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Ocean mesoscale eddies are ubiquitous in world ocean and account for 90% oceanic
kinetic energy, which dominate the upper ocean flow field. Accurately predicting the
variation of ocean mesoscale eddies is the key to understand the oceanic flow field
and circulation system. In this article, we propose to make an initial attempt to
explore spatio-temporal predictability of mesoscale eddies, employing deep learning
architecture, which primarily establishes Memory In Memory (MIM) for sea level anomaly
(SLA) prediction, combined with the existing mesoscale eddy detection. Oriented to the
western Pacific ocean (125◦−137.5◦E and 15◦−27.5◦N), we quantitatively investigate
the historic daily SLA variability at a 0.25◦ spatial resolution from 2000 to 2018, derived
by satellite altimetry. We develop the enhanced MIM prediction strategies, equipped
with Gated Recurrent Unit (GRU) and spatial attention module, in a scheduled sampling
manner, which overcomes the gradient vanishing and complements to strengthen
spatio-temporal features for long-term dependencies. At the early stage, the real value
SLA input guides the model training process for initialization, while the scheduled
sampling intentionally feeds the newly predicted value, to resolve the distribution
inconsistency of inference. It has been demonstrated in our experiment results that
our proposed prediction scheme outperformed the state-of-art approaches for SLA
time series, with MAPE, RMSE of the 14-day prediction duration, respectively, 5.1%,
0.023 m on average, even up to 4.6%, 0.018 m for the effective sub-regions, compared
to 19.8%, 0.086 m in ConvLSTM and 8.3%, 0.040 m in original MIM, which greatly
facilitated the mesoscale eddy prediction. This proposed scheme will be beneficial
to understand of the underlying dynamical mechanism behind the predictability of
mesoscale eddies in the future, and help the deployment of ARGO, glider, AUV and
other observational platforms.

Keywords: Memory In Memory, scheduled sampling, mesoscale eddy, sea level anomaly, spatio-temporal
prediction, gated recurrent unit, spatial attention mechanism
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INTRODUCTION

Ocean mesoscale eddies, the rotating vortices with typical
horizontal scales of tens to hundreds km and timescales on
the order of weeks to months, are ubiquitous in world ocean.
They induce significant transport of water mass, heat, salt,
dissolved CO2, and other important oceanic tracers, which may
have profound climatological impact (Bryden and Brady, 1989;
Martin and Richards, 2001; McGillicuddy et al., 2007; Chelton
et al., 2011a; Chen et al., 2011, 2021; Sarangi, 2012; Frenger,
2013; Dong et al., 2014; Zhang Y. et al., 2014; Zhang Z. G.
et al., 2014, 2017; Zhang et al., 2016; Ma et al., 2019; Yang
et al., 2019; Tian et al., 2020; Zhang and Qiu, 2020; Martínez-
Moreno et al., 2021; Thoppil et al., 2021). The mesoscale eddies
account for 90% oceanic kinetic energy and dominate the upper
ocean flow field (Pascual et al., 2006; Wunsch, 2007; Martínez-
Moreno et al., 2021). Accurately predicting the variation of ocean
mesoscale eddies is the key to understand the oceanic flow
field and circulation system. That could provide opportunities
to potentially identify the underlying patterns and mechanism
associated with mesoscale eddies, as well as the related physical
and biogeochemical impact. It could also help to guide the
deployment of Array for Real-time Geostrophic Oceanography
(ARGO), ocean glider, or Autonomous Underwater Vehicles
(AUV), and when the observational missions are involved
mesoscale eddies (Chaigneau et al., 2011; Zhang et al., 2013; Dong
et al., 2017; Gourdeau et al., 2017; Zhang Z. W. et al., 2018; Shu
et al., 2019; Chen et al., 2021).

For decades, there have been intensive attention working on
the predictability of mesoscale eddy. The existing techniques
could be roughly divided into the numerical methods,
mathematical statistics, and machine learning approaches.
Robinson et al. (1984) and Robinson and Leslie (1985) first
predicted the evolution of eddies during 2-week periods in the
north-east Pacific off California, encouraging a lot the prospects
of mesoscale eddy forecast. Ocean dynamical models have
long been used to predict mesoscale eddies (Rienecker et al.,
1987). Masina and Pinardi (1994) presented a quasi-geostrophic
numerical model with a set of initial fields for mesoscale
assimilation around the Middle Adriatic Sea, to make a 30-day
dynamical prediction of the mesoscale flow field. Shriver et al.
(2007) performed a 30-day forecast with the increased forecast
resolution from 1/16◦ to 1/32◦, based on the Navy Layered Ocean
Model (NLOM), and compared to ocean water color images of
the Northwest Arabian Sea and Gulf of Oman, with the median
eddy center location error 29 km of 80% reliability.

Progresses have been made with data assimilation scheme
and the increase of resolution. It has been reported that the
daily forecast errors of eddy center positions in the northwestern
Arabian Sea and the Gulf of Oman could be 44–68 km with
the 1/12◦ global HYCOM model, and have reached to 22.5–
37 km with the 1/32◦ NLOM model (Hurlburt et al., 2008).
Eddy resolving, non-assimilative models are insufficient for
accurate prediction of evolving mesoscale eddies and fronts
due to mismatches in the initial locations (Thoppil et al.,
2021). Data assimilation could provide the initial conditions for
forecast but does not compensate for the shortcomings of most

models (Li et al., 2019). In addition, these kinds of approaches
tend to be very time-consuming and computation resource
dependent, which brings great challenges to simultaneously
perform ocean mesoscale eddy prediction in high accuracy with
higher efficiency.

Recently, machine learning framework has been increasingly
applied into mesoscale eddy prediction (Elman, 1990; Hochreiter
and Schmidhuber, 1997; Grigorievskiy et al., 2014; Box et al.,
2015). Li et al. (2019) have built one predictive model for
mesoscale eddy propagation trajectory with the multiple linear
regression, based on 5 years of satellite altimeter data in the
northern South China Sea (NSCS), demonstrated its forecast
skills over a 4-week window, relating oceanic parameters about
the effects of β and mean flow advection, and the accuracy was
sensitive to eddy polarity and the forecast season. Ma et al.
(2019) proposed an improved Convolutional Long Short-Term
Memory (ConvLSTM) network for mesoscale eddy forecast, to
reconstruct the spatio-temporal characteristics of the sea level
anomaly (SLA), combined with an SLA-based eddy detection
algorithm, and the predicted eddies are closer to eddies detected
from AVISO SLA data, compared with the Hybrid Coordinate
Ocean Model data set (HYCOM). Wang et al. (2020) have
predicted mesoscale eddy properties and propagation trajectories
with Long Short-Term Memory (LSTM) and extra trees (ET),
showing superior performances with the root mean square error
(RMSE) of the meridional displacement from 23.8 to 37.2 km,
and the zonal displacement from 28.8 to 47.2 km, for 1–4 week
prediction duration.

Due to the great success of deep learning, all kinds of most
emerging and advanced algorithms have been developed and
made progresses in the context, in learning the deterministic
spatial correlations and temporal dependencies (Röske, 1997;
Sertel et al., 2008; Niedzielski and Miziński, 2013), from Deep
Belief Networks (DBN) (Hinton et al., 2006), Deep Convolutional
Neural Networks (CNN) (Karpathy et al., 2014), AlexNet
(Krizhevsky et al., 2012) to recent Generative Adversarial
Networks (GAN) (Goodfellow et al., 2014), Deep Residual
Networks (ResNet) (He et al., 2016) and Dense Convolutional
Network (DenseNet) (Huang et al., 2017). Among them, the
deep architecture of the Recurrent Neural Networks (RNN),
which could model the sequences at the arbitrary length by
applying a transition function to all its hidden layer states
in a recursive manner, and capture all information stored in
sequence in the previous element, has been proven to be quite
effective in prediction (Lipton, 2015; Braakmann-Folgmann et al.,
2017). Long Short Term Memory (LSTM) has been designed by
adjusting the structure of the hidden neurons, based on a series
of memory cells recurrently connected through layers to capture
and retain the long-term dependencies, not only suppressing
the disappearing gradient problem, but also enhancing the
capability in predicting multi-step ahead into the future (Wang
et al., 2018; Shi and Yeung, 2018; Zhang et al., 2018; Nian
et al., 2021). Wang et al. (2019b) revolutionarily proposed
Memory In Memory (MIM) networks to exploit the differential
signals between the adjacent recurrent states to model the non-
stationary and approximately stationary properties in spatio-
temporal dynamics with two cascaded, self-renewed memory
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modules, by stacking multiple MIM blocks, potentially handle
higher-order non-stationarity time series prediction.

Meanwhile, there have been a large number of mesoscale eddy
identification algorithms that could be developed to indirectly act
on predicting mesoscale eddy activities (Wu, 2014; Yi et al., 2014;
Du et al., 2019; Duo et al., 2019; Moschos et al., 2020), which
could be primarily divided into four types, the physical based
algorithms (Okubo, 1970; Weiss, 1991; Isern-Fontanet et al.,
2003; Morrow et al., 2004; Chelton et al., 2007; Chaigneau et al.,
2008), the geometrical based algorithms (Sadarjoen and Post,
2000; Nencioli et al., 2010), the hybrid algorithms (Halo et al.,
2014; Mkhinini et al., 2014; Le Vu et al., 2018), and sea surface
height (SSH) based algorithms (Fang and Morrow, 2003; Chelton
et al., 2011b; Mason et al., 2014; Laxenaire et al., 2018), including
Okubo-Weiss (O-W), Vector-Geometry (V-G), and Winding-
Angle (W-A) algorithms, etc. Chelton et al. (2011b) investigated
mesoscale eddy variability in the global ocean within 16 years of
SSH observations comprising approximately 1.15 million eddy
observations, suggested the prevalence of coherent mesoscale
features are readily apparent, and proposed an automated
procedure to identify and track mesoscale features based on
their SSH signatures, which yields 35,891 long-lived eddies, with
an average life cycle of 32 weeks and an average propagation
distance of 550 km, the mean amplitude and a speed-based
radius scale 8 cm and 90 km. Liu et al. (2016) proposed parallel
identification of mesoscale eddies by simplifying the recognition
process and SLA contour search range, characterized the eddy
structure with radius, amplitude, eddy core, and closed SLA
contour by maximum average geostrophic velocity. Tian et al.
(2020) put forward the parallel eddy identification and tracking
algorithm, validated by Argo float trajectory and drifter trajectory
data, where the vectorized contour line-based boundaries enabled
the centroid core to be computed with high accuracy and the
most stable properties of eddies have been chosen as a set of
dimensionless similarity parameters.

At present, the advances in remote sensing technologies
have enabled the acquisition of global observation to be more
accessible in ocean mesoscale eddy detection, tracking, prediction
tasks. Mesoscale eddies have been investigated both intensively
and extensively with long-term time series (Oey et al., 2005; Wang
et al., 2015; Świerczyńska et al., 2016; Fablet et al., 2017; Imani
et al., 2017; Fu et al., 2019), e.g., sea surface height, salinity,
temperature, SLA, etc. The initialization of ocean dynamic state
through assimilation underpins prediction with the optimal
statistical estimation from the numerical models and the sparse
ocean interior information (Thoppil et al., 2021). It has been
reported that the current generation of the operational products
has received prediction skills of median SSH with at least 5–10 cm
RMSE calculation from model-driven methods (Smedstad et al.,
2002; Martin et al., 2007; Drévillon et al., 2008; Chassignet et al.,
2009; Cornillon et al., 2009; Metzger et al., 2010, Metzger et al.,
2014; Thoppil et al., 2021).

In this article, we make an attempt to develop mesoscale eddy
prediction strategies with their SLA time series, combined with
the existing mesoscale eddy detection algorithm, as is shown
in Figure 1. The overall framework of our proposed mesoscale
eddy prediction is made up of correlative steps, including

model construction, pre-training, optimization, transfer learning,
performance evaluation. One deep learning based model has
been constructed to explore the mechanism of SLA prediction
process, by means of an enhanced MIM with scheduled
sampling (Bengio et al., 2015). In view of the availability in
most mesoscale eddy identification and tracking algorithms,
we primarily focus on how to establish SLA prediction with
higher accuracy and efficiency. We incorporate the Gated
Recurrent Unit (GRU) (Cho et al., 2014; Chung et al., 2014)
and the spatial attention (Jaderberg et al., 2015; Zhu et al.,
2019) into original MIM architecture, in order to balance
the computation complexity and prediction accuracy, and
strengthen feature extraction with spatio-temporal variability
characteristics in SLA. We adopt scheduled sampling to
solve the inconsistency of input distribution. At the early
stage of training, the real value input leads to a reasonable
state from a randomly initialized state, and as the training
progresses, it gradually involves the newly generated value to
feed into the model.

The remainder of the article is organized as follows:
Section “Data” describes the study area and the access
of SLA time series referred. Section “Sea Level Anomaly
Prediction With Enhanced Memory In Memory and Scheduled
Sampling” outlines the architecture of our SLA prediction
network with the enhanced MIM and scheduled sampling,
including the basics in MIM, GRU and spatial attention
module, Section “Mesoscale Eddy Detection With Sea Level
Anomaly Prediction” introduces mesoscale eddy detection
algorithm. Section “Simulation Experiment and Result Analysis”
quantitatively and systematically evaluates the performance of
our proposed spatio-temporal prediction model for mesoscale
eddy variation, and exhibits the experimental results. Finally, the
conclusion is drawn in section “Conclusion.”

DATA

The SLA product in our study, retrieved from Archival
Verification and Interpretation of Satellite Oceanographic Data
(AVISO), hosted at the Copernicus Climate Change Service
Center (C3S)1, is defined as the water height above the
average sea level, composed of gridded sea height with a
0.25◦ Mercator projection covering between 0◦E–360◦E and
90◦S–90◦N from 1993 to 2020, processed and generated by
Data Unification and Altimeter Combination System (DUACS)
(Taburet et al., 2019), in the optimally interpolated mapping
procedure, through the use of multiple altimetry satellites (ERS-
1/2, Topex/Poseidon, ENVISAT, and Jason-1/2) and uniform
calibration standards. In addition, the centered processing time
window and verification process increase the stability and
accuracy of sea level variables, and adapt to mesoscale eddy
applications, enabling the retrieval of long-term ocean variability.
The average reference value for SLA is calculated for two
decades, and the coverage region could reach the global scope,
its spatial resolution is 0.25◦ latitude, and the temporal resolution

1Climate Data Store: https://cds.climate.copernicus.eu/
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FIGURE 1 | Overall flow chart of the mesoscale eddy prediction system.

is daily. Our study area is located in the western Pacific ocean
(125◦−137.5◦E and 15◦−27.5◦N), as is shown in Figure 2,
represented in green rectangle, where the propagation paths

of mesoscale eddies in 2000–2018 and corresponding density
distribution are also listed, with cyclonic eddies in red and
anticyclonic eddies in blue.
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FIGURE 2 | Propagation paths and density distribution of mesoscale eddies in the study area. (A) Propagation paths of cyclonic eddies. (B) Propagation paths of
anticyclonic eddies. (C) Density distribution of cyclonic eddies. (D) Density distribution of anticyclonic eddies.

SEA LEVEL ANOMALY PREDICTION
WITH ENHANCED MEMORY IN MEMORY
AND SCHEDULED SAMPLING

The intrinsic attributes of mesoscale eddies, including the
variation of the amplitude, the rotation speed, and the radius,
are significantly involved in the time-varying processes. SLA
time series could reflect those variability correlative with origins
of mesoscale eddies to their evolution and propagation in
manifold forms. According to Cramér’s decomposition (Cramér,
1961), the non-stationary SLA time series could be decomposed
into deterministic, time-variant polynomial, plus a zero-mean
stochastic term. The original MIM is to propose to exploit
the differential operation between adjacent recurrent states so
as to adapt the non-stationary and approximately stationary
properties in spatio-temporal dynamics with two cascaded, self-
renewed memory modules. Here we elaborate on one enhanced

MIM strategy, equipped with GRU and spatial attention module,
to discern non-stationary link toward SLA prediction through
scheduled sampling, from the low-level features including spatial
correlations or temporal dependencies, to high-level properties
like accumulation, deformation, or dissipation.

Memory in Memory With Gated
Recurrent Unit and Spatial Attention
In order to implement SLA prediction with long-term
dependencies, we first develop one enhanced MIM mechanism,
with GRU and spatial attention module, which makes a trade-off
between model complexity and prediction accuracy for SLA
time series highly associated with spatio-temporal variability
of mesoscale eddies. Such deep learning scheme first applies
the basic idea of stacking multiple MIM blocks to potentially
handle the predictability of higher-order non-stationarity in
SLA time series. Since over-differentiation for SLA prediction
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may inevitably lead to loss, the forget gate is replaced with
two embedded long short-term memory in MIM, with the
differential operation between adjacent hidden states in a
loop path, so that one basic MIM consists of non-stationary
module (MIM-N) and stationary module (MIM-S), which has
been proved to be superior to basic Spatiotemporal LSTM
(ST-LSTM) (Wang et al., 2017) and ConvLSTM (Shi et al., 2015)
in prediction performance (Wang et al., 2019a). Second, due to
the high computational requirement in the entire MIM network
architecture, we propose to simplify the model size of the original
MIM for SLA prediction, with the update gate and reset gate
inspired by GRU unit, which enables to manage the long-term
flow, with much less calculation and parameter size, refines the
model construction into a lightweight level. Third, the spatio-
temporal variation of SLA time series appears with the variable
location, while the convolutional recursive structure in deep
learning framework is position-invariant at every moment. We
further focus on constructing one spatial attention mechanism
to refrain from the connection structure mismatching within
the convolution operation for the enhanced MIM scheme. More
details could be found in our Supplementary Material.

Model Construction for Sea Level
Anomaly Prediction
The overall model construction for SLA prediction is shown
in Figure 3, by stacking three enhanced MIM blocks and
one ST-LSTM layer, with the diagonal state transition paths
for differentiation is in red arrows, the horizontal transition
paths of the memory cells in blue arrows, and the zigzag
state transition paths in black arrows, to capture higher orders
of non-stationarity signals, gradually stationarize the spatio-
temporal process and make the time series more predictable.
The ST-LSTM layer extracts spatial and temporal representations
simultaneously in a unified memory cell and conveys the memory
both vertically across layers and horizontally over states. When
inputting into MIM-N module, we adaptively decide to forget or
remember the differentiation or cell state with gating mechanism.
If the differentiation disappears, indicating that non-stationary
dynamics would not be prominent, MIM-S will reuse the original
cell state. On the contrary, MIM-S covers the cell state and
focuses more on non-stationary component, while repeatedly
differentiating may lead to the stationary process.

For the SLA multi-step prediction, the training process in
the original MIM consists of maximizing the likelihood of each
output given the current recurrent state and the previous input.
The error accumulation problem sharply occurs as the prediction
time steps proceed, partially due to the unbalanced scale between
the training and test samples. We employ the learning strategy
of scheduled sampling for SLA prediction in the context of
reinforcement learning, to gently change the training process
from a fully guided scheme with the ground truth, toward a less
guided scheme which mostly makes use of the already generated
prediction instead. The enhanced MIM model is hereby designed
to learn how to recognize the discrepancy and force itself to
correct error accumulation, by deciding whether the ground
truth or the predicted output value behaves as the input for

FIGURE 3 | Overall predictive model construction.

the next step. In virtue of such adversarial learning, we would
expect to pursue a probably better balance in modeling between
the training and inference stages more consistently for SLA
prediction. In response to the resulting convergence at the low
speed, we assigned a summed weight for both the ground truth
and predicted output value, instead of the probability, to improve
the scheduled sampling strategy, as is shown in Figure 4. The
superposition only happens from the time t to be predicted, not
the time step at the origin. The weight of superposition indicates
the proportion that the predicted output value takes, at the initial
stage of insufficient training, it tends to be set relatively low. As
the model parameters are thoroughly learned, it will gradually
increase, and finally completely depend on the predicted output
value. In this way, we could combine the two candidates as a
fused input with the dynamic weight coefficient, to improve the
capacity of long-term dependencies for SLA prediction.

MESOSCALE EDDY DETECTION WITH
SEA LEVEL ANOMALY PREDICTION

The existing SSH based mesoscale eddy identification and
tracking algorithms have been essentially well suited to mesoscale
eddy detection from noisy SSH (Chelton et al., 2011b). In this
article, we directly employ the above algorithm to conduct the
mesoscale eddy identification in aid of SLA variation prediction.
The eddy identification procedure strives to achieve threshold-
free mesoscale eddy detection without the differentiation of
the SSH field and with no smoothing beyond that inherent in
the SSH fields of the AVISO Reference Series, obviating the
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FIGURE 4 | Framework of the improved Scheduled Sampling.

need to differentiate the SSH fields and avoiding the associated
deleterious effects of noise that are problematic in numerous
previous studies.

SIMULATION EXPERIMENT AND
RESULTS ANALYSIS

In our simulation experiment, we retrieved the records of
SLA time series from AVISO, ranging from 2000 to 2018, to
benefit for our prediction tasks of mesoscale eddies. Due to the
advancement of multi-satellite altimeter sensing techniques, we
applied SLA time series after 2000, as the fused observation
has been collected with consistently high temporal and spatial
resolutions in quality. The experimental steps and result analysis,
such as the construction of SLA dataset, the optimization strategy
in the enhanced MIM architecture with scheduled sampling,
including the pre-training of transfer learning, the solution in
over-fitting, and model selection of hyperparameters, as well as
the prediction performance evaluation, will be involved here.

Dataset Creation for Sea Level Anomaly
Prediction
We tried to devote to predict SLA time series of the next 14 days
at most, with our proposed mechanism, provided with the known
SLA time series available 14 days before. Owing to the scarcity of
records for deep learning, we considered the segmentation and
data augmentation techniques for SLA time series. The certain
sliding window of a 14-day prediction duration has been defined,
with a time step of 1 day long, as is shown in Figure 5A. If we
arbitrarily shift this window on SLA time series and stop at any
location along the time domain, there will be 14-day input in red
rectangle and 14-day expected output in blue rectangle for the
enhanced MIM architecture.

In view of the fact that the deep learning model in this
article requires a large amount of high-quality labeled data, pre-
training and fine-tuning in transfer learning are commonly used

techniques to solve the problem of low data volume and improve
the training speed and generalization ability of the model. Since
it is of great importance to implementing deep learning with
sufficient samples in appropriate models, we introduced a large
number of extra SLA time series for transfer learning, respectively
from the regions located at the same latitude of our study area, as
is shown in Figure 5B, with our study area in black rectangle, and
the other regions in yellow rectangle.

In this way, the total number of all the SLA time series
segments in our study area for the 14-day prediction duration
from 2000 to 2018 is 6,400, of 50×50 in size, and then we
divided the original time series segment datasets into three types
individually, 4,000 selected from the even years between and
including 2000 and 2018 for training, 1,200 selected from the odd
years between and including 2001 and 2007 for cross-validation,
and 1,200 selected from the odd years between and including
2009 and 2017 for testing. Meanwhile, 45,000 extra samples from
other seven regions at the same latitude, have been taken to
facilitate transfer learning in the enhanced MIM architecture with
scheduled sampling for a higher prediction accuracy.

During our transfer learning, we first established SLA
prediction in a source task for the eight regions together, related
to a large amount of training samples, to feed into the enhanced
MIM architecture with scheduled sampling and develop the
source model, then reused the pre-trained model with the
learned parameters to initialize the model in our target task for
the study area, and finally fine-tuned the previous model for
further optimization.

Model Construction, Configuration,
Selection
The configuration of supercomputing solutions during the
model building, training and testing process, is as follows,
NVIDIA TITAN Xp Graphics Card and GeForce GTX 1080Ti
Graphics Cards, Intel Core i5-2410M CPU, with main frequency
2.3 GHZ, 32 GB Memory Cards, Ubuntu 16.04 operating
system, Tensorflow1.3.0 Deep learning framework, Python3.5
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FIGURE 5 | Data segmentation and augmentation for SLA time series. (A) Segmentation with sliding window. (B) Augmentation of SLA time series for transfer
learning.

interpreter, data science libraries including NumPy and Pandas,
and netCDF data viewers.

For the enhanced MIM architecture, all of the input and
output SLA sequences were of 50×50 size. The best Adam
optimizer has been adopted for optimization, among which β1
and β2 were, respectively, 0.95 and 0.9995, the learning rate
was initially set to 10−3

− 10−4, until we determined to be 3e−4

for transfer learning, with the fine-tuning process 3e−5. We
have chosen the loss function by the root mean square error
of L2 regularization, and also added one Batch Normalization
(BN) layer (Ioffe and Szegedy, 2015) and parameter clipping to
prevent overfitting. The parameter clipping C value was 0.01; the
initialization utilized the Xavier method, designed for the tanh
activation function, and the parameter matrix initialization was
as follows:

wij ∼U
(
−

1
√
n
,

1
√
n

)
(1)

Wherewij refers to the weight parameter matrix from the ith layer
to the jth layer that obeys a uniform probabilistic distribution U,
with n the total number of network parameters in the enhanced
MIM architecture. For the model selection, we have conducted a
series of hyperparameter evaluation experiments in comparison.
As a basic hyperparameter, too large a batch size leads to poor
generalization ability and easily causes Out of Memory (OOM),
and too small a batch causes unstable convergence. We have

combined the local computational resources and prior knowledge
to provide three alternative values: 4, 8, and 16. At the same time,
for the number of filters about the feature map channels, too few
could lead to under-fitting, too many might bring over-fitting,
and OOM problem. We adopted three alternative values: 16, 32,
and 64, with the size of the convolution kernel.

As a commonly used parameter tuning technique, grid search
has been used to combine all parameter possibilities to select
our optimal model, and the average percentage error of multiple
parameter combination and selection for the 14-day prediction
duration has been listed in Table 1. It could be seen from the
experimental results that when the number of filters and batch
size are (64, 8) and (64, 4), there occurred OOM in deep learning.
Since both the batch size and the number of filters had a great
impact on memory, we had to look for their trade-off with
higher prediction performance. The relatively optimal parameter
combination in bold was to choose the filter number 32 and the
batchsize 8, and for the dual GPU, the batchsize of each GPU
was 4.

Quantitative Metrics for Sea Level
Anomaly Prediction
We employ Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE) metrics to quantify the prediction
performances with the reference SLA maps.
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Mean Absolute Percentage Error is initially defined as follows,

MAPE =
1
m

m∑
k=1

∣∣∣∣∣ (y
k
i,j − ŷki,j)

yki,j

∣∣∣∣∣× 100% (2)

Where yki,j stands for the kth actual value at the spatial location
(i, j) and ŷki,j is the kth predicted value, m refers to the
number of samples.

Root Mean Square Error can be expressed as follows,

RMSEi,j=

√√√√ 1
m

m∑
k=1

(yki,j − ŷki,j)2 (3)

Where ŷki,j is the kth actual value at the spatial location (i, j)
and ŷki,j is the corresponding kth predicted value, mrefers to the
number of samples.

Optimization Strategies in Enhanced
Memory in Memory Architecture
We further tried to evaluate the prediction performance of the
enhanced MIM architecture with scheduled sampling.

First, we have verified whether our proposed model would
be effectively extract the possibly non-stationary features of SLA
time series. As is shown in Figure 6A, compared to the original
MIM framework, as the time increased gradually in such 14-
day prediction duration, the prediction performance did not
change sharply, but rather smoothly, regarding to the average
percentage error.

We further quantitatively investigated how much extent the
progress of the prediction performance could benefit from
the improvement of GRU and attention mechanism in our
enhanced MIM model individually. The performance verification
for each step is listed in Table 2, in terms of spatio-temporal
averaged MAPE and RMSE. GRU simplified the calculation and
reduced the storage of intermediate state at the cost of lower
accuracy, and after the spatial attention module being added,
by dynamically adjusting the weight in space, the fixed position
of the convolution parameters was updated, and the prediction
accuracy has been indeed improved.

We also examined the stacking number of the enhanced MIM
modules as 2, 3, and 4, with spatio-temporal averaged MAPE
and RMSE, as is shown in Table 3, and among them, three
stacking MIM modules performed best, indicating its learning
ability in high-order non-stationary features. Stacking too few
MIM modules would lead to the insufficient non-stationary
modeling capabilities, while MIM modules stacked too deep

TABLE 1 | Hyperparameter grid search.

Number of filters batch size 2 4 8

16 6.7% 6.4% 6.2%

32 5.6% 4.4% 4.2%

64 4.3% Memory overflow Memory overflow

would probably bring difficulty in training and slow down
the convergence.

Second, we have made comparison of our improved
scheduled sampling with the classical one regarding to the
losses during training, in the context of enhanced MIM
framework, as is shown in Figure 6B, where the improved
scheduled sampling made the model converge faster at the early
stage of training.

In the enhanced MIM framework, the fused scheduled
sampling outperformed to the traditional training and classical
scheduled sampling, did significantly improve the error
accumulation in multi-step prediction problem, achieved
almost the comparable effects as the classical one, but
accelerated the early convergence speed greatly, as is shown
in Figure 6C.

We also carried out the comparative experiments to the
weight update means as the number of training epochs increased,
between the linear, exponential and inverse S-shaped function,
as is shown in Figure 6D, where there have been no obviously
differences in three functions for prediction accuracy, and the
inverse S-shaped function tended to be more conducive to
convergence, so we adopted by default.

Our transfer learning could be regarded as model optimization
process, and we have considered the assessment of transfer
learning by the convergence speed and prediction accuracy, in
terms of the spatio-temporal averaged MAPE and RMSE, as is
listed in Table 4. The pre-training model would make the whole
training process much faster, at a smaller learning rate, compared
to the training from scratch, indicating the transfer learning in
bold accelerated the progress of the SLA prediction in our study,
and the prediction accuracy have also improved through transfer
learning.

Performance Evaluation for Sea Level
Anomaly Prediction
Overall Prediction Assessment
Furthermore, after individual evaluation in the performance
improvement step by step, we made an overall assessment
and comparison with the classic ConvLSTM, ConvLSTM with
scheduled sampling (SC), and the original MIM model. In
order to ensure the evaluation at the same level, all the
models have adopted a four-layer network structure, with
the most appropriate hyperparameters for our computational
resources. It should be noted that neither the classic ConvLSTM
nor the original MIM have not made any improvements in
training strategies such as the scheduled sampling and transfer
learning mechanisms.

After optimization, the overall predication performance
of the four models is illustrated in Table 5, in terms of
the spatio-temporal averaged MAPE and RMSE. It has been
demonstrated that our proposed scheme in bold achieved better
14-day prediction performances, compared to that of classic
ConvLSTM and the original MIM, as well as ConvLSTM
with SC. The prediction results of classic ConvLSTM and
ConvLSTM with SC tended to be noisy and less good in
depicting the edges, both the proposed scheme and the original
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FIGURE 6 | Prediction performance evaluation in enhanced MIM model with scheduled sampling (SC). (A) 14-day prediction performance comparison between
original MIM and our enhanced scheme. (B) Comparison between our improved scheduled sampling (SC) with the classical one. (C) The enhanced MIM combining
with the different scheduled sampling (SC) strategies. (D) Comparison in weight adjustment means.

TABLE 2 | Model performance verification.

Model Model parameters MAPE RMSE (m)

MIM 59.8M 6.1% 0.035

MIM (GRU) 47.6M 6.2% 0.037

MIM (GRU+ attention) 47.7M 5.2% 0.025

TABLE 3 | Number of stacking layers.

Model stacking layers Convergence time MAPE RMSE (m)

2 20 h 7.4% 0.025

3 25 h 7.2% 0.023

4 31 h 7.6% 0.028

MIM behaved better at the early stage, and the former was
more superior for the long-term prediction when the time
proceeded, with a smooth SLA variation of distinct edges.
The example prediction results of three models, including
the classic ConvLSTM, the original MIM, and our proposed
scheme, for a 14-day prediction duration, have been visualized
in Figure 7A, with the effective sub-region location in yellow
rectangle.

Meanwhile, we have also designed to randomly divide the
entire dataset of all the SLA time series segments for training,

TABLE 4 | Transfer learning with convergence speed and performance evaluation.

Training method Convergence time MAPE RMSE (m)

Training from zero 21 h 4.2% 0.016

Transfer learning 5.5 h 4.1% 0.015

verification, and test, and basically achieved as good performance
as the above one in most cases under the deep learning
architecture, showing no significant prediction preferences.
Generally, the above experiment design basically provided
the relatively reasonable prediction performances, reflected the
uniform distributed attributes of SLA records, and promoted the
generalization capacity for both even and odd years, with the
reduction of the repeated learning within years.

Pointwise and Increment Evaluation
The pointwise prediction performance of the above example SLA
time series has also been calculated, as is shown in Figure 7B,
with the prediction error distribution of 14 days listed here.
It could be seen from the experiment results that due to
the spatio-temporal correlation in SLA time series, the edges
approach to the higher prediction error as some of the edges
come from non-study areas. The insufficient input of the edges
could lead to the inaccuracy for the edge prediction, and the
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TABLE 5 | Performance comparison among classical ConvLSTM, original MIM, ConvLSTM with scheduled sampling (SC), and the proposed scheme.

Time model ConvLSTM ConvLSTM with SC MIM Ours

RMSE (m) MAPE RMSE (m) MAPE RMSE (m) MAPE RMSE (m) MAPE

2 0.025 4.8% 0.017 3.7% 0.009 1.8% 0.011 1.7%

4 0.040 5.8% 0.024 4.1% 0.016 3.2% 0.012 2.4%

6 0.053 7.6% 0.033 5.2% 0.022 4.4% 0.017 3.0%

8 0.058 8.8% 0.043 8.4% 0.028 5.7% 0.019 3.6%

10 0.068 15.0% 0.053 12.9% 0.033 6.8% 0.020 4.1%

12 0.081 16.8% 0.064 13.5% 0.037 7.8% 0.021 4.6%

14 0.086 19.8% 0.074 17.6% 0.040 8.3% 0.023 5.1%

FIGURE 7 | Example SLA prediction results and pointwise prediction performance for a 14-day prediction duration. (A) The example SLA prediction results from the
classic ConvLSTM, the original MIM, and our proposed scheme. (B) RMSE spatial distribution for example SLA prediction with our proposed scheme. (C) Spatial
correlation map between RMSE and cyclonic density distribution. (D) Spatial correlation map between RMSE and anticyclonic density distribution.

higher error would pass on gradually in the iterative prediction
process, and make the high error region of the edge gradually
expand. In addition, the spatial correlation map between
RMSE and the average density distribution in Figures 2C,D
has been depicted, with Figure 7C for cyclonic eddies and
Figure 7D for anticyclonic eddies. From the perspectives of
average density distribution, the regions with higher density
of mesoscale eddies tended to obtain higher errors, implying
the existing sensitivity to the strong nonlinearity degrees of
mesoscale eddy variation.

We also carried out the increment evaluation from the mean
SLA in the first 14 days to SLA in the next 7 days or 14 days, with
both the ground truth and the predicted values. The increment

prediction evaluation results for one example SLA time series
segment, randomly selected from April 30, 2015 to May 27,
2015, have been shown in Figure 8, where the first and second
rows respectively refer to the results for the 7-day and 14-day
prediction duration, with the ground truth on the left and the
predicted values on the right, and the effective sub-region located
in black rectangle.

Effective Sub-Region Performance
The prediction performance of the edges within SLA time
series would be most probably less good than that of the
central location. We assumed there was an effective sub-region
included in each SLA record at each time step, considering the
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FIGURE 8 | Increment prediction evaluation and effective sub-region selection. (A) Increment prediction evaluation in the 7-day duration, with SLA ground truth on
the left and the predicted values on the right. (B) Increment prediction evaluation in the 14-day duration, with SLA ground truth on the left and the predicted values
on the right.

TABLE 6 | Effective sub-region assessment.

Evaluation criterion 2 4 6 8 10 12 14

RMSE (m) 0.006 0.007 0.010 0.012 0.014 0.016 0.018

MAPE 1.2% 1.9% 2.5% 3.1% 3.6% 4.1% 4.6%

prediction duration and the eddy propagation direction from east
to west, and the most important SLA variation in the effective
sub-region would be all covered without missing. We further
evaluated our prediction performances within the effective sub-
regions.

The quantitative evaluation of prediction performance for
only the effective sub-regions have been illustrated in Table 6.
It has been demonstrated from our experimental results that
our proposed scheme outperformed the state-of-the-art learning-
based models for SLA time series, with MAPE, RMSE of
the 14-day prediction duration, respectively, 5.1%, 0.023 m
on average, even up to 4.6%, 0.018 m for the effective
sub-regions, compared to 19.8%, 0.086 m in ConvLSTM,
17.6%, 0.073 m in ConvLSTM with SC, and 8.3%, 0.040 m
in original MIM.

The definition of edges refers to the margins away from the
center of SLA records. In practice, we could divide the research
area into multiple effective sub-regions, and train multiple
models separately, and finally stitch the prediction results to avoid
the poor edge effects. Or after determining the research area, we

could extend the ranges of SLA records to ensure that all the
effective sub-regions we are interested in are all included after
edge elimination.

Performance Evaluation for Mesoscale
Eddy Prediction
Mesoscale Eddy Identification
After the spatio-temporal prediction of SLA time series, we could
further feed the predicted SLA output through mesoscale eddy
detection, to acquire the estimated properties of the mesoscale
eddy trajectories, including the amplitude, the rotation speed, the
radius, and location, etc.

With the development of the existing mesoscale eddy
detection algorithms, as long as we enable to provide more
reliable SLA prediction results, we could expect the prediction
of mesoscale eddy variation to be reasonably inferred during the
evolution and propagation. Figures 9A,B shows one example
mesoscale eddy prediction result in aid of SLA prediction, where
on the left, the arbitrarily selected 14-day SLA time series have
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been fed into the enhanced MIM to predict the next 14th day,
and the corresponding ground truth of the 28th day from the
beginning of the SLA time series has been illustrated on the
right, combined with the mesoscale eddy detection results, with
the cyclonic center in red and the anti-cyclonic center in white.
Among them, we could see that most of the mesoscale eddies
have been predicted relatively accurately in a 14-day prediction
duration. Although there were still two anti-cyclonic and one
cyclonic missing, for those larger vortices, almost all of them
could be predicted, while for the smaller vortices, the prediction
performances tended to be poor. Meanwhile, the location of the
mesoscale eddies was almost visually well estimated.

Overall Prediction Statistics
We further made an integrated statistics for mesoscale eddy
prediction within the 7-day and 14-day duration in our study
area, as is shown in Figures 9C,D. In Figure 9C, the total
number of the detected mesoscale eddies from SLA prediction
is listed on the left, with the corresponding ground truth as the
ideal predictive references on the right, and both the number
of the cyclonic and anticyclonic eddies have been, respectively
displayed. In Figure 9D, the average spatial distance between
all the detected center position of mesoscale eddies with SLA
prediction and ground truth have been calculated with regard
to the geographic latitude and longitude, for both cyclonic and
anticyclonic eddies.

The noticeable asymmetry has been discovered between the
cyclonic and anticyclonic eddies regarding to the number of
the detected mesoscale eddies and the average spatial distance
in latitude and longitude. It has been demonstrated from
Figure 9C that the predicted number of anticyclonic and
cyclonic eddies, respectively, decreased by 1.11 and 7.64%,
2.49 and 7.42%, compared to the ground truth, for the 7-
day and 14-day of prediction duration, indicating that the
prediction error of the number of anticyclonic eddies tends to
be less in the study area. In the 7-day prediction duration,
the number of anticyclonic and cyclonic eddies for the SLA
ground truth, respectively, accounts for 50.5% and 49.5% in
total, while the predicted number accounts for 52.1% and 47.9%.
In comparison, the predicted proportion of anticyclonic eddies
increased by 1.6%, and the predicted proportion of cyclonic
eddies decreased by 1.6%. In the 14-day prediction duration,
the number of anticyclonic and cyclonic eddies for the SLA
ground truth, respectively, accounts for 50.9% and 49.1% in
total, while the predicted number accounts for 52.2% and 47.8%.
In comparison, the predicted proportion of anticyclonic eddies
increased by 1.8%, and the predicted proportion of cyclonic
eddies decreased by 1.8%. All of the above has shown the
tendency of better prediction performances for anticyclonic
eddies in our study area.

It has also been illustrated from Figure 9D that, in the 7-
day prediction duration, the average meridional distances of the
predicted mesoscale eddy centers from SLA prediction and SLA
ground truth for anticyclonic and cyclonic eddies are 8.61 and
14.47 km, respectively, with a difference of 5.86 km, and the
average zonal distances for anticyclonic and cyclonic eddies are,
respectively, 11.45 and 14.63 km, with a difference of 3.18 km.
The average spatial displacement of mesoscale eddy centers is

17.41 km, with 11.54 and 13.04 km, respectively, from longitude
and latitude. The RMSE calculation of the mesoscale eddy
centers from SLA prediction and SLA ground truth is 21.43 km,
with the meridional and zonal displacement, respectively, 14.51
and 15.77 km, for 7-day prediction duration. In the 14-day
prediction duration, the average meridional distances of the
predicted mesoscale eddy centers from SLA prediction and SLA
ground truth for anticyclonic and cyclonic eddies have reached
13.17 and 19.21 km, with a difference of 6.04 km, and the
average zonal distances for anticyclonic and cyclonic eddies are,
respectively, 18.06 and 19.52 km, with a difference of 1.46 km.
The average spatial displacement of mesoscale eddy centers is
24.8 km, with 16.19 and 18.19 km, respectively, from longitude
and latitude. The RMSE calculation of the mesoscale eddy centers
from SLA prediction and SLA ground truth is 29.8 km, with
the meridional and zonal displacement, respectively, 20.78 and
21.36 km, for 14-day prediction duration. The average spatial
distance of anticyclonic eddies seemed smaller than that of
cyclonic eddies to the mesoscale eddy center detection from SLA
ground truth, and their differences tend to be more significant for
the meridional distances.

The average relative error of the predicted mesoscale eddy
radius, amplitude, total number in our study area has also been
quantitatively investigated, with the relative error 6.8 and 8.8%
for mesoscale eddy radius, 6.9 and 10.8% for mesoscale eddy
amplitude, 4.35 and 4.91% for the total number of mesoscale
eddies, of the 7-day and 14-day prediction duration.

Predictive Analytics With Decomposition
We tried to decompose the predicted mesoscale eddies into
three subsets with regard to the evenly distributed ranges of the
radius values, i.e., less than 55 km, 55–85 km, more than 85 km,
and examined the detection rate distribution across the subset,
respectively, reaching 80.1% and 64.1%, 92.6% and 85.1%, 94.5%
and 90.9% in each subset, for the 7-day and 14-day of prediction
duration. The subset with smaller average radius, i.e., 61.25% of
the average radius over all the predicted mesoscale eddies, is more
likely to be ignored in some cases.

The number of the cyclonic and anticyclonic eddies
distribution across the above three subsets has also been
investigated, respectively, coming to 2869 and 2707, 3856 and
4021, 4053 and 5012 in each subset, for the 7-day of prediction
duration, and 2644 and 2527, 3885 and 4013, 4061 and 5010 in
each subset, for the 14-day of prediction duration.

Similarly, we divided the predicted mesoscale eddies into
another three subsets with regard to the distributed ranges of
the amplitude values, i.e., less than 2.9 cm, 2.9–4.7 cm, more
than 4.7 cm, and the number of the cyclonic and anticyclonic
eddies distribution across the three subsets have been examined,
respectively, reaching 2592 and 2385, 3114 and 3346, 5072 and
6009 in each subset, for the 7-day of prediction duration, and
2453 and 2294, 3348 and 3339, 4989 and 5917 in each subset, for
the 14-day of prediction duration.

It has also been shown from the experimental results that there
tended to be more anticyclonic eddies in the larger radius subset
and the stronger amplitude subset in our study area, while the
cyclonic eddies that gathered in the subset with smaller radius
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FIGURE 9 | The example mesoscale eddy prediction result and the 7-day and 14-day mesoscale eddy prediction statistics in our study area. (A) Mesoscale eddy
detection result from SLA prediction, with the cyclonic center in red and the anti-cyclonic center in white. (B) Mesoscale eddy detection result from SLA ground truth,
with the cyclonic center in red and the anti-cyclonic center in white. (C) The number of the detected mesoscale eddies with SLA prediction and SLA ground truth.
(D) The average spatial distance in longitude and latitude between the detected center position of mesoscale eddy with SLA prediction and that from SLA ground
truth.

and amplitude are more likely to be ignored, resulting in the
different errors between cyclonic and anticyclonic eddies.

The effective sub-regions could be applicable to the edge
position mesoscale eddies, while for small mesoscale eddies

and mesoscale eddy edges, more efforts still need to be done
as the predictability depends much on SLA prediction, and
the appropriate eddy detection and tracking techniques. There
exhibited the possible declines in the total number, radius,
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amplitude of the predicted mesoscale eddies, compared to the
ground truth, implying that the predictability of small mesoscale
eddies and mesoscale eddy edges might be relatively weak.

Proposal for More Diagnostics
We have also made an initial attempt to explore the spatial
Fourier spectra and the gradient of the example SLA prediction
from Figure 9A, as is shown in Supplementary Figure 1.
In the future, in addition to RMSE and MAPE, we will try
to look into the performance evaluation by applying more
diagnostics, in terms of energetics, velocity, and vorticity derived
fields, e.g., the power spectral density calculation, which would
potentially capture both the intensity and phase of SLA spatio-
temporal variation, and might be in turn more helpful to
resolve the spatial scale estimation for mesoscale eddy multi-
step prediction.

By now, we focus on daily mesoscale eddy distribution
prediction, not referring to the link of the adjoining daily
predictive results and the aligning propagation trajectory
tracking, so the lifetime of the mesoscale eddies has not been
prepared to be available. We will try to develop the mesoscale
eddy tracking capacities with the application of deep learning
techniques in the future, which may be more helpful to further
improve the prediction of small mesoscale eddies and mesoscale
eddy edges, and accurately determine the scope of our prediction
model in applications.

Moreover, the mesoscale eddy identification and tracking
algorithm mentioned above refers to Eulerian with SLA
snapshots (Mason et al., 2014; Faghmous et al., 2015; Conti
et al., 2016). There are probably still limitations such as
the excess eddy merging and prematurely terminating
trajectories that need to be considered (Faghmous et al.,
2015). The Lagrangian based eddy detection algorithms have
also been suggested its effectivity, specially for mesoscale
eddy evolution and its properties (Vortmeyer-Kley et al.,
2016; Prants et al., 2017). Prants et al. (2017) proposed the
Lagrangian methodology to distinguish whether the origin
and history of water masses in mesoscale eddies came from
the main currents in Kuroshio-Oyashio confluence zone,
showing a good qualitative correspondence, compared with
in situ measurements. Vortmeyer-Kley et al. (2016) proposed a
vorticity based heuristic Euler-Lagrangian descriptor utilizing
the idea of Lagrangian coherent structures, showing closer
lifetime estimation to analytical results and its robustness
with respect to certain types of noise in eddy detection
from observation.

Although the most common mesoscale eddy identification
and tracking methodology is to analyze altimetry-based
sea-level gridded products, Amores et al. (2018) analyzed
up to what extent sea-level gridded products characterize
mesoscale eddies with a special focus on the North Atlantic
Ocean and the Mediterranean Sea, which suggested that
gridded products might largely underestimate the density
of eddies. The main reason behind is possibly that the
spatial resolution is not enough to capture the small-scale
eddies, and the unresolved structures are aliased into larger
structures, showing an unrealistic number of large eddies with

overestimated amplitudes. In the future, we will elaborate
more on assessing the predictability of mesoscale eddies at
multiple scales, from altimetry-based sea-level gridded products,
assisted with potential insights into mesoscale eddy categories
from the satellite observations at a higher resolution, e.g.,
chlorophyll products.

CONCLUSION

In this article, we make an initial attempt to capture the
spatio-temporal predictability of mesoscale eddies, by employing
deep learning architecture, which primarily establishes MIM
model for SLA prediction. In order to implement deep learning
algorithms, sufficient samples and appropriate models are
always fundamental requirements. Therefore, we quantitatively
investigate the historic daily SLA maps of 27 years AVISO
data in the selected region (125◦−137.5◦E and 15◦−27.5◦N),
develop enhanced MIM prediction strategies on NVIDIA Titan
Xp GPU, equipped with GRU and spatial attention module,
in a scheduled sampling manner. Owing to the input scarcity
in deep learning, transfer learning has been conducted to SLA
time series in those regions located at the same latitude as
our study area, through data segmentation and augmentation
techniques. Inspired by GRU, the gating mechanism of MIM-
N and MIM-S modules has been improved to balance the
model complexity and prediction accuracy, overcoming the
gradient vanishing and explosion problem when learning long-
term dependencies, and the spatial attention module has been
complemented to strengthen feature extraction toward spatio-
temporal variability in SLA time series, thus refraining from
the connection structure mismatching within the convolution
operation. At the early stage of training, the real value input
of the known SLA time series guides the model from a
randomly initialization to a more reasonable state, as the
training progresses, scheduled sampling will be deeply involved
to intentionally feed into the model with the newly predicted
value as the input, providing opportunities in tackling the
input distribution inconsistency between training and inference.
It has been demonstrated in our experiment results that our
proposed prediction scheme outperformed most of the state-
of-arts approaches for SLA time series, in terms of MAPE and
RMSE, achieved superior prediction performances for the long-
term dependency, with MAPE, RMSE of the 14-day prediction
duration, respectively, 5.1%, 0.023 m in our developed model,
compared to 19.8%, 0.086 m in classic ConvLSTM and 8.3%,
0.040 m in original MIM, over the comparable structure
configuration. The visualization of the pointwise error and the
increment prediction to SLA time series also suggest the highly
consistent variation to the altimeter observations, which greatly
facilitated the mesoscale eddy prediction during its evolution
and propagation process, in aid of classical mesoscale eddy
detection. When assessing the concerning sub-region in SLA
time series, the 14-day prediction performance could reach up
to 4.6% and 0.018 m on average. This proposed scheme will be
beneficial to understand of the underlying dynamical mechanism
behind the predictability of mesoscale eddies in the future,
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and help the deployment of ARGO, glider, AUV and other
observational platforms.
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