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The whole genome and transcriptome analyses were performed for prediction
of the ecological characteristics of Arthrinium and the genes involved in gentisyl
alcohol biosynthesis. Whole genome sequences of A. koreanum KUC21332
and A. saccharicola KUC21221 were analyzed, and the genes involved in
interspecies interaction, carbohydrate-active enzymes, and secondary metabolites were
investigated. Three of the seven genes associated with interspecies interactions shared
by four Arthrinium spp. were involved in pathogenesis. A. koreanum and A. saccharicola
exhibit the enzyme profiles similar to those observed in plant pathogens and endophytes
rather than saprobes. Furthermore, six of the seven metabolites of known clusters
identified in the genomes of the four Arthrinium spp. are associated with plant
virulence. These results indicate that Arthrinium spp. are potentially pathogenic to plants.
Subsequently, different conditions for gentisyl alcohol production in A. koreanum were
established, and mRNA extracted from cultures of each condition was subjected to
RNA-Seq to analyze the differentially-expressed genes. The gentisyl alcohol biosynthetic
pathway and related biosynthetic gene clusters were identified, and gentisyl alcohol
biosynthesis was significantly downregulated in the mannitol-supplemented group
where remarkably low antioxidant activity was observed. These results indicate that
gentisyl alcohol production in algicolous Arthrinium spp. is influenced by mannitol. It was
suggested that the algicolous Arthrinium spp. form a symbiotic relationship that provides
antioxidants when the photosynthetic activity of brown algae decreases in exchange for
receiving mannitol. This is the first study to analyze the lifestyle of marine algicolous
Arthrinium spp. at the molecular level and suggests a symbiotic mechanism with brown
algae. It also improves the understanding of fungal secondary metabolite production via
identification of the gentisyl alcohol biosynthetic gene clusters in Arthrinium spp.

Keywords: algicolous fungi, biosynthetic gene cluster, comparative genomics, gentisyl alcohol, whole genome
sequence
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INTRODUCTION

Arthrinium spp. are filamentous ascomycetes that have been
isolated from various environments such as bamboo, sedges, soil,
seaweeds, egg masses of sailfin sandfish, corals, and beach sand
(Elissawy et al., 2017; Heo et al., 2018; Wang et al., 2018; Pintos
et al., 2019). They have been reported to thrive as saprophytes,
endophytes, and pathogens. Among saprophytes, few species
(ex. A. phaeospermum) have been identified as wood-decaying
fungi (Astiti and Suprapta, 2012). In contrast, many Arthrinium
spp. (A. arundinis, A. garethjonesii, A. hydei, A. hyphopodii,
A. neosubglobosa, A. phaeospermum, A. sacchari, A. saccharicola,
etc.) have been isolated from the inner tissue of a variety
of hosts including bamboos, candle bush (Senna alata), seeds
of white leadtree (Leucaena leucocephala), yacon (Smallanthus
sonchifolius), cock’s-foot (Dactylis glomerata), Malabar nut
(Adhatoda vasica), Japanese sedge (Carex konomugi Ohwi), and
brown algae (Sargassum fulvellum) (Sánchez Márquez et al., 2007;
Khan et al., 2009; Maehara et al., 2010; Ramos et al., 2010;
Shamsi et al., 2013; Shen et al., 2014; Lezcano et al., 2015; Dai
et al., 2016; Pansanit and Pripdeevech, 2018; Suradkar and Hande,
2018). A. arundinis was isolated from a lichen (Cladonia sp.)
(Wang et al., 2017). Moreover, the pathogenicity of at least four
Arthrinium spp. (A. arundinis, A. phaeospermum, A. sacchari,
and A. xenocordella) has been reported in various hosts, including
wheat (damping-off), barley (kernel blight), bamboos (blight,
brown culm streak, culm rot, and foot rot), rosemary (leaf
spot), olive trees (leaf necrosis), aloe (flower malformation), and
legumes (fruit blight) (Khan and Sullia, 1980; Suxuan et al.,
1999; Mavragani et al., 2007; Li et al., 2013; Piccolo et al., 2013;
Bagherabadi et al., 2014; Chen K. et al., 2014; Aiello et al., 2018;
Jiang et al., 2018). Therefore, Arthrinium spp. may be endophytic
or pathogenic rather than saprotrophic.

In general, symbiosis of endophytes is based on conferring
competitive advantages to their hosts and there are various
possibilities for the types of benefits provided by Arthrinium
to the specific host (Rudgers et al., 2004). First, it has
been observed that A. phaeospermum produces gibberellin, a
plant growth-promoting compound, and promote mycorrhizal
formation in pink rock-rose (Khan et al., 2009; Sabella et al.,
2015). Additionally, A. arundinis accelerates strawberry seed
germination by promoting their coat destruction (Guttridge et al.,
1984). These Arthrinium spp. benefit host plant growth. On the
contrary, at least five Arthrinium spp. (A. arundinis, A. aureum,
A. phaeospermum, A. saccharicola, and A. serenense) exhibit
antibiotic activity against over 39 microorganisms (Oka et al.,
1993; Alfatafta et al., 1994; Vijayakumar et al., 1996; Aissaoui
et al., 1999, 2001; Sato et al., 2000; Calvo et al., 2005; Miao
et al., 2006; Bloor, 2008; Ramos et al., 2010; Heo et al., 2018;
Pansanit and Pripdeevech, 2018; Hinterdobler and Schinnerl,
2019). Among them, the antibiotics apiosporamide, arthrichitin
and arthrinic acid, and griseofulvin and terpestacin were isolated
and identified from A. arundinis, A. phaeospermum, and an
unidentified Arthrinium species, respectively (Oka et al., 1993;
Alfatafta et al., 1994; Vijayakumar et al., 1996; Bloor, 2008;
Elissawy et al., 2017). Thus, it is speculated that few Arthrinium
spp. help the host defend against harmful microorganisms by

producing antimicrobial compounds. Additionally, various roles
of Arthrinium spp. in symbiosis have been suggested and verified.
However, their relationship with brown algae and sponges,
which are their major hosts in the marine environment, has
not been extensively studied, perhaps due to the difficulty
of conducting empirical experiments using marine organisms.
Marine algicolous species have been proposed to help maintain
the redox equilibrium in the host by producing antioxidants
to remove excess reactive oxygen species (ROS), which are
generated by the absorption of ultraviolet (UV) radiation by
dissolved organic matter in seawater (Mopper and Kieber,
2000). A previous study has confirmed that most marine
Arthrinium spp., including A. saccharicola and A. koreanum
isolated from gulfweeds (Sargassum fulvellum) and egg masses
of sailfin sandfish (Arctoscopus japonicus) that spawn on them,
demonstrate high antioxidant activity and produce gentisyl
alcohol (Heo et al., 2018). Therefore, the physiological and
ecological characteristics of Arthrinium were investigated at the
molecular level and genes related to gentisyl alcohol biosynthesis
were investigated by analyzing the genome and transcriptome.
This is the first comparative genome analysis of the genus
Arthrinium.

MATERIALS AND METHODS

Fungal Culture and DNA/RNA Extraction
Two algicolous Arthrinium species, A. saccharicola KUC21221
and A. koreanum KUC21332, were obtained from the Korea
University Culture (KUC) collection. Arthrinium species found
in the egg mass of A. japonicus are known to have originated
from an adjacent brown alga, as A. japonicus spawns on
S. fulvellum, one of the major endophytic hosts of Arthrinium
spp. (Heo et al., 2018). For genome sequencing, they were
cultured in 1-L Erlenmeyer flasks containing 500 mL potato
dextrose broth for 7 days at 25◦C in dark. Genomic DNA was
extracted using the DNeasy Plant Mini Kit (Qiagen, Valencia,
CA, United States) according to the manufacturer’s instructions
with slight modifications (Kohler et al., 2011). To improve the
accuracy of genome annotation, total RNA was extracted from
the same cultures using the RNeasy Plant Mini Kit (Valencia, CA,
United States) according to the manufacturer’s instructions. The
DNA and RNA qualities were determined using the Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, United States)
with a DNA 1000 chip.

Arthrinium koreanum KUC21332 was inoculated on malt
extract agar (MEA, Bacto, Sparks, MD, United States). The fungus
was cultured for 7 days, and three agar plugs with mycelium were
used as the inocula. To assess the difference in gentisyl alcohol
production according to the nitrogen source [peptone, sodium
glutamate, KNO3, and (NH4)2SO4], the fungus was cultured
in 250-mL Erlenmeyer flasks containing 50 mL medium (40 g
glucose, 10 g nitrogen source, 0.5 g MgSO4, 0.5 g KH2PO4, and
0.5 g K2HPO4 in a liter of distilled water) for 10 days in dark. To
determine the carbon source (glucose, sucrose, maltose, soluble
starch, and mannitol) and to perform RNA-Seq, it was cultured
in the medium (40 g carbon source, 10 g sodium glutamate, 0.5 g
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MgSO4, 0.5 g KH2PO4, and 0.5 g K2HPO4 in a liter of distilled
water) for 3 days in dark. Total RNA was extracted in the same
way as described above.

Library Construction and Whole Genome
Sequencing
A DNA library with approximately 20-kb fragment sizes was
constructed and the WGS was acquired using the PacBio
Sequel platform at Macrogen Co., Ltd., (Seoul, South Korea).
Meanwhile, a single molecule real-time (SMRT) library was
constructed and sequenced with a single SMRT cell. The reads
were trimmed, corrected, and filtered. Data on high-quality
and error-corrected Illumina reads were used as input for the
program Proovread v2.14.0 to correct the potential sequencing
errors in the PacBio long reads (Hackl et al., 2014). Assembler
Falcon was used for de novo assembly of the corrected PacBio
reads (Chin et al., 2016). The assemblies were finalized and
manually corrected after polishing using the paired-end Illumina
reads and Pilon v1.21 (Walker et al., 2014).

To improve the accuracy of genome annotation, mRNA in the
samples was sequenced. The RNA-Seq library was constructed
and Illumina HiSeq 4000 sequencing was performed at Macrogen
Co., Ltd., (Seoul, South Korea). Trimmed and corrected RNA-Seq
reads were aligned to the reference genome using HISAT2 v2.1.0
(Kim et al., 2019). The genes were predicted using Augustus
v3.3.3, BRAKER v2.1.5, GenMark-ES v4.61, and GlimmerM
v2.5.1 (Majoros et al., 2003; Stanke et al., 2006, 2008; Ter-
Hovhannisyan et al., 2008; Hoff et al., 2016, 2019). The final
consensus gene model was constructed using all predictions
using EVidenceModeler v1.1.1 (Haas et al., 2008). Repeats were
masked using RepeatMasker v4.1.0 and RepeatModeler v2.01.
Annotation completeness was evaluated using BUSCO v4.1.2
on fungi_odb10, ascomycota_odb10, and sordariomyceta_odb10
gene sets (Seppey et al., 2019). Orthologous protein families with
the reference genome datasets were identified using Orthofinder
v2.4.0 with default setting except for an inflation parameter
(I = 2.5) (Emms and Kelly, 2019).

Genome Annotation
The proteins were annotated by predicting functional domains
from Pfam using InterProScan (Hunter et al., 2009; El-Gebali
et al., 2019). To further facilitate functional interpretation,
proteins were aligned to the non-redundant database of NCBI2.
Gene ontology (GO) terms were mapped using InterProScan
v5.29-68.0 (Gene Ontology Consortium, 2012; Jones et al., 2014).
Carbohydrate-active enzymes (CAZymes) were analyzed using
dbCAN2 (hmmer) (Potter et al., 2018; Zhang et al., 2018). Gene
clusters related to secondary metabolism were analyzed using
antiSMASH Fungi v5.1.2, and secondary metabolite regions were
identified using strictness “relaxed” (Blin et al., 2019).

Antioxidant Assay
To obtain fungal extracts, the fungal cultures were filtered with
0.45 µm syringe filters (Chromafil PE- 20/15 MS, Macherey-
Nagel, Düren, Germany) and extracted with 50 mL of ethyl

1http://repeatmasker.org
2http://www.ncbi.nlm.nih.gov

acetate for 24 h. The ethyl acetate layer was collected and dried
at 35◦C using a rotary evaporator, and the obtained extracts were
stored at −18◦C until use.

The 2,2-diphenyl-1-picrylhydrazyl (DPPH, Sigma-Aldrich
Inc., St. Louis, MO, United States) was dissolved in 80% methanol
at 150 µM. The 198 µL of DPPH solution and 22 µL of the fungal
extracts (10 mg/mL DMSO) was mixed in each well in a 96-well
plate. The plate was allowed to reach a steady state for 30 min
at room temperature in dark. The absorbance was measured at
540 nm using a microplate reader (SunriseTM, Tecan Group Ltd.,
Port Melbourne, VIC, Australia).

RNA-Seq, Transcriptome Assembly, and
Differentially Expressed Gene Analysis
To analyze differentially-expressed genes (DEGs), RNA-Seq
libraries were constructed using the Illumina TruSeq Stranded
mRNA LT Sample Prep Kit (Illumina, San Diego, CA,
United States) and were sequenced on the Illumina NovaSeq 6000
platform at Macrogen Co., Ltd., (Seoul, South Korea). Quality
check of sequenced reads was performed using the FastQC
v0.11.73.

The RNA-Seq data were analyzed using the “new Tuxedo”
pipeline according to a published protocol (Pertea et al., 2016).
Briefly, the raw reads were quality filtered using the program
Trimmomatic v0.39 and aligned to each genomic DNA reference
obtained in this study using HISAT2 v2.1.0 (Bolger et al., 2014;
Kim et al., 2019). Data on the transcripts and their expression
levels were assembled and estimated using the StringTie v1.3.4
(Kovaka et al., 2019). The DEG analysis was conducted using the
DESeq2 (Love et al., 2014). To reduce systematic bias that could
affect biological meaning in comparison between samples, the
size factor was estimated using count data and normalized using
median of ratios method. Between the experimental groups, there
was no significant difference (p = 0.564) in the expression level of
pyruvate kinase (GO:0004743), which catalyzes the final step of
glycolysis, indicating that the difference in secondary metabolism
was independent of the amount of available energy (Abdel Fattah
et al., 2010; Zhang et al., 2016).

Statistical Analysis
Statistical analyses were performed with R version 3.5.3 (R
Development Core Team, 2013). Non-metric multidimensional
scaling (NMDS) and permutational multivariate analysis of
variance (adonis2) were performed using the package “vegan”
(Oksanen et al., 2013).

RESULTS

Genome Sequencing, Assembly, and
Annotation
In the present study, the genomes of two marine Arthrinium
spp., A. koreanum KUC21332 and A. saccharicola KUC21221,
isolated from the inner tissue of a brown alga Sargassum
fulvellum and egg mass of A. japonicus, respectively, were

3http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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analyzed. A. koreanum demonstrates a genome size of 48.75 Mbp
(GC content: 52.09%), including 14,381 gene models, and
A. saccharicola exhibits a 55.08-Mbp genome (GC content:
50.07%) with 14,773 models (Table 1). Both genomes are larger
than those of A. phaeospermum AP-Z13 (48.45 Mbp) and
A. arundinis NRRL 25634 (47.67 Mbp), with A. saccharicola
genome being the largest among the four species. The number
of gene models of both species is similar to A. phaeospermum
(14,055 models), while that of A. arundinis NRRL 25634 is higher
(16,992 models). The genome assembly completeness of both
species ranges from 96.3–98.8%.

Genome Comparison of Four Arthrinium
spp.
The four Arthrinium spp. shared 10,001 genes (Figure 1A).
A. koreanum shared more genes (615) with A. arundinis
compared to the genes shared with A. saccharicola (212)
and A. phaeospermum (146). A. saccharicola shared more
orthogroups (672) with A. phaeospermum compared to those
shared with A. arundinis (208) and A. koreanum (212).
Compositions of shared and specific genes were analyzed by
gene ontology (GO) categories and have been illustrated in
Figure 1B. The genes that only existed in A. koreanum (circle
XII) were unidentified. Approximately half (mean 51.2%) of the
genes were involved in biological process (BP), and 37.0 and
11.5% were involved in molecular function (MP) and cellular
component (CC), respectively. Metabolic process (GO:0008152),
cellular process (GO:0009987), and localization (GO:0051179)
accounted for 48.6, 29.0, and 13.1% of the total genes in BP,
respectively. Additionally, there were seven genes involved in
interspecies interactions between organisms (GO:0044419), all
of which were common in at least two Arthrinium spp. Four

of them were shared by all four Arthrinium spp., of which
two were involved in the defense response to gram-negative
bacteria (GO:0050829), one was responsible for anti-bacterial
defense response (GO:0042742), and the other were involved in
pathogenesis (GO:0009405). One gene shared by A. arundinis,
A. koreanum, and A. phaeospermum was involved in the DNA
restriction-modification system (GO:0009307). One gene shared
by A. arundinis, A. saccharicola, and A. phaeospermum, and the
other shared by A. koreanum and A. saccharicola, were involved
in pathogenesis (GO:0009405). In the case of CC, cellular
anatomical entity (GO:0110165), protein-containing complex
(GO:0032991), and intercellular (GO:0005622) accounted for
84.6, 7.8, and 7.2% of the total, respectively. In the case of
MF, catalytic activity (GO:0003824) and binding (GO:0005488)
accounted for 46.9 and 40.1% of the total genes, respectively,
followed by transporter activity (GO:0005215) and molecular
function regulator (GO:0098772), accounting for 7.5 and
3.6%, respectively.

Additionally, the genes encoding CAZymes and plant cell
wall degrading enzymes (PCWDEs) and compare to those of
other ascomycetes exhibiting various lifestyles. Five, eight, and
twelve species were selected for dark septate endophytes (DSEs),
plant pathogens, and saprobes, respectively, by referring to the
Mycocosm group of the Joint Genome Institute and previous
studies (Supplementary Table 1; Galagan et al., 2003; Dean
et al., 2005; Güldener et al., 2006; Hane et al., 2007; Van Den
Berg et al., 2008; Ellwood et al., 2010; Andersen et al., 2011;
Rouxel et al., 2011; Gianoulis et al., 2012; Ohm et al., 2012;
O’Connell et al., 2012; Grigoriev et al., 2013; Koike et al., 2013;
Traeger et al., 2013; Nordberg et al., 2014; Xu et al., 2015;
David et al., 2016; Jourdier et al., 2017; Knapp et al., 2018).
DSE is a paraphyletic group (Sordariomycetes, Pezizomycetes,

TABLE 1 | Assembly and genome features of Arthrinium koreanum KUC21332 and A. saccharicola KUC21332.

Genome features A. koreanum
KUC21332

A. saccharicola
KUC21221

A. phaeospermum
AP-Z13

A. arundinis
NRRL 25634

Genome assembly

Genome size (Mbp) 48.75 55.08 48.45 47.67

Depth 117 118 - -

Number of contigs 50 37 19 686

Max contig length (Kbp) 8,999.76 8,166.37 5,249.37 935,02

N50 contig (Kbp) 3,570.80 3,269.72 3,733.26 234.56

L50 contig 5 6 6 61

GC content (%) 52.09 50.07 53.05 52.00

Number of gene models 14,381 14,773 14,055 16,992

Mean gene length (bp) 1,569.8 1,498.9 1,521.5 1,580.3

Number of exons 40,319 40,066 37,886 42,806

Mean exons per gene 2.8 2.7 2.7 2.5

Mean exon length (bp) 499.0 491.4 498.6 566.0

Assembly completeness (BUSCO database)

Fungi_odb10 (%) 98.4% 98.8% 94.5% 99.6%

Ascomycota_odb10 (%) 98.2% 98.2% 91.6% 99.0%

Sordariomyceta_odb10 (%) 97.3% 96.3% 89.3% 98.0%

Genome reference This study This study Li et al., 2020 Nordberg
et al., 2014
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FIGURE 1 | Genome comparison between Arthrinium koreanum, A. saccharicola, A. phaeospermum, and A. arundinis. (A) Venn diagram showing the number of
shared and specific gene orthologs. (B) Compositions of gene families according to gene ontology categories. Circles I-XV correspond to areas with same Roman
numerals in panel (A).

Dothideomycetes, Leotiomycetes, Eurotiomycetes, etc.) of
endophytic fungi belonging to Ascomycota, and was selected
because it represented endophytic ascomycetes. The sequence
data of A. arundinis NRRL 25634, Entoleuca mammata CFL468,
Pestalotiopsis sp. NC0098, and Truncatella angustata MPI-
SDFR-AT-0073 were produced by the United States Department
of Energy Joint Genome Institute4 in collaboration with
the user community.

The Arthrinium spp. had a total of 601-626 CAZymes, of
which 307–323, 96–104, 9–11, 62–68, 11–14, and 113–117 were
associated with glycoside hydrolase (GH), glycosyltransferase
(GT), polysaccharide lyase (PL), carbohydrate esterase (CE),
carbohydrate-binding module (CBM), and auxiliary activity
(AA), respectively. The average number of CAZyme by lifestyle

4https://www.jgi.doe.gov

was 713, 553, and 397 for DSE, plant pathogen, and saprobe,
respectively. Arthrinium spp. had 127–134 of PCWDEs, while
DSE, plant pathogen, and saprobe had an average of 168, 130,
and 65 PCWDEs, respectively. In the NMDS plot generated
using the CAZyme profile of these species, Arthrinium-DSE-
plant pathogen was clustered together, and the saprobe was
widely distributed at a distance from this cluster. Based on
the permutational multivariate analysis of variance, significant
dissimilarities were observed between clusters according to
lifestyles, and A. koreanum and A. saccharicola, whose lifestyles
have not been identified, showed significant dissimilarity only
with the saprobe (Figure 2). The NMDS plot generated
using the PCWDE profile showed similar results, except that
the dissimilarity between the DSE and the plant pathogen
cluster was not significant. Further, among PCWDEs, GH53,
GH127, PL4, and CE12 were significant predictors in the
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dimension 2 direction, and the representative enzymes of these
CAZyme families are arabinogalactan endo-β-1,4-galactanase
(EC 3.2.1.89), non-reducing end β-L-arabinofuranosidase (EC
3.2.1.185), rhamnogalacturonan endolyase (EC 4.2.2.23), and
acetylxylan esterase (EC 3.1.1.72), respectively.

Identification of Gene Clusters Related
to Secondary Metabolism and Gentisyl
Alcohol Biosynthesis
The analysis of biosynthetic gene clusters (BGCs) of the four
Arthrinium spp. showed that the highest number of BGCs was
found in A. arundinis (84), followed by A. koreanum (76), and
A. phaeospermum (69) and A. saccharicola (69) (Supplementary
Figure 1). The secondary metabolite backbone genes consisted
of 23–28 type I polyketide synthase (T1PKS) genes, 16–21
non-ribosomal peptide synthetase (NRPS) genes, 13–18 terpene
genes, 0–3 indole genes, and 1–2 type III polyketide synthase
(T3PKS) genes. Six BGCs were annotated with 100% similarity
in the four Arthrinium spp. NRPS and two T1PKS BGCs,
known to produce dimethylcoprogen, alternapyrone and ACR
toxin I, respectively, were observed in all four species, and
another two T1PKS BGCs, known to produce (R)-mellein
and alternariol, were commonly found in A. koreanum and
A. arundinis (Fujii et al., 2005; Izumi et al., 2012; Chen et al.,
2013; Chooi et al., 2015a,b). Additionally, a T1PKS BGC, known
to produce pyranonigrin E, was observed in A. phaeospermum
(Andersen et al., 2011).

Arthrinium koreanum KUC21332 and A. saccharicola
KUC21221, the gentisyl alcohol-producing species, commonly
harbor 6-MSA BGCs (42.3 and 42.5 kb, respectively), which
show 40% similarity with patulin BGC, while A. phaeospermum
AP-Z13 does not harbor one (Figure 3). The nine genes
that they commonly harbor in their BGCs are GsaA-GsaI.
GsaH is orthologous to PatK, the backbone gene encoding 6-
methylsalisylic acid (6MSA) synthase that catalyzes the first step
of patulin biosynthesis (conversion of acetyl-CoA and malonyl-
CoA to 6MSA); GsaE is orthologous to PatG encoding 6MSA
decarboxylase that catalyzes the second step (conversion of 6MSA
to m-cresol); GsaD is orthologous to PatH encoding m-cresol
methyl hydroxylase that catalyzes the third step (conversion
of m-cresol to m-hydroxybenzyl alcohol); GsaF is orthologous
to PatI encoding m-hydroxybenzyl alcohol hydroxylase that
catalyzes the fourth step (conversion of m-hydroxybenzyl alcohol
to gentisyl alcohol); GsaA is orthologous to PatL encoding C6
transcription factor that activates gene expression; GsaB and
GsaG are orthologous to PatO and PatJ encoding isoamyl alcohol
oxidase and a putative dioxygenase, respectively, that catalyze the
sixth step (conversion of gentisaldehyde to isoepoxydon); and
GsaC and GsaI have been predicted to encode major facilitator
superfamily (MFS) transporter (77.98% identical to EKG18982.1)
and aldehyde reductase (73.39% identical to KAF6798856.1),
respectively (Li et al., 2019). A. arundinis NRRL 25634 also
harbors a 6-MSA BGC (44.9 kb) similar to patulin BGC (46%
similarity), with two additional genes named GsaJ and GsaK,
orthologous to PatM and PatC encoding ATP-binding cassette
(ABC) transporter and MFS transporter, respectively; PatM and

PatC were proposed to be involved in the extracellular patulin
secretion (Li et al., 2019). In the other two Arthrinium spp., GsaC
may replace the function of PatC, and the function of GsaI in the
BGC should be further studied.

By measuring the DPPH radical-scavenging activity of
A. koreanum KUC21332 extract using different organic (peptone
and sodium glutamate) and inorganic nitrogen compounds
(KNO3 and (NH4)2SO4) as a nitrogen source, the highest activity
(90.6–98.3%) was observed with sodium glutamate (Figure 4A).
The DPPH radical-scavenging activity was also determined using
a monosaccharide (glucose), disaccharides (sucrose and maltose),
a polysaccharide (soluble starch), and a sugar alcohol (mannitol)
as the carbon source and sodium glutamate as the nitrogen
source. As the activities rapidly increased within 2 days in
the nitrogen source test, the carbon source test was conducted
using 3-day cultures. The highest activity (79.2%) was observed
with glucose, which was approximately 25 times higher than
the lowest activity (3.2%) observed with mannitol (Figure 4B).
To verify whether the Gsa BGC was responsible for gentisyl
alcohol production, DEG analysis was performed with the
transcriptomes from the mannitol- and glucose-supplemented
cultures. The expression of GsaA, GsaC, GsaG, and GsaH was
found to be significantly lower in the mannitol-supplemented
group compared to that in the glucose-supplemented group.
The fold-change values of the four genes in the glucose-
/mannitol-supplemented group were 2.03, 27.28, 8.53, and 5.10
(q < 0.001 for all; the Wald test with Benjamini–Hochberg
correction), respectively.

DISCUSSION

To understand the lifestyle of Arthrinium spp. at the molecular
level, the full-length genomes of A. koreanum KUC21332
and A. saccharicola KUC21221 were analyzed and those of
A. phaeospermum AP-Z13 and A. arundinis NRRL 25634 were
comparatively analyzed. Since few species, including A. arundinis
and A. phaeospermum, are plant pathogens and many species
have been isolated from the internal tissues of plants or marine
algae, genes related to interspecies interaction, CAZymes, and
secondary metabolites were analyzed, focusing on pathogenicity
and endogenous symbiosis. The seven genes associated with
interspecies interaction and shared by the four Arthrinium spp.
were involved in pathogenesis and defense processes against
bacteria and invading foreign DNA via other biological agents.
This suggests that A. arundinis and A. phaeospermum, which
are known to be pathogenic to various plants, and A. koreanum
and A. saccharicola, can establish abnormal conditions in other
organisms. In the NMDS plot generated with CAZyme profiles
of other ascomycetes with different lifestyles, A. arundinis and
A. phaeospermum were clustered together with plant pathogens,
and A. koreanum and A. saccharicola were distributed close
to them (Figure 2). The overlap of DSEs and plant pathogens
indicates that pathogenesis is an unbalanced symbiosis of
endophytes (Kogel et al., 2006). According to the results of
permutational multivariate analysis of variance, A. koreanum
and A. saccharicola showed CAZyme profiles similar to plant
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FIGURE 2 | Non-metric multidimensional scaling plot generated using profiles of carbohydrate active enzymes (CAZymes, left) and plant cell wall degrading enzymes
(PCWDEs, right) of four Arthrinium spp. and other 25 ascomycetes with different lifestyles. Fitted variables are scaled by Pearson correlation coefficient (p < 0.05).
Dissimilarities between CAZyme and PCWDE profiles by lifestyle based on permutational multivariate analysis of variance were summarized in the small boxes titled
pairwise adonis2. The solid and dotted lines in the pairwise adonis2 boxes indicate significant (p < 0.05) and insignificant (p > 0.05), respectively. Altbr, Alternaria
brassicicola; Artar, Arthrinium arundinis; Artko, A. koreanum; Artph, A. phaeospermum; Artsa, A. saccharicola; Ascsa, Ascocoryne sarcoides; Aspni, Aspergillus
niger; Bauco, Baudoinia compniacensis; Cadsp, Cadophora sp.; Cocsa, Cochliobolus sativus; Colgr, Colletotrichum graminicola; Entma, Entoleuca mammata;
Fusgr, Fusarium graminearum; Haror, Harpophora oryzae; Hyspu, Hysterium pulicare; Lepma, Leptosphaeria maculans; Maggr, Magnaporthe grisea; Micbo,
Microdochium bolleyi; Neucr, Neurospora crassa; Pench, Penicillium chrysogenum; Perma, Periconia macrospinosa; Pessp, Pestalotiopsis sp.; Phano,
Phaeosphaeria nodorum; Phisu, Phialocephala subalpina; Pyrte, Pyrenophora teres; Pyrom, Pyronema omphalodes; Rhyru, Rhytidhysteron rufulum; Trire,
Trichoderma reesei; Truan, Truncatella angustata.

FIGURE 3 | Predicted gentisyl alcohol biosynthetic gene clusters (BGCs) of Arthrinium spp. matched to the patulin BGC of Penicillium expansum. Transcription
direction is indicated by arrowheads.

pathogens and DSEs rather than saprobes. Additionally, the
total number of CAZymes and PCWDEs in Arthrinium spp.
was similar to that of plant pathogens, followed by that of
DSEs. These results indicate that their lifestyles are on the

mutualism-parasitism-continuum. Furthermore, metabolites of
known clusters identified in the genomes of four Arthrinium
spp. are associated with virulence, except for pyranonigrin
E, which is found only in A. phaeospermum. A previous
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FIGURE 4 | DPPH radical-scavenging activities of Arthrinium koreanum KUC21332 culture extracts. (A) Activities by nitrogen source with glucose as a carbon
source. (B) Activities by carbon source after being cultured for 3 days with sodium glutamate as a nitrogen source.

study has suggested that alternapyrone and dimethylcoprogen
play roles in plant pathogenesis (Gluck-Thaler et al., 2020).
Dimethylcoprogen, a fungal extracellular siderophore, was
reported to be responsible for the pathogenicity of Alternaria
alternata to citrus (Chen L. H. et al., 2014). ACR toxin I
is a toxin of Alternaria alternata, which is essential for its
pathogenicity, and alternariol is a colonization and virulence
factor of this fungus during plant infection (Izumi et al., 2012;
Wenderoth et al., 2019). (R)-mellein has been identified as a
non-host-specific phytotoxin of various plant pathogens, such
as Parastagonospora nodorum, Botryosphaeria obtusa, Phoma
tracheiphila, Neofusicoccum parvum, and Sphaeropsis sapinea
(Chooi et al., 2015a). These results indicate that Arthrinium
spp., including A. koreanum and A. saccharicola, are potential
plant pathogens. Since most sources of Arthrinium spp. did not
show disease symptoms, they were presumed to be opportunistic
pathogens that were pathogenic depending on the host condition.

Meanwhile, Arthrinium spp. are reportedly not pathogenic in
brown algae, an endogenous host in the marine environment,
and no abnormal or detrimental state has been reported in

brown algae when Arthrinium spp. were isolated from their
internal tissues. Instead, most algicolous Arthrinium strains
showed high antioxidant activity, and it was hypothesized that
antioxidant production was a strategy of marine Arthrinium spp.
in endophytic symbiosis with brown algae (Heo et al., 2018).
The antioxidant assay and DEG analysis based on different
nutrient sources, including glutamic acid and mannitol, support
this hypothesis. Glutamic acid is an accessible nitrogen source
for algicolous Arthrinium spp., which is the most abundant
amino acid accounting for about 13% of the total protein
content of Sargassum spp., the most common endophytic host
of Arthrinium spp., and mannitol is the main carbon storage
material in brown algae, accounting for 20–30% of the dry weight
of brown algae (Reed et al., 1985; Peng et al., 2013). According
to the antioxidant assay results, the activity was the highest in
the sodium glutamate-supplemented group, but all other groups
showed high activity as well (Figure 4A). On the contrary,
the activity was markedly different for the carbon source. The
activity was barely observed with mannitol as a carbon source
and sodium glutamate as a nitrogen source, whereas glucose-,
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starch-, sucrose-, and maltose-supplemented groups showed high
activity (47.6–79.2%) (Figure 4B). Through the DEG analysis, it
was confirmed that the low antioxidant activity of the mannitol-
supplemented group was due to the downregulation of gentisyl
alcohol biosynthesis. These results suggest that gentisyl alcohol
production in algicolous Arthrinium spp., such as A. koreanum,
is primarily influenced by mannitol rather than glutamic acid. In
marine environments, mannitol functions as an osmoprotectant
and acts as an antioxidant that prevents peroxidation of cellular
components by ROS, which is generated by the absorption of
UV rays by dissolved organic matter in seawater (Groisillier
et al., 2014). Since the residual mannitol amount in brown
algae reflects the photosynthetic activity in brown algae, it is
expected that algicolous Arthrinium spp. produce gentisyl alcohol
to compensate for the reduced antioxidant activity when the
mannitol content decreases at night. Additionally, deterioration
of the cellular function or vitality of brown algae due to aging can
also cause a situation where algicolous fungi are not sufficiently
supplemented with mannitol. Likewise, gentisyl alcohol produced
in response to mannitol deficiency in these fungi can help regulate
the redox equilibrium of brown algae, when the ability of the algal
host to control the redox equilibrium is poor. It is suggested that
algicolous Arthrinium spp. establish a symbiotic relationship that
enhances the viability of brown algae by providing antioxidants
when the photosynthetic activity decreases in exchange for
receiving mannitol.

Gentisyl alcohol biosynthetic pathway in Arthrinium spp. was
also identified and the related BGCs were reported. The known
gentisyl alcohol biosynthetic pathways were reportedly a part of

the aculin A and patulin biosynthetic pathways of Aspergillus
aculeatus and Penicillium expansum, respectively (Petersen et al.,
2015; Li et al., 2019). Both pathways share the reactions of
conversion of acetyl-CoA and malonyl-CoA to gentisyl alcohol,
an intermediate product. It was expected that the gentisyl alcohol
biosynthetic pathway of Arthrinium spp. might consist of genes
orthologous to the genes in aculin A and patulin biosynthetic
pathways. Indeed, 6-MSA BGCs similar to P. expansum patulin
BGCs were observed. Considering that A. koreanum KUC21332
and A. saccharicola KUC21221 produced gentisyl alcohol as a
major secondary metabolite instead of patulin, it was expected
that the biosynthetic genes responsible for the later steps of
patulin biosynthesis were absent. As expected, orthologs of the
other six genes (PatA, PatB, PatD, PatE, PatF, and PatN) of
patulin BGC were not present in the 6-MSA BGCs of the
Arthrinium spp.; PatN, PatF, PatD, and PatE encode isoepoxydon
dehydrogenase, neopatulin synthase, alcohol dehydrogenase, and
glucose-methanol-choline oxidoreductase (patulin synthase) that
catalyze the seventh to final reactions (from isoepoxydon to
patulin) (Li et al., 2019). This confirms that enzyme-catalyzed
steps after production of gentisyl alcohol in the patulinw
biosynthetic pathway of Penicillium are absent in the suggested
gentisyl alcohol biosynthetic pathway of Arthrinium (Figure 5).
According to the DEG analysis results, GsaA, GsaC, and GsaH
expression levels were downregulated. GsaG was neglected as
its substrate, gentisaldehyde, cannot be produced because of the
absence of responsible genes. GsaA expression downregulation
in the mannitol-supplemented group was suspected to be
responsible for the suppression of gentisyl alcohol biosynthesis,

FIGURE 5 | Proposed scheme of gentisyl alcohol biosynthetic pathway in Arthrinium spp. (dotted box) expressed in the patulin biosynthetic pathway.
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since GsaA acts as a specific transcription factor in this
pathway. GsaH and GsaC expression downregulation decreases
6-MSA and MFS transporter production, respectively, thereby
reducing the production and extracellular secretion of gentisyl
alcohol. This result is consistent with the results of the
antioxidant assay, thus demonstrating that the 6-MSA BGC
is responsible for gentisyl alcohol biosynthesis. The expression
levels of other genes in the BGC were not significantly different,
indicating that GsaC and GsaH were targeted in gentisyl alcohol
biosynthesis regulation.
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