AUTHOR=Cesbron Guillaume , Melet Angélique , Almar Rafael , Lifermann Anne , Tullot Damien , Crosnier Laurence TITLE=Pan-European Satellite-Derived Coastal Bathymetry—Review, User Needs and Future Services JOURNAL=Frontiers in Marine Science VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2021.740830 DOI=10.3389/fmars.2021.740830 ISSN=2296-7745 ABSTRACT=
Low-lying coastal zones are home to around 10% of the world’s population and to many megacities. Coastal zones are largely vulnerable to the dynamics of natural and human-induced changes. Accurate large-scale measurements of key parameters, such as bathymetry, are needed to understand and predict coastal changes. However, nearly 50% of the world’s coastal waters remain unsurveyed and for a large number of coastal areas of interest, bathymetric information is unavailable or is often decades old. This lack of information is due to the high costs in time, money and safety involved in collecting these data using conventional echo sounder on ships or LiDAR on aircrafts. Europe is no exception, as European seas are not adequately surveyed according to the International Hydrographic Organisation. Bathymetry influences ocean waves and currents, thereby shaping sediment transport which may alter coastal morphology over time. This paper discusses state-of-the-art coastal bathymetry retrieval methods and data, user requirements and key drivers for many maritime sectors in Europe, including advances in Satellite-Derived Bathymetry (SDB). By leveraging satellite constellations, cloud services and by combining complementary methods, SDB appears as an effective emerging tool with the best compromise in time, coverage and investment to map coastal bathymetry and its temporal evolution.