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Fenneropenaeus chinensis is a commercially cultured shrimp in China. F. chinensis
adults show significant sexual dimorphism, with larger females than males. However, sex
determination (SD) of F. chinensis has not yet been elucidated. Clarification of the sex-
determining system of F. chinensis could enrich our knowledge of the sex differentiation
mechanism in crustaceans and facilitate the study of sex-controlling technologies.
Here, we studied the sex-determining system of F. chinensis using the fixation index
(FST) between the sexes to detect the genetic differentiation in resequencing data of
multiple males and females. We located the candidate sex chromosome in the genome
of F. chinensis and concluded the female heterogametic (ZW) SD system. We also
assembled female-specific sequences, which could be used as molecular markers
to identify the sex of F. chinensis. However, the differentiation of the F. chinensis Z
and W chromosome is limited. RNA-seq data detected many genes with male-biased
expression in the Z-specific region, which possibly could further intensify the divergency
between the Z and W chromosomes.
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INTRODUCTION

The evolution of chromosomes carrying the sex determination (SD) factor is an interesting form of
genomic evolution (Charlesworth and Charlesworth, 2000; Bachtrog et al., 2011). In some cases,
selection for close linkage may promote suppressed recombination in the SD region, because
the region includes a sexually antagonistic polymorphism (Bull, 1985; Bergero and Charlesworth,
2009; Wright et al., 2016). Once recombination becomes suppressed, sex-specific evolutionary
pressures act on the evolving sex chromosomes (Lahn and Page, 1997; Moghadam et al., 2012),
leading to adaptive and non-adaptive processes that produce distinct differences between the X
and Y (or Z and W) chromosomes (Muller, 1918; Bergero and Charlesworth, 2009; Bachtrog,
2013; Li et al., 2021). However, in many species, loss of recombination near the SD locus does not
spread across the sex chromosomes, which may remain heteromorphic, and display only limited
differentiation (Telgmann-Rauber et al., 2007; Spigler et al., 2008; Tennessen et al., 2016; Pucholt
et al., 2017) (Figure 1A).
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FIGURE 1 | Background for the sex chromosome analysis of F. chinensis. (A) Model of the early-stage sex chromosome. (B) F. chinensis (male on the left and
female on the right).

Fenneropenaeus chinensis is a commercially cultured shrimp
in China, whose adults are sexually dimorphic. Female shrimps
tend to be blue, whereas the males are yellow; the adult
females are larger and heavier than the adult males (Wang
et al., 2019) (Figure 1B). Studies on the sex of F. chinensis
are valuable. In Crustacea, both XX/XY and ZZ/ZW system
existed (Shi et al., 2018; Fang et al., 2020). The sex-determining
region of a predominant aquaculture shrimp species, the Pacific
white shrimp (Litopenaeus vannamei), was mapped by the
integrating linkage and association analyses (Yu et al., 2017).
The results supported female heterogamety. The sex-determining
regions of two other Penaeus shrimps, Penaeus monodon and
Penaeus japonicus, have been mapped using high-density linkage
analysis (Li et al., 2003; Robinson et al., 2014), but not fine-
mapped. However, even some closely related species have
different SD loci (Phillip et al., 2001; Miura, 2007; Mank and
Avise, 2009; Pucholt et al., 2017). For F. chinensis, several sex-
related markers have been identified by QTL mapping, but
no direct evidence of their connection with SD was found
(Meng et al., 2021). We therefore studied the SD mechanism of
F. chinensis to improve our knowledge of the sex differentiation
mechanism in crustaceans and facilitate the study of sex-
controlling technologies, and provide sex-linked markers to
identify the sexes at early developmental stages. The genome
of F. chinensis released this year (Wang et al., 2021) makes it
realizable to study the sex chromosome. In this study, we used
resequencing data to detect sex-linked variants, including female-
specific sequences, and preliminarily conclude that the species
had a female heterogametic (ZW) SD system.

MATERIALS AND METHODS

Sample Collection and Sequencing
We randomly selected 10 female and 11 male F. chinensis
“Huanghai No. 1” shrimps (age, 4 months) from the conservation
base of Haifeng Aquaculture Co., Ltd. (Weifang, Shandong
Province, China). The DNA samples of these 21 shrimps were
obtained from the muscle and sequenced individually using the
BGISEQ platform (BGI, Shenzhen, China), with paired ends
of 150 bp. We obtained 219.9 Gb of clean DNA data (female:
104.5 Gb, male: 115.4 Gb). In addition, one female and one male
were deeply sequenced, yielding 51.2 and 50.9 Gb clean data,
respectively, approximately 35x cover depth.

The genome sequencing data were mapped to the improved
reference genome of F. chinensis (Wang et al., 2021) using BWA
(v0.7.15) (Li and Durbin, 2010) with default parameters. The bam
files of 10 females and 11 males were merged into two pools by
sex, and further convert to pileup file by using SAMtools (v1.9)
(Li et al., 2009).

Analysis of Genetic Differentiation
Between the Sexes
To evaluate the genetic differentiation between the sexes across
the genome, we used PoPoolation2 software (Kofler et al.,
2011) to convert the pileup file into sync file with a minimum
base quality of 20. FST between the sexes and nucleotide
diversity values, π, were estimated for all site types, using
PoPoolation2 with the following set parameters: window size
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FIGURE 2 | Genomic differentiation of the two sexes of F. chinensis. (A) Genome-wide scan of the fixation index (FST) between the two sexes of F. chinensis. (B) FST

on pseudochromosome Chr7. (C) Nucleotide diversity (π) on pseudochromosome Chr7 of the female. Value of π is represented in logarithm.

of 10 kb, step size of 5 kb, minimum allele count of 4,
minimum coverage of 10, and maximum coverage of 200.
FST was calculated using the merged data of all females and
males, whereas π values were estimated using the two deep-
sequenced individuals.

Information on mapping depth along the genome was
extracted with bedtools (v2.25.0) (Quinlan and Hall, 2010) in 1 kb
windows. The depth was normalized by the total read count. The
ratio of the depth of male to female was log2-transformed.

Female-Specific Sequence Assembly
Besides the 21 “Huanghai No. 1” F. chinensis shrimps, we also
sequenced 15 female and six male F. chinensis shrimps captured
from the wild, again using the BGISEQ platform, with paired ends
of 150 bp. In total, we obtained 436.3 Gb of clean resequencing
data (female: 251.9 Gb, male: 184.4).

We expected a female heterogametic, or ZX system. Candidate
W-linked sequences can be detected because they are female-
specific. Therefore, we attempted to assemble female-specific
sequences according to the method used for the snakehead
(Channa argus) (Ou et al., 2017), with some adjustments.
Briefly, the pooled sequencing data from the females were

mapped to the reference genome, which was constructed
from a male. The unmapped reads were assembled using
SOAPdenovo (Luo et al., 2012), with Kmer = 31, and then
aligned back to the assembled sequence to assess the accuracy
of the assembly. Homozygous SNPs could reflect assembly
error. The assembled contigs were mapped back to the
reference genome using NCBI BLAST (v2.2.29 +) (Johnson
et al., 2008) with evalue 1e-1. We deleted contigs for which
more than 60% of the fragments that could be mapped to
the reference genome. The resequencing data from both the
males and the females were mapped to the assembled female-
specific contigs. We retained only contigs with male mapping
depth = 0 and female mapping depth > 30, representing
W-linked candidates.

Validation With PCR Amplification
The candidate W-linked fragments based on the “Huanghai No.
1” strain and captured wild shrimps used for the female-specific
sequence assembly were validated by PCR amplification in
samples from four populations, containing two other population,
“Huanghai No. 3” and wild shrimp bred for a generation.
Primers were designed for the female-specific sequences with
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FIGURE 3 | Sequencing depth ratios of male to female in the 34–37 Mb interval of Chr7. The values of the read depth ratios are represented in logarithm.

the web tool Primer31 and synthesized by Sangon Biotech
(China). We designed a pair of reference primers that could
amplify the sequence in both sexes, but with a different sequence
length in the females.

Female and male DNA pools of the four populations were
used as PCR templates for the preliminary primer screening.
Primers that generated PCR product only in female pools were
selected for further validation in the individual samples of the
four populations (10 females and 10 males of “Huanghai No. 1,”
10 females and 10 males of “Huanghai No. 3,” 12 females and 12
males of wild shrimp bred for a generation, and 10 females and
six males of captured wild shrimp).

RNA-Seq Data Processing
The RNA-seq data have been described in a previous study (NCBI
BioProject accession number: PRJNA591354) (Wang et al., 2019).
Briefly, the gonad and muscle of female and male F. chinensis

1https://primer3.ut.ee/

shrimps at 5 months of age were collected, and total RNA was
extracted. We used three biological replicates for each tissue and
sex. The 12 libraries were sequenced using the Illumina NovaSeq
S4 platform, with paired ends of 150 bp. Clean reads from each
RNA-seq library were aligned to the reference genome using
HISAT (Kim et al., 2015). The gene expression of each sample
was analyzed with HTSEQ (Anders et al., 2015).

RESULTS

Resequencing Data Identified a
Candidate Sex-Linked Region
The fixation index (FST), which measures population
differentiation (Weir and Cockerham, 1984; Holsinger and
Weir, 2009), was calculated across the genome. Increased FST
was observed on chromosome 7 (Chr7), spanning a region
of approximately 3 Mb, from 34 to 37 Mb (Figures 2A,B).
In the female, nucleotide diversity (π) increased in the same
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FIGURE 4 | PCR amplification of the female-specific sequences in female and male shrimps. (A) Female-specific sequence amplification with mixed DNA templates.
Lanes 1–4 refer to females of “Huanghai No. 1,” “Huanghai No. 3,” wild shrimp bred for a generation, and captured wild shrimp, respectively; lanes 5–8 refer to male
shrimps in the same order. The three lines from top to bottom correspond to three contigs (contig 103, contig 1347, and contig 2731). (B–D) The three contigs were
amplified with individual DNA templates.

interval, as expected in a system of female heterogamety
(Figure 2C), whereas in males, it was similar to the values
in the rest of the genome. There are 60 genes located on this
3 Mb interval according to the genomic annotation file of
F. chinensis.

The mapping depth was estimated across Chr7. More reads
aligned to the 34–37 Mb interval in the males than in the females
(Supplementary Figure 1), and the ratio of male to female
coverage in some zones was close to 2:1 (Figure 3).

Assembly and Validation of
Female-Specific Sequences
Among the 1.68 billion clean reads in the female pool, 92.01%
mapped to the reference genome (Supplementary Table 1), and
134.12 million unmapped reads were also extracted and used
in the assembly. In total, we obtained 103.25 Mb of fragments,
consisting 435,866 contigs, with 70 contigs longer than 2,000 bp
(Supplementary Table 2). Alignment of the unmapped reads
showed a high coverage and low error rate (Supplementary

Table 3). After further screening, we obtained 363 candidate
female-specific contigs.

We selected 16 of the longest candidate female-specific contigs
for validation. Sequences from three contigs amplified only
with female DNA pools (Figure 4A). Further validation was
performed using individual DNA templates (Figures 4B–D).

RNA-Seq Data Detected Male-Biased
Expression Genes in the Interval on Chr7
To obtain information on the expression of genes on Chr7,
we re-analyzed the RNA-seq data reported in a previous study
(Wang et al., 2019) (Supplementary Figure 2). In muscle and
gonad tissue of 5-month-old animals, we detected abundant
differentially expressed genes (DEGs). In the muscle, 743
genes had male-biased expression and 2,291 genes had female-
biased expression (Supplementary Figure 3). In the gonad,
there were 1,713 male-biased and 1,352 female-biased genes
(Supplementary Figure 4). DEGs in the gonad showed a higher
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FIGURE 5 | Expression of DEGs in the 34–37 Mb interval of Chr7. (A) Expression in the muscle. (B) Expression in the gonad.

proportion (71.21%) of male-biased expression on Chr7 than
other chromosomes (Supplementary Table 4).

In the 34–37 Mb interval of Chr7, we found five genes with
male-biased and 11 with female-biased expression in the muscle
(Figure 5A and Supplementary Table 5). In the gonad, the
expression of all 13 DEGs in this region was male-biased; even
expression of the adjacent genes was male-biased (Figure 5B and
Supplementary Table 6).

DISCUSSION

The FST analysis located the sex-differentiation region on
Chr7, which was regarded as the candidate sex chromosome
in this study. In the differentiation region, the higher
read mapping depth in males than females suggests that
the sex-linked region is hemizygous in females, and the
increased π in the females indicating that the SD system
of F. chinensis is female heterogametic (female: ZW, male:
ZZ). However, this species does not have differentiated Z
and W chromosomes. Most fragments of the candidate “Z
chromosome” were indistinguishable from autosomal sequences,
according to the FST values and gene expression analyses.
The sex chromosome formation of this species may only stay
a primary stage.

During sex chromosome divergence, the suppression of
recombination leads to the accumulation of mutations, which
can result in highly heteromorphic sex chromosomes (Wright

et al., 2016). At the primary stage of the divergence, the loss
of recombination near the SD locus does not spread across the
sex chromosomes. The sex chromosomes display only limited
levels of differentiation. There are 60 genes annotated in the
interval of 34–37 Mb of Chr7; compared to the 790 genes
on Chr7 (46 Mb), and 25,026 genes on the whole genome
(1.45 Gb), the gene density is slightly higher, which might be
caused by the intergenic region loss in the initial process of
recombination suppression.

However, if recombination becomes suppressed in a large
genome region carrying a sex-determining locus, transcriptional
degeneration of the W (or Y) allele can occur quickly
(Bachtrog et al., 2008; Papadopulos et al., 2015). The enrichment
of sex-biased expression genes in such an SD region may
occur before loss of genes from the sex-limited chromosome
(Bergero and Charlesworth, 2011; Chibalina and Filatov, 2011;
Muyle et al., 2012; Pucholt et al., 2017). All the DEGs in
and near the candidate Z-linked region exhibited male-biased
expression, suggesting that many mutations causing male-biased
expression have accumulated. These DEGs may be related to
sex development and responsible for sexual dimorphism or
reproduction. However, further studies need to be performed to
analyze the functions of the DEGs.

The female-specific sequences detected in our analysis may
have been derived from a W chromosome-like region. However,
the Z and W regions appear to carry highly similar sequences,
and some of our primers were designed for both of them
(Supplementary Figure 5).
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