philippines, and in the United Arab Emirates (Kempter, 2015;
Figure 1). The S. leptolepis is commonly consumed fried, steamed, sun-dried, and even prepared

Frontiers in Marine Science | www.frontiersin.org 1 October 2021 | Volume 8 | Article 756163

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.756163
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.756163
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.756163&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/articles/10.3389/fmars.2021.756163/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-756163 October 12, 2021 Time: 14:28 # 2

Halasan et al. Population Genetics of Yellowstripe Scad

as components of surimi and burger patties (Yu and Siah, 1998;
Arfat and Benjakul, 2012). Aside from being a good source of
dietary protein, it also contains other functional biomaterials
such as protein hydrolyzates and histamine (Klompong et al.,
2009; Huang et al., 2010). Since the market price of S. leptolepis
is relatively more affordable than other fish groups (Kempter,
2015), it is highly patronized by local consumers. The species’
commercial significance, however, also makes it a vulnerable
target of extensive exploitations.

The S. leptolepis is the only representative of the genus
Selaroides (Family Carangidae). Its closest relatives include Selar,
Alepes, Hemicaranx, Chloroscombrus, and Caranx of the Tribe
Carangini (Reed et al., 2002). Taxonomically, S. leptolepis is often
misidentified as its Carangid relative—Selar crumenophthalmus
(Bloch et al., 1793) due to morphological similarities. S. leptolepis
differs by the absence of papilla on the lower pectoral girdle,
absence of teeth on the upper jaw, and prominence of the
longitudinal yellow stripe on its body (Nakabo, 2002). As a
demersal species, S. leptolepis is commonly found in inshore
waters shallower than 50 m (Allen and Erdmann, 2012). It is
widely distributed throughout the tropical and subtropical Indian
and Pacific waters (Abdussamad et al., 2013). In the TWP, it has a
latitudinal distribution range from the south of Japan (Hata et al.,
2017), down to the Indo-Malay-Philippine archipelagos (IMPA)
(Mat Jaafar et al., 2012), and northern Australia (Dell et al., 2009).

Considered as one of the globally most important fishing
regions, the TWP accounts for almost half of the world’s
marine fisheries production (Food and Agriculture Organization
[FAO], 2020) and houses the top capture fish producers of the
world, namely China, Indonesia, Vietnam, and Japan (Food and
Agriculture Organization [FAO], 2020). Its IMPA region, in
particular, is also considered a megadiverse area, with several
studies documenting the presence of genetically distinct fish
populations in the region (Rohfritsch and Borsa, 2005; Salini
et al., 2006; Hubert et al., 2012; Thomas et al., 2014). The high
biodiversity index of TWP had been attributed to its geologic
history, oceanographic dynamics, capacity for biomass support,
and vicariance histories (Carpenter and Springer, 2005; Gaither
and Rocha, 2013). Unfortunately, some TWP fishing grounds
have been experiencing high percentages of unsustainable
fisheries. Stock depletions have already been reported in several
fishing grounds within the TWP (Teh et al., 2007; Guanco et al.,
2009; Tangke et al., 2018; Fauziyah et al., 2020). Records also
revealed a steady decline in the global yield of S. leptolepis
after reaching peak production in 2014 (Food and Agriculture
Organization [FAO], 2021). The conservation of S. leptolepis and
other demersal fishes is important since these groups constitute
a significant portion of the TWP capture fisheries (Food and
Agriculture Organization [FAO], 2020).

In fisheries management, the reduction of genetic diversity
on the remaining natural populations remains a major
problem. This loss of genetic diversity translates into reduced
population fitness and its inability to adapt against evolutionary
pressures (Kenchington, 2003). To address these problems, the
incorporation of molecular techniques in conservation studies
had been practiced. These techniques can reveal valuable genetic
information, including a species’ pattern of distribution and the
demographic history of its populations. Clear information on

the genetic structures allows us to define management zones
and assess risks to overexploitation. Only a few records have
documented the genetic distribution of S leptolepis, and all were
done on small regional scales (Kempter, 2015; Mat Jaafar et al.,
2020). There is no available information on its extant genetic
structure and diversity in the TWP scale, hence this study.

The objective of this study was to investigate the intraspecies
genetic diversity, structure, and demographic history of
S. leptolepis in TWP. Sequence data from the mitochondrial
DNA Cytochrome Oxidase I (COI) and Cytochrome B (CytB)
regions were utilized to infer genetic structures. The mtDNA
genome is conserved across animal lineages, contains few
duplications, mutates rapidly, and is relatively easy to isolate—
making it a good marker for intraspecies genetic studies
(Desalle et al., 2017; Zhang et al., 2020). The COI and CytB
have moderate evolutionary rates than other mtDNA genes
(Kochzius et al., 2010; Kartavtsev, 2011) and their fragments
contain adequate informative phylogenetic information (Liu
et al., 2021). The coupled use of COI and CytB had not only
been applied to barcode animal taxa and infer deep intraspecies
divergences (Baker et al., 1995; Smith et al., 2011; Çiftçi et al.,
2013; Joshi et al., 2019), but also to detect provisional cryptic
populations awaiting thorough screenings (Asgharian et al.,
2011; Hubert et al., 2012; Sienes et al., 2014; Thongtam Na
Ayudhaya et al., 2017). Findings from this study serve as
baseline information for the fishery management and sustainable
utilization of S. leptolepis given its economic relevance and
understudied status.

MATERIALS AND METHODS

Sampling and DNA Extraction
Selaroides leptolepis individuals were obtained from landing sites
and wet markets from Central Philippines (n = 132) and Southern
Taiwan (n = 43) between 2018 and 2021. Identification was based
on morphological characters (i.e., longitudinal yellow stripe from
upper part of eye to caudal peduncle, toothless upper jaw, and
lower pectoral girdle absent of papilla; Nakabo, 2002; Motomura
et al., 2017; Koeda and Ho, 2019). Approximately 1 g of muscle
from the right caudal peduncle of each fish were stored in 2 ml
tubes with 95% ethanol prior to genomic extraction. Donated
muscle tissues from museum collections were also included and
subjected to genomic extractions. These samples originated from
Taiwan (n = 6), Philippines (n = 1), Malaysia (n = 1), and
Australia (n = 16). More information regarding these samples can
be found in Supplementary Table 1. Extraction was carried out
using ReliaPrepTM gDNA Tissue Miniprep System (Promega) or
Genomic DNA Extraction Kit 2.0 (Yeastern Biotech) following
manufacturers’ protocols.

Polymerase Chain Reaction
Amplification and Sequencing
The COI gene portion was amplified using published primers,
namely, FishF1 (5′-TCA ACC AAC CAC AAA GAC ATT GGC
AC-3′) and FishR1 (5′-TAG ACT TCT GGG TGG CCA AAG
AAT CA-3′) (Ward et al., 2005); whereas the CytB regions were
amplified using CytbF (5′-GGC TGA TTC GGA ATA TGC AYG
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FIGURE 1 | (A) Major collection sites from this study indicated by (n > 10 individuals) and (n < 10 individuals). The map is courtesy of The World Bank Org
(2021). (B) Fresh and (C) dried S. leptolepis sold at a local fish market in Central Philippines (CPHL).

CNA AYG G-3′) and CytbR (5′-GGG AAT GGA TCG TAG AAT
TGC RTA NGC RAA-3′) (Kochzius et al., 2010). Amplifications
were performed in 20 µl reaction volumes containing 10 µl
Ampliqon Taq DNA Polymerase Master Mix, 1 µl of genomic
DNA, 0.5 µl of each primer, and 8 µl of ultrapure water.
Polymerase chain reaction (PCR) for both markers was carried
out with an initial denaturation at 94◦C for 2 min, followed
by 35 cycles of 94◦C denaturation for 30 s, 52◦C annealing for
40 s, 72◦C extension for 1 min, and final extension of 72◦C
for 10 min. The quality of the PCR products was evaluated in
1.5% agarose gel. PCR amplicons were either sent to Macrogen
Inc. (Seoul, South Korea) or Genomics (New Taipei, Taiwan)
for bidirectional sequencing using the mentioned respective PCR

primers. Obtained sequences were quality checked and assembled
in Sequencher 5.4.6 (Ann Arbor, MI, United States).

Data Analyses
Additional sequences publicly stored in GenBank were also
incorporated in the analyses (Supplementary Table 2). COI
sequences included the Malaysian dataset published by Mat Jaafar
et al. (2020) (n = 70).

Genetic Diversity and Structuring
Sequences were aligned in BioEdit 7.2.5 (Hall, 1999) using
Clustal W option with default settings and trimmed to 517- and
527-bp lengths, respectively, for COI and CytB. These were
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then exported to DnaSP 6.12 (Rozas et al., 2017) for clustering
and haplotype generation. Sequences were grouped according to
collection regions, namely: South Japan (SJPN), South Taiwan
(STWN), Southeast China (SECH), Central Vietnam (CVNM),
South China Sea (SCHS), Central Philippines (CPHL), Peninsular
Malaysia (PMYS), East Malaysia (EMYS), Java Indonesia (JIDN),
Southern Indian Peninsula (SIND), Arabian Gulf (ABGF), and
Australia (AUST) (Figure 1 and Table 1). Selection of the best-fit
nucleotide substitution models through the Akaike information
criteria (AIC) were carried out separately for COI and CytB using
MEGA X (Kumar et al., 2018). Since some analyses were sensitive
to the sample sizes, only groups with n >10 sequences were
included in the following calculations: estimations for genetic
diversity (Hd), nucleotide diversity (π), and analysis of molecular
variance (AMOVA)—which were carried out in Arlequin 3.5.2.2
(Excoffier and Lischer, 2010). K2P sequence divergence was
calculated using MEGA X. For COI, the n >10 groups included
STWN, SECH, CPHL, PMYS, EMYS, and AUST, while CytB only
included STWN, CPHL, and AUST (Table 1).

For phylogenetic trees and haplotype networks generations
that were not sensitive to sample sizes, individuals from sparsely
represented geographic regions (n > 10) were incorporated
to explore the global relationship among all the available
sequences. These regions included SJPN, SCHS, JIDN, SIND,
and ABGF for COI, and SJPN, SCHN, CVNM, PMYS, and
ABGF for CytB (Table 1 and Supplementary Table 2). The
inclusion of these sequences was relevant, as these regions
represented individuals from the species’ holotype collection
site (i.e., JIDN, Cuvier and Valenciennes, 1833) and marginal
distribution range (i.e., Southern Japan, Indian Ocean; Prabhu,
1956; Abdussamad et al., 2013; Hata et al., 2017). Maximum
likelihood (ML) phylogenetic trees were created in MEGA X
under substitution models K2P (COI) and K2P + G (CytB),
with S. crumenophthalmus as the outgroup. PopART 1.7 (Leigh
and Bryant, 2015) was used to generate the median-joining (MJ)
haplotype networks.

TABLE 1 | Sampling region and abbreviations, sample size (N), and the
number of haplotypes.

Sampling region Abbreviation N No. of haplotypes

COI CytB COI CytB

South Japan SJPN 3 3 2 2

South Taiwan STWN 49 49 7 11

Southeast China SECH 14 1 2 1

Central Vietnam CVNM 2 1 2 1

South China Sea SCHS 2 – 2 1

Central Philippines CPHL 135 133 21 29

Peninsular Malaysia PMYS 42 1 10 1

East Malaysia EMYS 28 – 5 –

Java Indonesia JIDN 6 – 1 –

Southern Indian Peninsula SIND 2 – 2 –

Arabian Gulf ABGF 7 1 1 1

Australia AUST 16 16 6 8

Overall 306 205 51 49

Demographic History
Neutrality tests and effective population size change estimations
were done for the n >10 sample groups. These were performed to
infer historical demography and evolution neutrality. Deviation
from the neutrality model was calculated using Tajima’s D
(Tajima, 1989) and Fu’s Fs (Fu, 1997) in Arlequin 3.5.2.2. These
indices indicate whether populations underwent expansions.
Further inferences on historical demography were carried out
with a mismatch distribution analysis. Demographic parameters
such as tau (τ), θ0, θ1, sum of squared deviation (SSD),
and Harpending’s raggedness index (Hri) were also calculated
in Arlequin 3.5.2.2. Graphical figures showing the pairwise
comparison between the frequency of individuals (y-axis) with
the corresponding number of pairwise differences (x-axis) were
generated using DnaSP v6.12.

Changes in effective population size (Ne) across time were
inferred using Bayesian skyline plot analysis (Drummond et al.,
2005) implemented in BEAST 2.6.5 (Bouckaert et al., 2019).
XML files were initially prepared with BEAUti 2.6.5 (Bouckaert
et al., 2019). The HKY + G nucleotide substitution model was
selected for both markers to take into account possible site-
specific variations (Hill and Baele, 2019), and applied a strict
clock mutation rate of 1× 10−8 per site per year as suggested for
reef fishes (Stewart Grant et al., 2012; Delrieu-Trottin et al., 2017).
Independent Markov chain Monte Carlo (MCMC) analyses were
ran for 100 million generations with a burn-in of 10 million
and sampled every 1,000 iterations. If necessary, runs were
repeated until combined ESS >200 values were attained, and
consensus of these parameter values were visualized in Tracer
1.7.2 (Rambaut et al., 2018).

RESULTS

Genetic Diversity
A total of 306 and 205 sequences were generated for COI
and CytB, respectively. Fifty-one haplotypes were identified
from the 517-bp COI fragment (GenBank accession numbers:
MZ520638–MZ520664), whereas 49 haplotypes were identified
from the 527-bp CytB (GenBank accession numbers: MZ55565
8–MZ555703). Thirty-eight singletons were found for COI
and 40 for CytB. Overall, 69 and 65 polymorphic sites were
identified for COI and CytB, of which 45 and 40 were parsimony
informative, and 22 and 25 were singleton variables, respectively.
Global genetic diversities were high (COIglobal Hd = 0.7825;
CytBglobal Hd = 0.7364) while nucleotide diversities were low
(COIglobal π = 0.0119; CytBglobal π = 0.0106). Corresponding
nucleotide composition for COI and CytB were 23.21 and 22.69%
adenine, 29.15 and 28.63% thymine, 29.68 and 33.22% cytosine,
and 17.96 and 15.46% guanine. The genetic indices for each group
were presented in Table 2.

Genetic Structure and Phylogeographic
Relationships
Overall, pairwise FST values for both markers showed significant
genetic variation (p < 0.05) across populations. For COI, AUST,
and CPHL significantly differed from the rest of the groups.
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TABLE 2 | Polymorphic sites (PS), haplotype diversity (Hd), nucleotide diversity
(π), and Tajima’s D and Fu’s Fs indices for cytochrome oxidase I (COI) and
cytochrome B (CytB).

PS Hd π Tajima’s D Fu’s Fs

COI

STWN 8 0.4158 0.0010 −1.9214*** −4.4196***

SECH 1 0.1429 0.0003 −1.1552 −0.5948*

CPHL 23 0.6667 0.0031 −1.7569** −12.9741***

PMYS 13 0.4878 0.0038 −1.0380 −2.2930

EMYS 10 0.3280 0.0021 −1.8258** −0.4309

AUST/Australian lineage 5 0.5417 0.0014 −1.6917** −3.6928***

Asian lineage 40 0.7446 0.0059 −1.5023** −22.1143***

Overall 69 0.7825 0.0119 −1.2809* −17.1323***

CytB

STWN 12 0.4592 0.0012 −2.2610*** −10.1274***

CPHL 29 0.4984 0.0018 −2.4083*** −3.4e28***

AUST/Australian lineage 7 0.8417 0.0022 −1.5470* −5.0042***

Asian lineage 36 0.6774 0.0021 −2.3779*** −29.3793***

Overall 65 0.7364 0.0106 −1.4956** −22.5609***

Significance values: ***p < 0.01; **p < 0.05; and *p < 0.1.

AUST exhibited the highest pairwise differentiation (FST > 0.95)
followed by CPHL (FST > 0.62). For CytB, all three sampling
regions (STWN, CPHL, and AUST) significantly differed from
each other. Pairwise FST values across each sampling group were
presented in Table 3. Hierarchical AMOVA also showed the

TABLE 3 | Population pairwise distances using FSTs (upper diagonals) and Kimura
two-parameter (%K2P) (lower diagonals) for cytochrome oxidase I (COI) (upper
table) and cytochrome B (CytB) (lower table).

COI FST

STWN SECH CPHL PMYS EMYS AUST

STWN – 0.0166 0.7403 0.1036 0.0381 0.9834

SECH 0.0692 – 0.7217 0.0569 −0.0023 0.9869

CPHL 0.9472 0.9274 – 0.6203 0.6865 0.9515

PMYS 0.2745 0.2366 0.8930 – 0.0339 0.9526

EMYS 0.1651 0.1252 0.9176 0.3163 – 0.9721

AUST 7.2387 7.2271 6.3478 7.1601 7.1976 –

C
O

I%
K

2P

CytB FST

STWN CPHL AUST

STWN – 0.4406 0.9747

CPHL 0.2831 – 0.9688

AUST 6.1502 6.3129 –

C
yt

B
%

K
2P

Significant (p < 0.05) values for FSTs are highlighted in bold.

highest among-clusters FCT variability when AUST was separated
from the others (COI = 0.8847; CytB = 0.9491), though the
variation was statistically insignificant at p > 0.05. Additional
AMOVA results from other hypothetical combinations are shown
in Table 4.

TABLE 4 | Analysis of molecular variance (AMOVA) results for hierarchical genetic subdivision for the percentage of variation and F-statistics of the cytochrome oxidase I
(COI) and cytochrome B (CytB) genes.

Grouping Variance components % variation F-statistics P-value

COI

For all groups

1 Cluster 1 (STWN, SECH, CPHL, PMYS, EMYS, AUST) Among groups within total 84.07 FST: 0.8407 0.0000

Based on continental origins

2 Cluster 1 (STWN, SECH, CPHL, PMYS, EMYS) Among clusters 88.48 FCT: 0.8847 0.1642

Cluster 2 (AUST) Among groups within cluster 7.57 FSC: 0.6568 0.0000

Within groups 3.96 FST: 0.9604 0.0000

Based on the significance of FSTs

3 Cluster 1 (STWN, SECH, PMYS, EMYS) Among clusters 86.46 FCT: 0.8646 0.2062

Cluster 2 (CPHL) Among groups within cluster 0.64 FSC: 0.0473 0.0068

Cluster 3 (AUST) Within groups 12.90 FST: 0.8710 0.0000

4 Cluster 1 (SECH, PMYS, EMYS) Among clusters 84.40 FCT: 0.8440 0.2541

Cluster 2 (STWN) Among groups within cluster 0.68 FSC: 0.0438 0.0860

Cluster 3 (CPHL) Within groups 14.91 FST: 0.8508 0.0000

Cluster 4 (AUST)

CytB

For all groups

1 Cluster 1 (STWN, SECH, AUST) Among groups within total 91.63 FST: 0.9162 0.0000

Based on continental origins

2 Cluster 1 (STWN, SECH) Among clusters 94.91 FCT: 0.9491 0.3480

Cluster 2 (AUST) Among groups within cluster 2.21 FSC: 0.4338 0.0000

Within groups 2.88 FST: 0.9712 0.0000
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Combining all the other available sequences, the presence
of two diverging lineages was detected from the network
topologies (Figure 2) and phylogenetic trees (bootstrap > 75%)
(Figure 3). Herein, these lineages were referred to as the Asian
and Australian lineages. The Asian lineage covers all individuals
excluding AUST, while the Australian lineage is comprised only of
AUST individuals. The MJ haplotype networks for each marker
showed a deep divergence on the Asian and Australian lineage
in a reciprocally monophyletic network. Such type of network
is characterized by the presence of more than one lineage,
usually separated by numerous mutational steps (Jenkins et al.,
2018). Pairwise K2P distances across the two lineages were
COI = 6.77% and CytB = 6.64%. Within-lineage K2P differences
were COI = 0.60% and CytB = 0.22% for the Asian lineage,
and COI = 0.14% and CytB = 0.23% for the Australian lineage.
Corresponding K2P differences across each collection region
were presented in Table 3.

Further analyses without AUST were carried out to detect
variations within the Asian lineage. FST values revealed
significant differences across Asian populations (COI = 0.6511;
CytB = 0.4406). Only the COI ML tree showed a further
divergence of the Asian lineage into two main sublineages

with 76% bootstrap support. The first sublineage consisted
of STWN and most of CPHL individuals, as well as a few
PMYS, EMYS, SIND, SJPN, and ABGF individuals. On the
other hand, the second sublineage included STWN, SECH,
CVNM, PMYS, EMYS, JIDN, and CPHL individuals. These two
Asian sublineages had a pairwise difference of K2P = 0.99%.
The COI network displayed the divergence by the separation
of its two dominant haplotypes—H01 and H15. H01 includes
individuals from STWN, SECH, CPHL, PMYS, EMYS, and the
additional representatives from JIDN, SIND, SCHS, and CVNM.
Meanwhile, H15 is composed exclusively of CPHL individuals.
For CytB, the dominant haplotypes were H01 and H02. H01 is
majorly represented by individuals from CPHL and with few
samples from STWN and SJPN, while H02 is comprised mostly of
STWN and few CPHL, PMYS, and CVNM individuals (Figure 2
and Supplementary Table 3).

Demographic History
Overall Tajima’s D were negative for COI (Dglobal = −1.2809;
p < 0.1) and CytB (Dglobal = −1.4956; p < 0.05). Fu’s Fs
revealed highly significant negative values for both markers
(COIglobal Fs = −17.1323, p < 0.01) (CytBglobal Fs = −22.5609,

FIGURE 2 | Median-joining (MJ) networks of (A) cytochrome oxidase I (COI) and (B) cytochrome B (CytB) haplotypes of S. leptolepis Tropical Western Pacific (TWP)
populations. The sizes of nodes (circles) are proportional to the number of individuals. Black dots represent median vectors (unsampled haplotypes).
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FIGURE 3 | (A) Cytochrome oxidase I (COI) and (B) cytochrome B (CytB) maximum likelihood (ML) trees of S. leptolepis rooted with S. crumenophthalmus
(KJ502072, AY050731) from GenBank. Bootstrap consensus tree for the topology was inferred from 1,000 replicates and >75% support labels are retained at tree
nodes.

p < 0.01) (Table 2). Total mismatch distribution for COI and
CytB reflected different demographic signatures. COI showed a
multimodal pattern whereas CytB was bimodal (Figure 4). SSD
value for COI revealed an insignificant difference (p > 0.05)
from a predicted growth expansion model. Raggedness values
(Hri) for both markers also showed statistical insignificance
(p > 0.05), implying the samples had a relatively good fit to a
population expansion model. Corresponding mismatch indices
for the lineages were shown in Figure 4. Using COI mismatch
parameters θ0 and θ1 (Harpending, 1994; Marini et al., 2021),
the estimated effective female population size for S. leptolepis
after expansion (θ1) was approximately 5,000 times higher
than prior (θ0).

Demographic scenarios supporting the recent population
expansion of S. leptolepis were presented in the Bayesian
skyline plots (Figure 5). Both COI and CytB revealed patterns
of a long history of constant population size, followed by
a slight decline (bottleneck), and a subsequent demographic
expansion. The fastest increase of its effective population Ne
happened between 21 and 10 thousand years ago (KYA).
It showed a relatively stable effective population starting
2,000 years ago until the present. At the lineage level, the
Asian lineage also displayed the rapid expansion signature,

whereas the Australian lineage depicted slow population growths
(Supplementary Figure 1).

DISCUSSION

Genetic Diversity
High overall haplotype and low nucleotide diversities were
recorded for both markers, with numerous unique haplotypes
or singletons present in the MJ haplotype networks. These
singletons directly radiate from a largely shared haplotype,
indicating few mutational step differences. On one hand,
high haplotype diversity was detected when numerous unique
sequences were present within the overall population. On the
other hand, low nucleotide diversity was reflected when these
nucleotide compositions were closely similar. This type of genetic
pattern is usually attributed to a recently experienced expansion
(Grant and Bowen, 1998), which is likewise supported by
our historical demography findings. In such cases, individuals
evolve into different haplotypes with minimal differences; and
these haplotypes may either evolve directly or indirectly from
an ancestral haplotype (Chanthran et al., 2020). This kind
of genetic pattern has also been recorded in other TWP
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FIGURE 4 | Mismatch distribution analysis for S. leptolepis mtDNA cytochrome oxidase I (COI) (left) and cytochrome B (CytB) (right) using DnaSP v6.12. Graphs of
the mismatch distributions of (A,B) overall populations; (C,D) Asian lineage; and (E,F) Australian lineage. The X-axis shows the observed distribution of pairwise
nucleotide differences while Y-axis shows the frequencies. Solid lines represent the observed frequency of pairwise differences and broken lines show the expected
values under the sudden expansion model. Sum of squared deviation (SSD) and Harpending’s raggedness index (Hri) indices with corresponding p-values are also
presented.

carangids (Rohfritsch and Borsa, 2005; Jamaludin et al., 2020;
Mat Jaafar et al., 2020; Torres and Santos, 2020). The most
recurrent and widespread haplotype is considered the oldest

and most successful in traversing across sampling locations
(Posada and Crandall, 2001; Mat Jaafar et al., 2012). This
indicates that the second Asian sublineage might be the ancestral
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FIGURE 5 | Bayesian skyline plot based on (A) cytochrome oxidase I (COI) and (B) cytochrome B (CytB) for the effective population size changes throughout time.
X-axes represent time in thousand years ago (KYA), while Y-axes show the effective population size (Ne). The blue line represents the median, while the thick blue
band represents 95% highest posterior density (HPD) intervals.

S. leptolepis lineage and, the IMPA waters could be its potential
geographic origin.

Genetic Structuring
Differentiation of Asia and Australia Groups
Our findings coherently supported the distinction of the
Australian group. The high, significant genetic variations and
correlation with geography supported an allopatric separation.
The lineages’ pairwise K2P divergences (COI = 6.77%;
CytB = 6.64%) were higher than intraspecific variances on
carangids with detected cryptic populations: Atule mate

COI < 4.82%; S. crumenophthalmus COI < 4.66%; Seriolina
nigrofasciata COI < 4.32% (Mat Jaafar et al., 2012); Decapterus
maruadsi CytB < 5.0% (Jamaludin et al., 2020). These values
were also more than 10× higher than the mean intraspecific
divergences of barcoded fishes: COI = 0.39% (Ward et al., 2005);
COI = 0.34% (Thu et al., 2019); COI = 0.32% (Zhang, 2011);
COI = 0.59% and CytB = 0.57% (Kochzius et al., 2010); and
CytB < 1.0% (Li et al., 2018). Herein, it is suggested that the two
lineages represented different putative species in an S. leptolepis
complex. This magnitude of divergence was at comparable
values with the interspecific differentiation in the confamilial
Pseudocaranx dentex complex (Bearham et al., 2020).
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The separation of the two lineages can probably be related
to habitat discontinuity, oceanographic barriers, the species’
dispersal capacity, and past geologic events. For instance,
additional collections from Eastern Java, Indonesia corresponded
with the widely distributed Asian haplotype—H01. This sampling
locality is known to exhibit continuous coral and rocky reef
bottoms that extend to the Nusa Tenggara region (Fahmi
et al., 2021). The Eastern Indian Ocean and the Timor Sea
separate Eastern Java, Indonesia from North Australia, which
is the southernmost range of the species in TWP. These two
regions have a proximate distance of ∼1,400 km and reach
a maximum depth of ∼3,300 m through the Timor Trough,
implying that water dynamics between the two neighboring
localities might have acted as barriers which prohibited their
genetic exchange. The small islands in the area are also known
to serve as a gateway for the strong intrusive Pacific waters
flowing westwards to the Indian Ocean (Gordon, 2005). Being an
inshore, demersal fish, these suggest that S. leptolepis has a weak
migration capability to overcome deep water and strong current
conditions despite proximity. In contrast, genetic homogeneity
was displayed within the Australian group (K2P ≤ 0.2%), which
consisted of individuals collected from Queensland and Western
Australia (Supplementary Table 1). Found on opposite sides of
the continent, this reflects an extant gene flow and signifies a high
dispersal capability for S. leptolepis in shallow coastal regions.
All in all, oceanographic hindrances and physical limitations
explained the separation of Asian and Australian lineages.
Other examples of fishes showing homogenous North Australian
groupings with sharp discontinuities along the Timor Sea include
Lutjanus erythropterus (Salini et al., 2006), Decapterus russelli
(Rohfritsch and Borsa, 2005), and Pristipomoides multidens
(Ovenden et al., 2002). Additional samples from the Lesser Sunda
and nearby island localities will be ideal to establish a more
comprehensive narrative of the S. leptolepis distribution.

Shallow Structuring Across Asia
A broadscale geographic homogeneity was observed in the
Asian samples. Within this lineage, K2P divergences were
<1% on both markers. However, despite the evident genetic
differences in our findings, the magnitude of these differences
was low and inadequately supported (i.e., insignificant FSTs, low
bootstrap support on CytB, and mixed haplotype and sublineage
memberships). The discrepancy between the phylogenetic
results of COI and CytB, where further substructuring was
apparent in COI, might be an artifact of the level of
sensitivity of the mtDNA marker. This undetected sub-
clustering implies that such divergence is shallow. Moreover,
the limited inference on phylogenetic trees is complemented
with the use of networks. Since genetic diversity is usually
low at the population level, this leads to indecisive tree
resolutions and further overlooks other important evolutionary
information. To effectively visualize reticulated relationships
such as hybridization and recombination, networks are used. The
implicit, sequence-based MJ haplotype network may suggest the
possible occurrence of extant unsampled sequences or extinct
sequences through median vectors (Bandelt et al., 1999; Kong
et al., 2016; Figure 2). The mixed memberships of the dominant

Asian haplotypes imply sympatric distribution and the absence of
a clear genetic structure in the Asian lineage.

The absence of genetic structuring may partly be explained
by the spawning patterns and pelagic larval duration of
S. leptolepis, as well as the hydrogeographic features of the SCHS.
S. leptolepis exhibits two annual spawning events succeeded
by recruitment pulses which usually peak from March to
June when the temperature is warmer (Prabhu, 1956; Guanco
et al., 2009). In addition, observations from its close relative,
S. crumenophthalmus, reveal an 18-day post-hatching time before
reaching a nursing flexion stage (Welch et al., 2013), which
supports the notion that the pelagic larval time of S. leptolepis
might be close to 2–3 weeks. Our S. leptolepis Asian collection
grounds also lie on the periphery of the SCHS, which is bounded
to its adjacent areas by shallow waters and straits. The water
movement of the SCHS’s top layer is mainly influenced by
seasonal monsoons, with its water circulation directly affected
by two oppositely headed winds that sweep over the area at
different times of the year (Huang et al., 1994). Consequently,
the spawning times S. leptolepis temporally coincide with the
timings of the opposing monsoons. With all these being said,
the buoyancy of its ichthyoplankton, assisted with oceanographic
circulators and ample pelagic larval durations, could be key
factors in the successful genetic dispersal in the region.

Other notable clusterings of some haplotypes are shown
in the ML trees and MJ networks. For instance, majority of
the Malaysian haplogroup of Mat Jaafar et al. (2020) is now
recognized as part of the widespread second Asian sublineage.
This implies that most of the Malaysian S. leptolepis stocks are
mainly comprised of direct ancient lineage descendants and
thus support its IMPA origination. Additionally, SJPN sequences,
which are collected from the northern-most TWP range of the
species, appear to be more closely related to CPHL. This suggests
a possible influence of the upward-moving Kuroshio current
in dispersing the S. leptolepis to this northmost distribution.
Also, the COI haplotype network showed that SIND (H49, H50)
and ABGF (H51) samples formed a unique, close cluster. This
suggests that S. leptolepis from the Indian Peninsula and ABGF
region probably is a genetically distinct cluster. These samples
are linked closely to the Peninsular Malaysian samples of Mat
Jaafar et al. (2020), denoting that S. leptolepis from localities
near the Malacca Strait might be genetically closer to its Indian
Ocean conspecifics than those from the majority of IMPA.
Additional samples are necessary to quantify their degree of
genetic variability. This type of delineation was also observed in
Seriola nigrofasciata (Mat Jaafar et al., 2012), Lutjanus lutjanus
(Bakar et al., 2018), Uranoscopus cognatus (Mohd Yusoff et al.,
2021), and Penaeus semisulcatus (Halim et al., 2021).

Demographic History
The negative Tajima’s D and Fu’s Fs indicated the presence
of excessively rare haplotypes and imply a recent population
expansion, thus rejecting the neutral evolution hypothesis.
Fu’s Fs has been considered as a more superior test,
giving more reliability in inferring population growth
(Ramos-Onsins and Rozas, 2002). A multi/bi-modal mismatch
distribution suggested that the S. leptolepis populations are in
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equilibrium. However, relying solely on this graphical inference
does not automatically warrant its respective history. Multiple
and bimodality in mismatch analysis also happen in the presence
of genetically distinct lineage in the samples. Its first peak in the
graph represented the close intra-clade pairwise differences, and
the next successive peaks illustrated a more ancient inter-clade
pairwise difference. Therefore, lineages were suggested to be
prior segregated to avoid possible violations in coalescent theory
assumptions (Jenkins et al., 2018). In contrast, the unimodal
patterns in each lineage depicted recent demographic expansion
on the populations. Statistically insignificant values for SSD and
Hri support such population expansion.

The Bayesian skyline plots suggested recent population
expansion for S. leptolepis that initiated around the late
Pleistocene era. The species recorded the most rapid increase
in its effective population size during the Late Pleistocene
(20 KYA) up to the early Holocene (10 KYA). During the
Pleistocene, the TWP region, historically known as Sundaland,
experienced glaciation and deglaciation processes which caused
sea-level and temperature fluctuations that configured ocean
dynamics. A contraction of the S. leptolepis effective populations
was detected to coincide during these fluctuating periods
(200–40 KYA). The formation of ice on continents and poles
lowered sea levels, thus reducing the available space and ocean
food supply for marine populations, and probably leading
to depopulation. The abrupt rise in effective population size
synchronously commenced during the Last Glacial Maximum’s
deglaciation timetable (∼20 KYA). This deglaciation caused a
rapid rise in sea level which opened expansion opportunities.
Once habitat conditions became acceptable, ancient S. leptolepis
populations could have moved to these newly filled coastal
regions. With the help of its high dispersal abilities in shallow
environments, rapid population expansion, and new habitat
colonization could have been easily achieved by the species.
Overall, these collective circumstances might have influenced
the present-day distribution patterns of S. leptolepis in the TWP
coastal margins. Other relative carangids that exhibited similar
expansion timelines in the region include D. maruadsi (Niu et al.,
2019; Jamaludin et al., 2020), D. macrosoma, and D. macarellus
(Arnaud et al., 1999).

Implications for Management and
Conservation
The occurrence of two geographically isolated S. leptolepis
lineages in TWP suggested at least two genetically distinct stocks
were present in its waters. Their high level of K2P divergences
was already at comparable levels for interspecies differentiation
in Carangidae. The type locality for the original description
of S. leptolepis was Java, Indonesia (Cuvier and Valenciennes,
1833). Specimens from Eastern Java grouped with the widespread
Asian haplogroup suggested that this lineage might be the
originally described S. leptolepis, and the Australian lineage is
another putative species. Species complexes were considered
recently diverged; therefore, their morphological differentiation
is believed to have develop later due to new environment
adaptations (Fahmi et al., 2021). A comprehensive and adequate
collection on the S. leptolepis full range would also help us

understand its global structure and detect the presence of any
possible intermediate populations.

Selaroides leptolepis is of economic importance particularly in
regions of Southeast Asia. However, this is also often coupled with
a high exploitation rate. These Asian genetic stocks experience
high fishery pressures driven by human consumption demands,
which lead to localized fishery depletions. On the other hand, its
Australian counterpart experiences relatively lesser pressures, as
this species is not a top targeted fish commodity in the Australian
region (Gunn, 1990). This species is usually documented as part
of bycatch by fishery reports in this region (Blaber, 1993; Dell
et al., 2009). Reports have indicated that >85% of Australia’s fish
stocks are well-managed and are at sustainable levels (Mobsby
and Curtotti, 2018; Piddocke et al., 2020). This suggests that
the two newly uncovered S. leptolepis lineages are experiencing
different levels of fishery-induced pressures. Moreover, persisting
localized unsustainable exploitations on the Asian stocks can
cause fragmented isolation of small S. leptolepis populations.
A lowered genetic diversity in these small S. leptolepis populations
also means reduced fitness and higher risks against genetic
degradation and drift. Small, isolated populations are also highly
vulnerable to inbreeding, which reduces offspring number and
viability. The S. leptolepis populations’ ability in adapting to
their constantly changing environment will also be restricted if
genetic diversity is persistently decreased. If the highly targeted
Asian lineage ultimately depletes, chances of replenishing its gene
pool through migration will be unlikely due to the discussed
isolating mechanisms.

Delimiting the S. leptolepis cryptic species complex will
not only provide an advantage for its taxonomic recognition
but can also aid in the formulation of better conservation
measures. The challenge to fully delimit this S. leptolepis complex
might rely on the combinatory use of genetic and non-genetic
approaches. Exclusively associated characters in the morphology,
reproductive traits, or habitat preferences will be helpful features
for the species’ field-based diagnostics. Otherwise, the absence of
strong characters will make field-based differentiation impossible
and even further complicate its management. Separating them
into different units will foster more suitable stock-specific
management approaches, especially since these groups are
experiencing different exploitation pressures. Subdividing them
will define their stock geographic boundaries, which can lead to
more precise estimates on its fishery indices (e.g., recruitment,
growth, and mortality) (Ovenden et al., 2009).

This study defined the genetic structure and the presence
of a cryptic species of S. leptolepis in the TWP, wherein
this species is of economic importance. Their isolated
distribution, demographic history, and absence of in-
between populations warrant the clear separation; and this
signifies the need for other diagnostic characters, whether
morphological, habitat or behavioral, to disintegrate the
species complex. A full distributional range survey coupled
with robust genetic approaches [e.g., single nucleotide
polymorphisms (SNP)] will reveal the global structuring
and evolutionary history of this taxon. Regarding management
and conservation, we recommend a lineage-specific approach
since stocks face different environmental and fishery pressures.

Frontiers in Marine Science | www.frontiersin.org 11 October 2021 | Volume 8 | Article 756163

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-756163 October 12, 2021 Time: 14:28 # 12

Halasan et al. Population Genetics of Yellowstripe Scad

A transnational management scheme can be designed for the
widely distributed lineage. Most importantly, the integration of
insights from genetic studies and other scientific information can
foster the best management plan for this species in the future.
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