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Scleractinian corals are evolutionary-successful calcifying marine organisms, which
utilize an endo-symbiotic relationship with photosynthetic dinoflagellate algae that
supply energy products to their coral hosts. This energy further supports a higher
calcification rate during the day in a process known as light enhanced calcification.
Although this process has been studied for decades, the mechanisms behind it are
still unknown. However, photosynthesis and respiration also cause daily fluctuations
in oxygen and pH levels, resulting in the coral facing highly variable conditions.
Here we correlated gene expression patterns with the physiological differences along
the diel cycle to provide new insights on the daily dynamic processes, including
circadian rhythm, calcification, symbiosis, cellular arrangement, metabolism, and energy
budget. During daytime, when solar radiation levels are highest, we observed increased
calcification rate combined with an extensive up-regulation of genes associated with
reactive oxygen species, redox, metabolism, ion transporters, skeletal organic matrix,
and mineral formation. During the night, we observed a vast shift toward up-regulation
of genes associated with cilia movement, tissue development, cellular movement,
antioxidants, protein synthesis, and skeletal organic matrix formation. Our results
suggest that light enhanced calcification is related to several processes that occur
across the diel cycle; during nighttime, tissue might elevate away from the skeleton,
extending the calcifying space area to enable the formation of a new organic framework
template. During daytime, the combination of synthesis of acid-rich proteins and a
greater flux of ions to the sites of calcification facilitate the conditions for extensive
mineral growth.

Keywords: coral biomineralization, light enhanced calcification, symbiosis, photosynthesis, metabolism, RNAseq

INTRODUCTION

Coral reefs are among the most diverse and productive ecosystems in the ocean and provide
substantial economic and cultural resources (Spalding et al., 2001). Stony corals that form the
reefs evolved during the Cambrian period (503 Ma) (McFadden et al., 2021) and are one of the
first known metazoans to precipitate a calcium carbonate exoskeleton in a biologically mediated
process (Knoll, 2003). This process leads to the production of approximately 4 kg calcium carbonate
per square meter per year in the oceans (Smith and Kinsey, 1976). Their ecological success is
related to endo-photosymbiosis with unicellular dinoflagellate algae of the family Symbiodiniaceae
(Stanley, 2006; LaJeunesse et al., 2018) that evolved later, during the Devonian period (383 Ma)
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(McFadden et al., 2021). As a result of the photosymbiosis, the
algae translocate more than 90% of their photosynthetic products
to their coral host (Muscatine, 1990; Falkowski et al., 1993).

Due to the presence of the endosymbiont algae and their
photosynthetic activities, symbiotic corals are exposed to wide
daily variations in intracellular oxygen concentrations and
pH levels (Shashar et al., 1993; Kuhl et al., 1995; Al-Horani
et al., 2005; Linsmayer et al., 2020). During the daytime, when
photosynthesis rates are high, the coral experiences hyperoxia
and a higher pH (Kuhl et al., 1995), while during the night, in
the absence of photosynthesis, respiration of both host and algae
causes hypoxia and low pH (Shashar et al., 1993; Kuhl et al., 1995;
Al-Horani et al., 2005; Linsmayer et al., 2020). Oxygen levels
have important implications on corals’ energy budget as they
determine whether aerobic versus anaerobic metabolic pathways
are used, which, in turn, has implications for the efficiency of the
energy production (Nelson and Altieri, 2019).

It has long been observed that photosynthesis-enhanced
calcification rates occur in symbiotic corals (Yonge, 1931;
Kawaguti, 1948), in a process known as “light-enhanced
calcification” (LEC) (Vandermeulen and Muscatine, 1974; Barnes
and Chalker, 1990; Gattuso et al., 1999). Moya et al. (2006)
determined that the endogenous circadian rhythm does not
stimulate the LEC phenomenon, instead, it is driven only by
light. In addition, Marshall (1996) reported that non-symbiotic
tropical corals exhibit similar calcification rates to symbiotic
corals suggesting that calcification may be dark-repressed and
not light-enhanced. In this context, Colombo-Pallotta et al.
(2010) proposed that calcification rates are mainly promoted by
translocation of photosynthetic products such as glycerol and
oxygen to the mitochondria in order to generate enough ATP
to cover the high energy demand for calcification. Therefore,
the authors of these studies concluded that light itself does not
necessarily stimulate calcification in symbiotic corals (Marshall,
1996), and corals must rely on a different source of energy to
support calcification (Mass et al., 2007).

Skeletal formation studies have suggested two steps of mineral
formation related to the diel cycle (Gladfelter, 1983; Vago et al.,
1997; Cohen and McConnaughey, 2003). During the night, the
tissue is elevated from the skeleton, creating a larger calcifying
fluid space (Vago et al., 1997), followed by the formation of
nano-granule particles at the centers of calcification (CoCs),
while during the daytime, aragonite needle-shaped fibers are
radiated outward from the newly formed CoCs, rapidly filling
the calcifying fluid space (Barnes, 1970, 1972; Gladfelter, 1983;
Cohen and McConnaughey, 2003). However, a recent study,
which used nano secondary ion mass spectrometry (nano-SIMS),
demonstrated that filling of the mineral space occurred during
both day and night (Domart-Coulon et al., 2014).

The biomineralization process is associated with a set of
macromolecules such as proteins (Constantz and Weiner, 1988),
phospholipids (Isa and Okazaki, 1987), and polysaccharides
(Cuif et al., 2003; Naggi et al., 2018), which are secreted
to the extracellular matrix (ECM) (Peled et al., 2020). Mass
et al. (2013) identified a group of coral acid-rich proteins
(CARPs) that catalyzed calcium carbonate precipitation in vitro.
In addition, the proteome of the skeletal organic matrix

contains an assemblage of adhesion and structural proteins as
well as CARPs, which together create a framework for the
precipitation of aragonite (Drake et al., 2013; Ramos-Silva et al.,
2013; Takeuchi et al., 2016; Peled et al., 2020; Mummadisetti
et al., 2021). Immunolocalization assays and chemical cross-
linking have revealed a non-random spatial arrangement of key
matrix proteins in the skeleton of the common symbiotic coral
Stylophora pistillata (Mass et al., 2014; Mummadisetti et al.,
2021). This arrangement suggests that the organic components
are intimately associated with the mineral phase, organized in
a highly ordered structure consistent with a diel calcification
pattern (Mass et al., 2014).

The main aim of this study was to elucidate the temporal
sequence of events throughout the biomineralization reaction of
the endosymbiotic coral Stylophora pistillata. We correlated
physiological and transcriptomic approaches to better
understand the dynamics of diverse genetic processes critical
for corals’ development through the diel cycle, including the
biomineralization process. Specifically, we correlated the gene
expression pattern with calcification rates, dark respiration rates,
and tissue biomass at eight time points across the diel cycle.

MATERIALS AND METHODS

Sample Preparation
Four colonies of Stylophora pistillata were collected from the
reef in front of the Interuniversity Institute of marine science
in Eilat (IUI; 29◦30′16′′N, 34◦55’7′′E) under a permit from the
Israeli Natural Parks Authority, permit number 42410/2019. Each
colony was fragmented into 40 fragments of 2 cm nubbins,
glued onto transparent film paper, and allowed to recover for 3.5
months in an outdoor running seawater system at the IUI. In
addition, from each colony, four fragments of 0.5 cm and 2 cm
long were prepared for respiration and calcification analyses,
respectively. The seawater was continuously pumped by a high-
volume water pump (Ebara, stainless steel, 3LSF 50–125/4.0, flow
rate ca. 30 m3 h−1) from 30 meters deep on the adjacent reef
slope. The seawater inlets are covered by a coarse mesh (2 cm2) to
exclude macro marine biota such as fish and large invertebrates.
The mesh covers are manually scrubbed clean once a month
to maintain water flow. Corals were maintained in ambient
light:dark and temperature cycle from February to May 2020.
The outdoor system was exposed to the full spectrum ambient
sunlight (ca. 1800 µmol m−2 s−1 PAR at midday on a cloudless
day). The growth of lateral edges of each nubbin indicated the
recovery and new growth of the corals.

Coral Sampling and Time Points
On 10th of May 2020, nubbins from each colony were randomly
sampled from the water-system every 3 h: 06:00am, 09:00am,
12:00pm, 15:00pm, 18:00pm, 21:00pm, 00:00am and 03:00am.
Light (lux) and temperature were monitored throughout the
duration of the experiment (Supplementary Figure 2) using
HOBO pendant temperature and light data loggers (Onset,
United States). The units of light lux were converted to PAR using
a calibration curve generated by the comparison of HOBO and a
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Full-Spectrum Quantum PAR sensors and PAR meter (Apogee
instrument, United States) diel measurements. The sample of
6:00 am took place approximately at sunrise, and 6:00 pm took
place at sunset. Two nubbins from three colonies at each time
point (total of n = 64) were briefly drip-dried to remove excess
seawater and mucus, snap frozen in liquid N2, and stored at
–80◦C until processed for genetic and physiological analyses. At
the same time points, calcification and respiration rates were
measured (Supplementary Figure 1).

RNA and DNA Extraction
Total RNA and DNA were extracted using the Zymo DNA/RNA
kit (catalog number D7003) following the manufacturer’s
protocol. DNAase treatment was performed within the RNA
extraction procedures according to the manufacturer’s protocol.
RNA concentration and quality were confirmed using a
NanoDrop 2000 (Thermo Fisher Scientific, United States) and
RNA ScreenTape (Agilent).

Symbiodiniaceae Species Analyses
The internal transcribed spacer (ITS2) of Symbiodiniaceae
DNA was amplified using Symbiodiniaceae-specific primers as
described by Arif et al. (2014). The amplified fragments were
then separated with electrophoresis, using a 1% agarose gel.
10 µL of the PCR products were sent to HyLab (Hy Laboratories
Ltd., Israel), where they were subjected to a second PCR
using the Access Array tag for Illumina primers (Fluidigm
Corporation, United States). Index and adaptor sequences were
added as required for sequencing on the Illumina system. Then,
samples were purified using AMPure XP beads (Beckman Coulter
Inc., United States), and the concentration was determined by
Qubit (Thermo Fisher Scientific, United States). Samples were
sequenced on the Illumina Miseq using a v2-500 cycle kit to
generate 250× 2, paired-end reads.

RNA Sequencing
RNA libraries were prepared at the Nancy and Stephen
Grand Israel National Center for Personalized Medicine
Weizmann Institute of Science using the Genomics
in-house protocol for mRNA-seq. Briefly, the polyA
fraction (mRNA) was purified from 500 ng of total RNA
following fragmentation and the generation of double-
stranded cDNA. Then, end repair, A base addition, adapter
ligation, and PCR amplification steps were performed.
The quality of the libraries was evaluated by Qubit
(Thermo fisher scientific) and TapeStation (Agilent).
Libraries were sequenced using Illumina NovaSeq S1 in
100 cycles on two lanes.

RNA-seq reads (150 paired-end, NovaSeq S1 100 cycle kit)
were first cleaned from adapters using Cutadapt (Martin, 2011)
and low-quality regions using Trimmomatic (Bolger et al.,
2014) and then mapped to the S. pistillata and Symbiodinium
microadriaticum genomes. Overall, a median of 29 vs. 0.9
million reads per sample were mapped uniquely to exons of
S. pisitllata (NCBI GCF_002571385.1) vs. S. microadriaticum
(NCBI GCA_001939145.1), respectively. This was done using
STAR (Dobin and Gingeras, 2016). Reference coordinates

and annotations of S. pisitllata NCBI were combined
with additional annotations (reefgenomics spis v.1.0) using
UCSC Liftover tools.

Differential Expression Analysis
Differential Expression (DE) analysis was conducted using
DEseq2 (Love et al., 2014) and Voom (Law et al., 2014). In
both tools, we considered the time factor and the colony factor
since the samples come from three different colonies. Both
tools gave comparable results, and we chose to use Voom
since it allows testing for differential expression trends (here
we tested quadratic trends). Vegan1 NMDS graphs initially
gave > 0.1 NMDS stress values; ≤0.1 values are required for
a close representation of pairwise dissimilarity between objects
in a low dimensional space. In order to obtain lower NMDS
stress values, the original read counts were cleaned from the
effect of an additional batch factor, using the SVA ComBat-Seq
function in R (Leek et al., 2012). SVA results were used only for
visualization purpose.

Functional Enrichment Analyses
Functional enrichment analyses were conducted using Goseq
based on DEseq2 results and using Clusterprofiler based on
Voom expression profiles groups (Young et al., 2010; Yu et al.,
2012).

Biomineralization genes were added in the DE table based on
three sources (Drake et al., 2013; Zoccola et al., 2015; Peled et al.,
2020).

Protein Concentration
Coral tissue of each frozen nubbin was airbrushed using
cold 100 mM phosphate-buffered saline (PBS) mixed with
0.1 mM EDTA buffer (pH 7). The tissue slurry was electrically
homogenized for 20s (Diax-100, Heidolph, Germany). Total
protein concentration was measured using the Bradford assay
(BIO-RAD-5000201) following the manufacture protocol
(Bradford, 1976). The absorbance of samples was read with
triplicate technical replicates, and protein concentration was
determined against BSA standards.

Dark Respiration Rates
At each time point, four 0.5 cm nubbins of each colony were
transferred directly from the water table to a 24-well glass
microplate (Loligo systems, Denmark). Each microplate well
(1700 µL) contained one nubbin measured (n = 16) after
30 min of dark incubation. An optical fluorescence oxygen system
(PreSens, Germany) was used to quantify oxygen consumption
rates inside the sealed wells. Measurements were carried out
for 15 min in the dark. Data were recorded with MicroRespTM

software (Loligo systems, Denmark). Before measurements, the
oxygen sensors were calibrated for approximately 30–45 min
against air-saturated seawater (100% oxygen) and a saturated
solution of sodium sulfite (zero oxygen), as recommended by the
user manual (Loligo systems, Denmark). Dark respiration rates
were normalized to the sample protein concentration (mg).

1https://cran.r-project.org
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Calcification Rates
Calcification rates were estimated using the total alkalinity
anomaly method (TA) (Gran, 1952) with some modifications.
Briefly, at each time point, fragments with a similar volume
of approximately 1 mL were placed in transparent sealed 4 ml
chambers with 0.22 µm filtered seawater and kept in the aquaria
system for 3 h to represent the natural light and temperature
regime. Water was re-filtered post incubation, and triplicates
were measured with Titroline 7000 titrator (SI Analytics,
Germany). Endpoint alkalinity in the samples was subtracted
from time zero samples (no incubation). Samples were titrated
with 0.005M HCl and calibrated by Dickson reference material
(Dickson, 1981) for oceanic measurements. Calcification rates
[µmol CaCO3 h−1 mg−1] were calculated using the equation
described by Schneider and Erez (2006):

Calcification rate [µmol CaCO3 h−1 mg−1
] =

1Alk
2 x

(
Vchamber − Vcoral

)
× 1.028

T
(
hr

)
× P

where 1 Alk (mg kg−1) is the difference in alkalinity between
the beginning and the end of the incubation period, V is the
volume (mL), 1.028 is the density of seawater of the northern Gulf
of Eilat, T is the duration of incubation (h), and P is the protein
concentration (mg).

RESULTS

Symbiodiniaceae Species Analyses
To demonstrate that the observed physiological and molecular
changes in the coral host cells are not dependent on
photosymbiont species, ITS analysis was performed. A total
number of 296,922 ITS2 high-quality sequence reads (mean
length = 315 bp) were produced from four colonies. Non-
operational taxonomic units (OTUs) of other organisms that
are most likely part of the coral holobiome were filtered
out. After filtration, only OTUs of Symbiodiniaceae remained.
The species identified in all four biological samples was
Symbiodinium microadriaticum (formerly Symbiodinium clade
A) (98% similarity).

Gene Expression Trends of the Diel Cycle
Our differential gene expression analysis reveals a distinct
diel expression pattern of the stony coral S. pistillata. We
first searched for diurnal-dependent quadratic-trends of gene
expression using Voom (Law et al., 2014), which identifies
continuous changes in gene expression along time. Out of 20,102
tested genes, 5,287 genes showed significant time-dependent
trends. These genes were grouped into 14 clusters based on
the time at maximum/minimum expression (Figure 1). These
clusters can be further divided into four time-specific expression
pattern groups: (i) morning peak clusters – up-regulation starts
during the night, followed by a morning peak of expression (06:00
to 09:00 am) and noon down-regulation (Figure 1, orange box,

clusters A, B, C, and D); (ii) noon peak clusters – up-regulation
starts during the morning, followed by a noon peak of expression
(12:00 to 15:00) and evening down-regulation (Figure 1, red box,
clusters E, F, G, and H); (iii) evening peak clusters – up-regulation
starts during the noon period, followed by an evening peak of
expression (21:00) and nighttime down-regulation (Figure 1,
green box, clusters I and J); and (iv) night peak clusters – up-
regulation starts during the evening, followed by a night peak of
expression (00:00) and morning down-regulation (Figure 1, blue
box, clusters K, L, M, and N). Those categories can be further
divided to “day expressed genes” (group i, ii, and iii) and “night
expressed genes” (group iv).

Next, we examined the expression pattern of cryptochrome
genes (CRY’s) that are known to be involved in the circadian
rhythm signaling proteins in animals (Stanewsky et al., 1998; Lin
and Todo, 2005) and as blue-light photoreceptors in plants and
corals (Falciatore and Bowler, 2005; Levy et al., 2007). Indeed,
cryptochrome 1 (CRY1) and cryptochrome DASH (CRY-DASH)
were up-regulated in the morning, followed by a noon peak of
expression and evening down-regulation (Figure 1 clusters G and
H, respectively).

Functional Enrichment
We next performed Gene Ontology (GO) functional-enrichment
based on kyoto encyclopedia of genes and genomes (KEGG)
pathway database (Kanehisa et al., 2004) and S. pistillata
Trinotate annotations to identify functional terms associated
with diel cycle (Figure 2 and Supplementary Table 1). We
refer to these enrichment patterns, based on the biological
context, as follows.

Protein Biomass Production
Transcription and translation processes, in which DNA is
transcribed to mRNA and eventually to proteins, were found
to be dependent on the diel cycle pattern described above.
Terms related to DNA and RNA formation such as “DNA
binding,” “replication,” “mRNA processes,” “splicing,” “RNA
polymerase,” “tRNA,” “protein folding,” and “protein unfoldin”
were significantly over-represented during the noontime peak
group (pattern group ii, Figure 2G). In contrast, terms related
to protein formation such as “ribosomes,” “translation,” “protein
processes,” and “proteasome, peptidase and protease activity,”
which plays a role in protein degradation, were over-represented
only later during the afternoon with a peak in the expression
during the evening (pattern group iii, Figure 2H). Upon
quantifying the total protein biomass, we found that the total
protein biomass at nighttime was about two-fold higher than
daytime [Figure 3, one-way ANOVA F (7,14) = 6.0575, followed
by Tukey’s post-test (p = 0.00143)].

Host Genes Associated With
Photosynthesis-Dependent Oxidative Stress
We found that biological processes (BP) like “antioxidant
activity” terms are over-represented during the night
(Figure 2H), whereas “redox” related terms were over-
represented at all time points (Figures 2A,G). “DNA repair”
related terms are significantly over-represented during the night
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FIGURE 1 | Diurnal trends in gene expression of the coral host, clustered based on minimum/maximum expression peak, based on 5,287 genes showing significant
trends using Voom out of 20,102 differentially expressed S. pistillata genes tested. In each cluster, the graph above represents mean Fragments Per Kilobase Million
(FPKM) of the genes. The heatmap below represents the fraction of maximum FPKM values of each gene and time-point. Clusters that represent similar expression
trends along the diel cycle are framed in colored boxes.

FIGURE 2 | Enriched groups of host genes in the most abundant selected clusters. In each bar plot, the y-axis represents the GO/KEGG ID and the x-axis
represents the enrichment factor. The labels represent the GO/KEGG-related term. Groups were filtered by a minimal enrichment factor value of 3 (with some
exceptions). Functional terms with comparable enrichment factors and categories have been merged to the same bar. Blue bars represent the genetic code
processing (DNA, RNA, and proteins), green bars represent metabolic processes, red bars represent structural terms, and yellow bars represent cellular processes.
The full enrichment table is Supplementary Table 1.

and morning (pattern group i, Figure 2A). This seems to reflect
the DNA damage and oxidative stress related to high irradiance
(Supplementary Figure 2) and high photosynthetic activity

during the day (Schneider et al., 2009), as specifically indicated
by noontime over-representation of “reactive oxygen species
(ROS) activity” (pattern group ii, Figure 2G).
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Host Genes Associated With Photosynthetic
Metabolites
High photosynthesis rates during the day (Barnes and
Chalker, 1990; Schneider et al., 2009) may increase the energy
translocation from the symbionts to the host. The combination of
this with heterotrophic feeding might be reflected by significant
daytime over-representation of host metabolism-related terms.
We observed morning over-representation of “lipid metabolism”
(pattern group i, Figures 2A,C,D), and noon over-representation
of “response to sugars,” “response to glucose starvation” and
“energy metabolism and ATPase activity” terms (pattern group
ii, Figures 2E,G). In addition, “carbohydrates metabolism” and
“glycolysis/ gluconeogenesis” terms are over-represented during
the night (pattern group iv, Figures 2F,H).

Cellular Respiration
In this study, we measured dark respiration rates and did not
find significant differences throughout the diurnal cycle [repeated
measured ANOVA F(7,25) = 2.455 (p > 0.05)]. Coral respiration
rates follow dark adaptation usually present slight variation
compared to post-illumination respiration rates due to the
absence of photosynthesis production of oxygen which kinetically
limited mitochondrial respiration (Colombo-Pallotta et al., 2010).
Moreover, our enrichment analysis indicates that different
cellular respiration-related terms are over-represented during all
time points (Figure 2). During the morning and noontime, terms
involved in “redox” are over-represented (pattern groups i and
ii, Figures 2A,G, respectively), while during the night, terms
related to “mitochondrial” and “respiration” are over-represented
(pattern group iv, Figures 2B,H).

Development and Reproductive Behavior
We found that developmental terms are over-represented
throughout the diel cycle. “Signaling pathway” and “cell
development and differentiation” are over-represented during
the morning, noon, and night (pattern groups i, ii, and
iv, Figures 2C,D,G,H, respectively), while other specific
developmental terms are time exclusive; “nervous system” terms
are morning over-represented (pattern groups i, Figure 2C),
“endoplasmic reticulum,” and “rhythmic” terms are noon
over-represented (pattern groups ii, Figure 2G), and “cell
movement” terms are night over-represented (pattern groups
iv, Figure 2H). Furthermore, as the experiment took place
during S. pistillata reproductive season (January – September)
(Shefy et al., 2018), terms related to “sex determination” (pattern
groups ii, Figure 2G) and “spermatogenesis” (pattern groups iv,
Figure 2H) were over-represented during the noon and night.

Structural Genes
Enrichment analysis of cellular components (CC) reveals a night
over representation of terms that can either play a role in
structural components or alternatively in the spermatogenesis
process. This includes terms that are related to the formation
of cells’ structural machinery and cytoskeleton, including such
terms as “actin,” “microtubule,” “supermolecules,” “cilium,”
“regulation of substrate adhesions,” transport related genes such
as “transporters,” “intraciliary transport,” and “transport across

microtubule” (pattern groups iv, Figure 2H). Exception groups
that are “ion binding” and “cell adhesion,” “extracellular matrix”
and “ossification” terms that are over-represented during the
morning (pattern groups i, Figures 2A,C,D), and “osteoblast
differentiation” and “vesicles and endocytosis” terms that are
over-represented during at noon (pattern groups ii, Figure 2G).

Calcification
Diurnal measurements of calcification rate revealed an increase
in calcification rate with light intensity. However, the peak
calcification rate did not match the peak light intensity but
was delayed by ∼ 3h [Figure 4A, repeated measured ANOVA
F(7,25) = 1289.77 (p < 0.00001), followed by Tukey’s post-
test]. Interestingly, the expression pattern of biomineralization
“toolkit” genes (Drake et al., 2013; Peled et al., 2020) is time-
dependent and follows the diurnal pattern as well. We found that
46 out of 101 biomineralization related genes were DE across
the diel cycle (Figure 4 according to their molecular function).
Throughout the whole diel cycle, we observed up-regulation
of genes that play a role in the adhesion and formation of the
protein framework of the skeletal organic matrix (SOM) (Drake
et al., 2013; Mummadisetti et al., 2021). Specifically, genes
annotated as MAM and LDL receptor and vitellogenin-like
represent the morning peak (Figure 4Bi). Growth factor (EGF)
and laminin-G domain-containing (EGF LamG), protocadherin
5, and sushi domain-containing proteins represented the
noon peak (Figure 4Bii), and phosphopentothenoylcysteine
decarboxylase subunit VHS3, CUB domain-containing,
vitellogenin, and another protocadherin-like represented
the evening peak (Figure 4Biii).

In contrast, the expression of calcium/metal-binding genes
was restricted to specific hours, representing a morning peak
in expression (Figure 4Bi). In addition, the acid-rich proteins
(CARPs), which have been suggested to control nucleation and
growth of the aragonite crystal-like fibers of the skeleton, also
represent a unique expression pattern across the diel cycle.
CARP3 was highly expressed during the morning (Figure 4Bi),
whereas CARPs 2, 4, and 5 were highly expressed during
noontime, following the trend of calcification rate (Figure 4A).
All these detected CARPs were downregulated during the night.
One exception is the glutamic-rich protein (CARP6) that was up-
regulated during the afternoon with peak expression during the
evening (Figure 4Biii). CARP1 was not differentially expressed
throughout the day.

Different bicarbonate transporters were highly expressed
in each time point. Solute carrier family 4-member gamma
(SLC4γ), which was localized previously to the calicoblastic layer
(Zoccola et al., 2015), anion exchange protein 2, and sodium-
independent sulfate anion transporter (XM_022925996.1)
were highly expressed during the morning (Figure 4Bi);
sulfate anion transporter 1 (XP_022800348.1) and sodium
bicarbonate cotransporter 3-like (XP_022801462.1) were
highly expressed at noon (Figure 4Bii), and another sodium
bicarbonate transporter (XP_022783031.1) was highly expressed
during the evening (Figure 4Biii). In contrast, the expression
of carbonic anhydrase 2 (STPCA2), which catalyzes the
reversible hydration of carbon dioxide into bicarbonate
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FIGURE 3 | Mean total protein concentration of S. pistillata fragments at each time point. Error bars represent the standard error [one way ANOVA
F (7,14) = 6.0575, followed by Tukey’s post-test] (p = 0.0014).

and has been localized to both the calicodermis (Bertucci
et al., 2010) and the coral skeleton (Moya et al., 2008),
was restricted only to daytime, with a peak at noontime,
representing a similar trend to the expression pattern
of CARPs 2, 4, 5 (Figure 4Bii) and to calcification rates
(Figure 4A).

DISCUSSION

In this study, we characterized both physiology and gene
expression patterns at eight time points across the diel cycle.
Our clustering analysis revealed the dynamics of diverse
genetic processes critical for corals’ development through the
diel cycle, including circadian rhythm, calcification, symbiosis,
cellular arrangement, metabolism, and energy budget. We
also found that time of day, which is correlated with light
intensities, may trigger some of the processes directly or
indirectly.

Circadian Rhythm
The blue-light–sensing photoreceptors CRY genes were first
identified in stony corals by Levy et al. (2007), who confirmed
that these genes are daylight-dependent and are upregulated
during the day. Indeed, in our data, CRY1 and CRY-DASH,
which were differentially expressed, represent the same daylight-
dependent trend.

Protein Production and Cellular
Development
The current central dogma in molecular biology of all living
organisms is that DNA is transcribed to RNA which directs
protein synthesis; there are many studies that show a positive
correlation between differential expression of specific mRNAs
and the corresponding proteins (Greenbaum et al., 2002;
Lu et al., 2007; Ning et al., 2007). Thus, many studies,

including this study, have used transcriptome analysis to
examine gene regulation under different conditions. However,
there is growing evidence of variations between the expressed
mRNA and the corresponding proteins, and for some gene
categories, the correlation is stronger than others, resulting in
a lag between the transcription and protein synthesis (Gygi
et al., 1999; Shankavaram et al., 2007; Gry et al., 2009).
This lag can result from a series of intertwining processes of
the mRNA prior to translation into functional proteins, also
known as the “posttranscriptional” regulation (PTR) (Schaefke
et al., 2018). These regulatory processes include processes
such as splicing (Berget et al., 1977; Chow et al., 1977),
polyadenylation (Elkon et al., 2013; Tian and Manley, 2013),
decay (McManus et al., 2015), and translation (Raser and O’shea,
2013; Schaefke et al., 2018).

Our functional enrichment analysis suggests that a lag
between the synthesis of mRNA and proteins might occur. We
observed that processes related to DNA and RNA formation
were over-represented at noon, whereas only later during the
evening, processes related to protein formation and PTR (e.g.,
“mRNA metabolism,” “splicing,” “ribosome,” and “translation”
terms, Figure 2) were over-represented. In addition, the protein
processes over-represented during the evening correspond with
the physiological analysis of the protein biomass, which increased
significantly at nighttime.

Furthermore, increases in the protein biomass and the
over-representation of “cell development and differentiation,”
“developmental processes,” “cell movement,” and “signaling
pathway” terms during the night might be related to diverse
cellular processes such as cell proliferation, cell migration and
tissue vegetative growth to bud new polyps (Duerden, 1905;
Kramarsky-winter and Loya, 1996; Bertucci et al., 2015). In
addition, night over-representation of structural terms, such
as “microtubule and cytoskeleton,” “actin,” “supermolecule”
and the “regulation of substrate adhesion” might indicate
cytoskeleton rearrangement, which serves as a framework
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for developing migrating cells (Pollard and Borisy, 1980;
Ridley et al., 2003).

Cellular Processes
Light stimulates the photosynthesis process, which results in
carbon fixation (Schmitz and Kremer, 1977), and pH and oxygen
concentration elevation (Kuhl et al., 1995; Al-Horani et al.,
2003a,b). The production of oxygen as a byproduct of the
photosynthesis reaction results in hyperoxia (Linsmayer et al.,
2020). Oxygen is an unstable molecule, and as a result of oxygen
reduction, it produces superoxide (O−2 ), which is the precursor of
most other reactive oxygen species (ROS) (Turrens, 2003; Lesser,
2006; Nelson and Altieri, 2019). A recent study showed high
concentrations of superoxide at the coral surfaces both during
mid-day and midnight (Zhang et al., 2016), suggesting a constant
production of extracellular superoxide during the whole diel cycle
(Zhang et al., 2016). In contrast, our GO enrichment results
indicate that “ROS” related terms are over-represented during the
daytime, with a similar trend to the elevation of light intensities
(Figure 2G and Supplementary Figure 2).

In addition, the elevation of the “ROS” related terms requires
the elevation of antioxidants activity, which inhibit the ROS
accumulation in the cells (Nelson and Altieri, 2019). In contrast,
our enrichment analysis indicates that “antioxidant activity”
related terms were over-represented only during the night
(Figure 2H). This observation could be related to the lag between
the transcription and translation due to posttranscriptional
regulation processes (Schaefke et al., 2018). Alternatively, as
we observed over-representation of terms related to “redox”
during all hours (Figures 2A,E), ROS accumulation might be
controlled by the entire redox-sensing and signaling networks
as suggested previously in plants (Noctor et al., 2018; Farooq
et al., 2019). However, further physiology and molecular analyses
are required to elucidate the mechanism controlling ROS-related
damage. Furthermore, the increase in UV radiation results in
DNA damage (Sinha and Häder, 2002; Petruseva et al., 2014),
which may be the trigger for the over-representation of “DNA
repair” terms during the night as observed here and previously
suggested in the Hydra (Barve et al., 2021).

The over-representation of “cilium” related terms during
nighttime might be related to water exchange on the coral
surface or to heterotrophic feeding behavior. In corals, cilium
activity was found to be associated with heterotrophic feeding,
which occurs mostly during nighttime (Yonge, 1930; Coles, 1961;
Porter, 1974). However, as the tentacles of Stylophora pistillata
are continuously expanded, and feeding behavior can also occur
during daytime (Levy et al., 2003), cilium activity during the
night might be an attempt to reduce the hypoxic conditions. We
observed constant respiration rates throughout the diel cycle;
however, during the night, photosynthesis decreases, resulting
in hypoxic conditions (Linsmayer et al., 2020). A recent study
showed that motile cilia cover the entire outer surface of the
coral and can stir an approximately 2 mm thick layer of water
from the coral surface (Shapiro et al., 2014). In addition, the
authors showed that in ambient conditions, these vortices control
the exchange of nutrients and oxygen between the coral and
its environment (Shapiro et al., 2014). Nevertheless, as cilia

have diverse functions and locations in the coral tissue (Levy
et al., 2021; Tambutté et al., 2021), further analysis is required
to distinguish between the different roles and functions of the
various cilium-related genes.

Metabolism
The observation of over-representation of “lipid metabolism”
terms during the day was previously reported in the coral
Acropora millepora as well (Bertucci et al., 2015). As cnidarians
cannot synthesize sterols (Tarrant et al., 2009), they must acquire
it from external sources such as predation or photosynthesis
products (Von Holt and Von Holt, 1968; Crossland et al., 1980).
Crossland et al. (1980) suggested that lipids are synthesized at
the endosymbionts’ chloroplasts and then transferred to host
tissues. Moreover, other studies identified lipid bodies located in
the host cells containing symbionts (Kellogg and Patton, 1983;
Patton and Burris, 1983), and it has been suggested that lipid
bodies in the host cells have a diel rhythmic pattern, with an
increasing density and size of lipid bodies during the daytime
hours (Chen et al., 2012).

Glucose is considered to be the major translocated metabolite
from the symbionts to the host cells (Gordon and Leggat, 2010).
The over-representation of the terms related to “response to
sugar” during daytime observed here may therefore reflect the
effect of the photosynthetic diel cycle (Schneider et al., 2009).
Previously, it has been reported that glucose transporters are
up-regulated during the daytime (Bertucci et al., 2015; Ruiz-
Jones and Palumbi, 2015). In our data, we did not observe
over-representation in glucose transporters terms; however,
“carbohydrates metabolism” and “glycolysis/gluconeogenesis”
terms are night enriched. A similar pattern was observed in plants
where energy synthesis occurs during the day and is regulated
during nighttime (Kojima et al., 2007; Smeekens et al., 2010;
Lastdrager et al., 2014). Therefore, we suggest that sugar transport
occurs during the day, and the coral host cells’ cellular processes
of energy consumption and metabolism occur predominately
during nighttime.

Biomineralization
The majority of CaCO3 which forms in the ocean is precipitated
by photosynthetic organisms or their hosts (Ries, 2010).
Coccolithophores perform direct photosynthesis (Balch et al.,
1992), while foraminifera and scleractinian corals utilize energy
indirectly via the establishment of symbiosis with intracellular
algae (Gattuso et al., 1999). Although LEC has been observed
in corals (Kawaguti, 1948; Moya et al., 2006; Schneider et al.,
2009), the effects of light on the calcification mechanism remain
poorly understood. In accordance with former studies, we found
that calcification rates are highly correlated with light intensity.
Although we did not measure photosynthesis in this experiment,
it is well documented that photosynthesis and calcification rates
follow the light intensity pattern, with a slight lag from the
peak in photosynthesis to the peak in calcification (Barnes and
Chalker, 1990; Mass et al., 2007; Schneider et al., 2009). Previous
studies referred to the enhancement of calcification rate as a
photosynthesis-driven process due to the elevation of oxygen
and glycerol concentration (Colombo-Pallotta et al., 2010).
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FIGURE 4 | Biomineralization pattern across the diel cycle. (A) Average calcification rate (µmol CaCO3 mg–1h–1, gray line) and light intensities (µmol m–2s–1, yellow
line) during each of the sampling points. Error bars represent the standard error [repeated measured ANOVA F (7,25) = 1289.77 (p < 0.00001), followed by Tukey’s
post-test]. (B) The expression pattern of known biomineralization related genes. Each box is indicated with a black arrow to the hour of peak expression. Blue
squares represent the calcium/metal binding genes, orange circles represent ion transporters, purple stars represent the carbonic anhydrase enzyme, STPCA2, red
triangles represent the CARPs, and the green diamonds represent the other organic matrix genes. The full table with gene accession numbers can be found in
Supplementary Table 2.

However, other studies have shown that while photosynthesis is
partially activated over a wide range of wavelengths, LEC occurs
specifically in a narrow waveband of the blue spectrum, when
oxygen production is reduced (Wijgerde et al., 2012; Cohen et al.,
2016). Therefore, the authors suggested that blue light receptors
are involved in LEC (Cohen et al., 2016), as previous have shown
blue light to be the cue for circadian rhythm (Levy et al., 2007;
Mason et al., 2012). In this study, we did not perform any
light manipulation, and therefore, we cannot rule out any of the
suggested mechanisms for LEC.

Using in vivo laser measurements Vago et al. (1997) suggested
that during the night, the tissue is elevated from the skeleton to
increase the calcifying fluid space for deposition of nano-granule
particles at the CoC’s, followed by daytime needle-shaped fibers
space filling in the newly formed CoC’s (Gladfelter, 1983; Cohen
and McConnaughey, 2003). It has been suggested that the first
process is not light-dependent while the latter is driven by light
(Barnes and Crossland, 1980). To enable the tissue elevation from
the skeleton at night, the tissue must move and rearrange. Indeed,
as described above, we observed an increase in the protein
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FIGURE 5 | Suggested mechanism of gene expression and physiology across the diel cycle. During daytime, energy production increases, due to photosynthesis
and predation, and ROS react with free oxygen reducing ROS damage. In addition, calcification rate increases due to synthesis of acidic proteins (CARP’s) that play
a role in mineral nucleation and growth. Furthermore, the high flux of ions to the sites of calcification via transporters, modulate the pH to facilitate an environment
favorable for mineral deposition. During the night, cilia movements may alleviate hypoxic conditions. Cellular development and movement might lead to tissue
elevation from the skeleton, followed by the new organic framework template for mineral deposition.

biomass and over-representation of developmental and structural
related terms during the night. This may indicate that the tissue
has elevated from the skeleton and serves as a framework for
the newly developed skeleton. However, the spatial and temporal
dynamics of cellular development and movement are still unclear,
and further study is required to address it.

Recent studies have suggested that the SOM, which includes
proteins (Drake et al., 2013; Ramos-Silva et al., 2013; Takeuchi
et al., 2016; Peled et al., 2020), polysaccharides (Cuif et al.,
2008; Naggi et al., 2018) and other macromolecules, spatially
interacts with and creates an organic framework which controls
the biomineral deposition, shape, size and three-dimensional
structure (Drake et al., 2013; Peled et al., 2020; Mummadisetti
et al., 2021). For example, acid-rich proteins, which are negatively
charged, have the ability to interact with calcium ions providing
points for nucleation (Addadi and Weiner, 1985). Our RNA-
seq data reveal that some of these highly acidic genes, including
CARP1, are not differentially expressed across the whole diel
cycle, which may indicate a constant framework might form the
space-filling fibers during the whole diel cycle, as demonstrated
previously using nano-SIM (Domart-Coulon et al., 2014). While
the up-regulation of CARPs 2, 3, 4, and 5 during the day
supports rapid calcification during the daytime. CARPs 3, 4,
and 5 are aspartic-rich proteins, which have been localized
in the mineral aragonite fibers (Mass et al., 2014) and were
suggested to have similar roles in mineral nucleation and
calcium binding/concentrating during the biomineralization
process (Drake et al., 2013; Mass et al., 2014). In our study,

CARP3 was the first of these genes to be up-regulated and
expressed during the morning. Previous in vitro studies have
demonstrated that CARP3 can promote the precipitation of Mg-
calcite (Gavriel et al., 2018). In addition, the initial mineral phase
observed in newly settled primary polyps is nascent Mg-calcite
(Neder et al., 2019). Therefore, CARP3 might play a role in the
daily mineral initiation and CaCO3 polymorph alteration. In
addition, CARP 4 and 5, which were up-regulated during the
daytime, belong to a highly acidic subfamily of proteins that is
well conserved across the Order Scleractinia (Zaquin et al., 2021)
and are characterized by two acidic regions (Drake et al., 2013;
Mass et al., 2013) suggested to be a template for calcium carbonate
nucleation or growth (Drake et al., 2013).

Interestingly, the glutamic-rich proteins CARP2 and 6
were up-regulated during daytime and nighttime, respectively.
Glutamic-rich proteins were found to stabilize amorphous
calcium carbonate (ACC) in other marine biomineralizing
organisms (Aizenberg et al., 1996, 2002).

In addition, glutamic-rich proteins have been correlated with
ACC (Akiva et al., 2018), and CARP2 was located in S. pistillata
CoCs (Mass et al., 2014), which are enriched with ACC (Devol
et al., 2015; Mass et al., 2017; Von Euw et al., 2017). Although
CoCs have been suggested to be formed during the night
(Vago et al., 1997), we suggest that CoCs may form during the
whole diel cycle.

Additionally, the expression of proteins with calcium/metal
binding domains is limited to the morning peak cluster. One
of these proteins contains a von Willebrand factor (vWF)
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domain. The vWF domain is part of a large family of adhesion
glycoproteins known to stabilize calcium binding structures
(Jakobi et al., 2011) and to contribute to the formation of the
organic framework of the calcifying space (Mummadisetti et al.,
2021). In addition, this protein and CARP2 were up-regulated
during larval development of Pocilopora acuta (Mass et al., 2016),
where ACC was detected (Akiva et al., 2018), suggesting a role for
these proteins in the formation of the initial ACC phase.

Another aspect that might influence the variation in the
rate of skeleton formation across the diel cycle is ion supply
and concentration mechanisms in the calcifying fluid space.
Previous studies have demonstrated that ion supply and
concentration involves a combination of active bicarbonate
transporters (Zoccola et al., 2015), endocytosis of Ca2+ rich
vesicles (Neder et al., 2019; Ganot et al., 2020), and passive
paracellular transports (Tambutte et al., 2011). This results in
elevation of the pH and aragonite saturation state (�arag) in
the calcifying fluid with respect to the surrounding seawater
(Venn et al., 2011; Comeau et al., 2017; Sevilgen et al.,
2019). Our data indicate that during the day, there is an
over-representation of vesicle-related terms (Figure 2G). In
addition, most bicarbonate transporters, including SLC4γ that
have been localized to the calicoblastic cells (Zoccola et al.,
2015), are up-regulated in the day. The combination of the
above might indicate that during the day, a greater flux of
Ca2+ and carbonate ions are transported to the calcifying fluid,
promoting the induction of mineral deposition. Furthermore,
the enzyme carbonic anhydrase 2 (STPCA2), which catalyzes
the hydration of carbon dioxide into bicarbonate and was found
in the skeleton (Drake et al., 2013) is also up-regulated in the
daytime. Therefore, the �arag elevation driven by greater flux
of ions may potentially enhance the rate of skeleton deposition
during daylight hours.

CONCLUSION

Reef-building corals exhibit complex rhythmic responses to
diurnal, lunar, and annual changes. The diel cycle is highly
influenced by light due to the presence of photosynthetic
endosymbionts that have a profound physiochemical influence
on the intracellular environment. The present data demonstrate
the daily dynamics of several important processes of coral
biology such as circadian, photosynthesis, metabolism, cellular
arrangement, and calcification.

Based on our findings, we propose the following diel
mechanism which includes calcification, cellular arrangement,
metabolism, and energy budget (Figure 5). First, the production
of glucose and lipid bodies during the day might be related
to photosynthesis together with predation throughout the day.
These products are later utilized by the host for different
cellular processes, such as cellular development, transcription
and translation, respiration, ciliary movement, and calcification.
In addition, ROS related genes react with the free oxygen species
to reduce oxidative damages. During the nighttime, when the
host and the symbionts are respiring, and there is no oxygen
producing photosynthesis, cilia movement might also aid with

reducing the hypoxic conditions, and antioxidants deal with ROS
accumulated in the tissue during daytime.

In terms of light enhanced calcification, our results support
the idea of tissue extension during nighttime, that may elevate
tissue from the skeleton, increasing the calcifying space allowing
a new organic framework template to be formed. During the
daytime, there is a greater flux of ions to the sites of calcification
and up-regulation of ion binding domains and some CARPs. The
combination of the above leads to an enhanced calcification rate
and the formation of needle-shaped aragonite fibers that grow
rapidly and fill the space between the extended CoC’s gaps.
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