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South Pacific albacore (Thunnus alalunga) is a highly migratory tuna species widely
distributed throughout 0◦–50◦S in the South Pacific Ocean. Climate-driven changes
in the oceanographic condition largely influence the albacore distribution, relative
abundance, and the consequent availability by the longline fisheries. In this study, we
examined the habitat preference and spatial distribution of south Pacific albacore using
a generalized additive model fitted to the longline fisheries data from the Western
and Central Pacific Fisheries Commission (WCPFC) and Inter-American Tropical Tuna
Commission (IATTC). Future projections of albacore distributions (2020, 2050, and
2080) were predicted by using an ensemble modeling approach produced from various
atmosphere-ocean general circulation models and anthropogenic emission scenarios
(i.e., RCP 4.5 and RCP 8.5) to reduce the uncertainty in the projected changes. The
dissolved oxygen concentration at 100 meters (DO100) and sea surface temperature
(SST) were found to have the most substantial effects on the potential albacore
distribution that the albacore preferred in the habitat with DO100 of 0.2–0.25 mmol
L−1 and SST of 13–22◦C. This study suggested that the northern boundary of albacore
preferred habitat is expected to shift southward by about 5◦ latitudes, and the relative
abundance is expected to gradually increase in the area south of 30◦S from 2020 to
2080 for both RCP scenarios, especially with a higher degree of change for the RCP 8.5.
Moreover, the albacore relative abundance is projected to decrease in the most exclusive
economic zones (EEZs) of countries and territories in the South Pacific Ocean by 2080.
These findings could lend important implications on the availability of tuna resources to
the fisheries and subsequent evaluation of tuna conservation and management under
climate change.

Keywords: south Pacific albacore, ensemble forecasting, climate change, species distribution model, longline
fisheries
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INTRODUCTION

Albacore tuna (Thunnus alalunga) is an important upper
tropic-level oceanic predator distributed globally between
approximately 50◦N and 45◦S, with relatively lower abundance
in equatorial areas. Albacore is also a commercially important
species that are considered as one of the best types of tuna
available for canning (Gloria et al., 1999) and contributed about
3.36% to the annual global tuna catch of 7.3 million tons in
2019 (FAO, 2021). One of the largest fisheries for albacore is in
the South Pacific Ocean where annual harvest contributed about
60% of the catch in the Pacific. In the South Pacific Ocean, most
of the albacore was catched by longline fisheries (>90%), the
distant water longline fishing vessels from Taiwan, China, and
the domestic longline fleets of various Pacific Island countries
and territories (PICTs) (Brouwer et al., 2018), that total catch has
fluctuated around 80,000 tons in recent 10 years. In addition, the
troll fishery mainly captures juvenile albacores in New Zealand’s
coastal waters and the central Pacific Ocean since the mid-1980s
with the amount of total catch fluctuated around 2,000 tons.

Understanding and predicting responses to global climate
change are important issues for the scientific community to
assist in designing effective fishery management to ensure
the sustainability of the south Pacific albacore stock given
that albacore fisheries provide significant economic, social,
and cultural benefits to PICTs (Bell et al., 2013). A range of
environmental variables influence albacore spatial distribution.
Past studies have suggested that the mixed layer depth can
limit the vertical distribution of albacore tuna (Childers et al.,
2011; Williams et al., 2015). Langley and Hampton (2005)
indicated that temperature is a key factor for albacore horizontal
distribution and its movement tends to correspond to the
seasonal oscillation of the location of the 23–28◦C isotherm of
sea surface temperature. Brill (1994) suggested that the dissolved
oxygen (DO) is a good index of albacore habitat suitability
that the reduced ambient oxygen levels would prolong the time
required for albacore to recover from strenuous exercise. Salinity
and chlorophyll-a (CHL) concentration were also suggested to
be related to the albacore abundance and distribution through
affecting the availability of their prey (Xu et al., 2013; Novianto
and Susilo, 2016).

Climate change has been suggested to have a significant impact
on the marine ecosystems that influence species distribution
(e.g., striped marlin, Su et al., 2013; pelagic squid, Alabia et al.,
2016; anchovy, Silva et al., 2016; tunas, Erauskin-Extramiana
et al., 2019). Longer-term trends in the oceanography of the
Southern Hemisphere have also been detected (Ganachaud et al.,
2011), which may have influenced the large-scale distribution
of albacore. Lehodey et al. (2015) suggested that the northern
boundary of south Pacific albacore distribution may shift
southward by roughly 5◦ latitude in 2080 by using the Spatial
Ecosystem and Population Dynamics Model (SEAPODYM),
which was a coupled physical-biological interaction model
that describes spatial and temporal tuna population dynamics
(Lehodey et al., 2008). However, Senina et al. (2018) by using
the same model indicated that the albacore distribution may
remain stable in the western part of the southern Pacific Ocean

in 2100, but may expand in the eastern Pacific Ocean without
the hypothesized oxygen change. Erauskin-Extramiana et al.
(2019) used the generalized additive models (GAM; Hastie and
Tibshirani, 1990) that split the data into two components:
the probability of zero occurrence and nonzero observations
(i.e., delta-GAM approach, Maunder and Punt, 2004); and
indicated that the abundance is expected to decrease in temperate
areas and the southern boundary of the distribution may shift
southward in 2100.

Although previous studies have evaluated the future spatial
and temporal variations of the south Pacific albacore distribution
under climate change, there is no consensus on the predicted
results derived from various approaches. The uncertainty in
future climatic conditions has been considered as one of
the major sources of uncertainty in the species distribution
projections (Beaumont et al., 2008). In this study, we aim to use
an ensemble modeling approach (Hobday, 2010) that includes
the uncertainty of various atmosphere-ocean general circulation
models (AOGCMs) and anthropogenic emission scenarios of
the Intergovernmental Panel on Climate Change (IPCC) fifth
phase of the Coupled Model Intercomparison Project (CMIP5)
to explore the resulting range of projections on future albacore
distribution under climate change (Araújo and New, 2007; Alabia
et al., 2016). In this study, the “south” Pacific albacore stock
refers to the spatial coverage of available albacore data from
both the Western and Central Pacific Fisheries Commission
(WCPFC) and the Inter-American Tropical Tuna Commission
(IATTC) in the South Pacific Ocean. Firstly, we quantify the
relationship between albacore relative abundance and potential
environmental variables by using a GAM approach. Secondly, the
large-scale future distribution changes of albacore is investigated
by using ensemble forecasts based on the environmental data
projected by the IPCC-class AOGCMs under different degrees
of ocean warming. Finally, following the emerging objective of
using CPUE is an important proxy for the economic viability of
the south Pacific albacore fisheries (Pilling et al., 2016; WCPFC,
2018), we also evaluate the future change in albacore relative
abundance within the exclusive economic zones (EEZs) of the
countries and territories in the South Pacific Ocean. The findings
will be relevant for the south Pacific albacore stock conservation
and will contribute to understanding the potential impacts of
climate change on albacore fisheries. Our study was developed
and illustrated in the context of south Pacific albacore. However,
it should be broadly applicable to other pelagic species for which
similar data are available.

MATERIALS AND METHODS

Fishery Data
Catch and effort data grouped by year (1954–2016), quarter and
5◦ × 5◦ grid cell for the longline fisheries for the south Pacific
albacore was downloaded from the public domain dataset of
the WCPFC1 and IATTC.2 In addition, catch and effort data

1https://www.wcpfc.int/public-domain
2https://www.iattc.org/PublicDomainData/IATTC-Catch-by-species1.htm
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for the Taiwanese distant-water longline fishery for south Pacific
albacore (1964-2016) obtained from the Overseas Fisheries
Development Council of Taiwan3 was used as a substitution
of public domain dataset for the fleet as the best available
data. Albacore nominal catch-per-unit-effort (CPUE, number
of fish per 1,000 hooks) calculated as a proxy for the albacore
relative abundance (Erauskin-Extramiana et al., 2019) during
1997–2016 was used for the analyses because the satellite-based
environmental data are not available before 1997. The CPUE was
calculated using the formula below:

CPUEy,q,i,f =
Ny,q,i,f

Ey,q,i,f
(1)

where N is the number of fish caught; E is the number of hooks
(in thousands); y is year; q is quarter; i is the spatial location of
the 5◦× 5◦ grid cell; f is the flag of longline fleet.

The longline fisheries dataset by flags included in this study
were summarized in Supplementary Table 1. The data grooming
was applied to remove records outside of the temporal or spatial
span of the analysis, or with improbable records. Records with
missing logdates, 0 hook, more albacore caught than the number
of hooks, CPUEs larger than 2 times the interquartile range (i.e.,
outliers) and fleets that were only present in the dataset for a very
short period of time or the small proportion (< 1%) of catch, were
all excluded from the dataset (Tremblay-Boyer et al., 2015). In
total, there are 17,393 records left from 19,799 records (with 7%
removal) after the data cleaning.

Historical and Future Environmental Data
The environmental variables previously investigated for possible
effects on the distribution of south Pacific albacore (Briand
et al., 2011; Novianto and Susilo, 2016; Erauskin-Extramiana
et al., 2019) were included in this study: sea surface temperature
(SST, ◦C), sea surface salinity (SSS, PSU), mixed layer depth
(MLD, m), dissolved oxygen concentration under 100 m depth
(DO100, mmol L−1), and chlorophyll-a concentration (CHL, kg
L−1). Monthly averaged satellite data [SST, SSS, MLD, DO100,
and CHL] from 1997 to 2016 were used to characterize the
environmental preferences of south Pacific albacore by using
the GAM analysis (see section “Species Distribution Model”).
All satellite datasets were downloaded from NOAA coastwatch4

except for the DO100 which were computed using the Pelagic
Interactions Scheme for Carbon and Ecosystem Studies volume
2 (PISCES-v2) biogeochemical model and were downloaded
from the Copernicus-Marine environment monitoring service5

(Supplementary Table 2). All environmental datasets were
rescaled to quarterly 5◦× 5◦ spatial resolution based on the
coarsest scale of longline fisheries data.

Projections of environmental variables for the reference
period (1997-2016), current (2020), mid (2050), and late (2080)
period of the twenty-first century were extracted from the IPCC
CMIP5 with the Representative Concentration Pathways (RCP)
4.5 and 8.5 (van Vuuren et al., 2011) to generate historical and

3http://www.ofdc.org.tw/
4coastwatch.pfeg.noaa.gov/erddap/griddap/index.html
5http://marine.copernicus.eu/

future potential south Pacific albacore habitat predictions in the
GAM analysis. Environmental variables were downloaded from
the Earth System Grid Federation (ESGF)6. The RCP 4.5 and 8.5
are characterized by the stabilization without overshoot pathway
to 4.5 W m−2 (650 ppm CO2 eq) and by rising radiative forcing
pathway leading to 8.5 W m−2 (1370 ppm CO2 eq), respectively,
by 2100 (Riahi et al., 2011; Thomson et al., 2011). The two
scenarios were considered as the intermediate and pessimistic
scenarios in this study. The list of the five AOGCMs used in
this study was summarized in Table 1. The spatial resolution
of AOGCMs-predicted environmental data varied from 0.3 to
1◦× 1◦ to 1.5◦× 1◦ (latitude by longitude). In this study, the
predicted environmental data were interpolated to a 1◦ × 1◦
resolution for use in the forecasts of the spatial distribution of the
south Pacific albacore. Some variables that showed high variation
among the predictions of AOGCMs in the exploratory analysis,
identified by the coefficient of variation (CV) larger than 100%,
were not included in the further analysis (e.g., CHL, CV ranged
from 82 to 107%).

Species Distribution Model
A variety of approaches can be used to model the relationship
between fish relative abundance and environmental variables for
the species distribution models (SDMs) (e.g., MaxEnt, random
forests, boosted regression trees, etc.) (Pickens et al., 2021).
Because the focus of this paper for the ensemble analysis is to
reduce the uncertainty in predictions of ocean conditions from
AOGCMs rather than the uncertainty in model structure among
various SDMs, therefore we only considered the most common
method for predicting the relative abundance of tuna species,
such as generalized linear modeling approach (Arrizabalaga
et al., 2015; Lan et al., 2018; Erauskin-Extramiana et al., 2019).
SDM of the south Pacific albacore was constructed by modeling
fishery-dependent CPUEs in relation to the considered historical
environmental variables using the generalized additive models
(GAMs) (Hastie and Tibshirani, 1990; Wood, 2012, 2017). GAMs
were selected rather than the GLMs (generalized linear models)
because they can deal with multiple non-linear relationships
between the covariates and the response variable in a semi-
parametric manner (Hastie and Tibshirani, 1990). Apart from the
continuous environmental variables, the year, quarter, flag were
modeled as the categorical variables for the availability and/or
catchability (Arrizabalaga et al., 2015). The raw CPUE data from
the tuna longline fisheries includes many zeros. In this context,
it was appropriate to fit the delta approach which models the
probability of encounter of a fish population and the non-zero
CPUE when fish are encountered (Pennington, 1983, 1996; Lo
et al., 1992). Due to the low percentage of zero catches (<10%)
of the quarterly 5◦ × 5◦ aggregated dataset that implying zero
inflation was not an issue (Ichinokawa and Brodziak, 2010), we
only fit the catch rate model using the log-transformed CPUEs of
albacore, with a small constant (10% of the grand mean) added
to avoid log-transformation problems (Campbell et al., 1996;
Howell and Kobayashi, 2006; Mugo et al., 2010). GAMs were
built using the gam function of the “mgcv” package in R-language

6https://esgf-node.llnl.gov/projects/esgf-llnl/
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TABLE 1 | List of IPCC atmosphere-ocean general circulation models where the future environmental variables, including the sea surface temperature (SST, ◦C), sea
surface salinity (SSS, PSU), mixed layer depth (MLD, m), chlorophyll-a concentration (CHL, kg L−1), and dissolved oxygen concentration under 100 m depth (DO100,
mmol L−1), were obtained to generate potential habitat maps of south Pacific albacore under ocean warming scenarios (RCP 4.5 and RCP 8.5).

Institute Code Source resolution Included environmental variables

Canadian Earth System Model CanESM 1.5◦ × 1◦ SST, SSS, MLD, CHL*

Geophysical Fluid Dynamics Laboratory GFDL 0.3◦–1◦ × 1◦ SST, SSS, MLD, CHL*

Hadley Centre Global Environmental Model HadGEM 0.3◦–1◦ × 1◦ SST, SSS, CHL*

Institute Pierre Simon Laplace IPSL 1◦ × 1◦ SST, SSS, MLD, CHL*, DO100

Max Planck Institute for Meteorology MPI 1◦× 1◦ SST, SSS, CHL*, DO100

* were not included in the GAM analysis.

(Wood, 2012). First, we constructed a full model by including all
independent variables, it can be written as:

log (CPUE+ 1) ∼ µ+ Year + Quarter + Flag + s (SST)+

s (SSS)+ s (MLD)+ s (DO100) (2)

where µ is the intercept value; Year, Quarter, Flag are the
fixed effect for year, quarter, and catchability of longline-
fleet flag, respectively, and s(x) is a smoothing function for
the independent covariates. To avoid overfitting, degrees of
smoothness (“k” values) were set to less than or equal to 8
(Erauskin-Extramiana et al., 2019).

Variable Selection and Model Validation
Five candidate models were selected by the dredge function of
the “MuMIn” R-package (Barton, 2016). This function compares
all possible model structures with different combinations of
all independent variables from the full model, and ranks
those models according to their Akaike information criterion
(AIC) value and the goodness-of-fit measure (percent of
deviance explained) (Bruge et al., 2016; Erauskin-Extramiana
et al., 2019). Multicollinearity was tested by using the ggpairs
function of the “GGally” R-package if any highly correlated
environmental variables should be removed (Arrizabalaga et al.,
2015). A pairwise correlation that exceeds a threshold of 0.5–
0.7 is defined as the presence of high collinearity (Dormann
et al., 2013). The relative importance of predictor variables was
evaluated by the percentage relative changes in the explained
deviance and the AIC value of dropping each main effects factor
from the full GAM (Kwon et al., 2018). Model performance of
the top five candidate models was validated using k-fold cross-
validation method. We used k = 5, data were randomly split into
five subsets, using 80% of data to validate the remaining 20%
(Erauskin-Extramiana et al., 2019; Georgian et al., 2019). For each
model, the average R2 value derived from CPUE observations
and GAM predictions of training data and validation data,
respectively, was calculated as a measure for goodness-of-fit. We
defined the model of average R2 > 0.6 as a good prediction
performance. A large difference between the training and testing
R2 would indicate overfitting (Villarino et al., 2015; Erauskin-
Extramiana et al., 2019). The model with the lowest AIC and
highest average R2 value was selected as the best model for the
further analyses (Brewer et al., 2016).

Historical and Future Albacore
Distribution Projection
Historical environmental data projected by the AOGCMs were
used as inputs in the GAM to estimate the albacore distribution
in 1997–2016. The predicted relative abundance values were
then compared with the observed CPUE from the longline
fisheries in 1997–2016 to evaluate the model performance for
forecasting potential habitat. For estimating the future impacts
of climate change on albacore distribution, the ensemble GAM
projections (see Section “Ensemble Forecasting”) given the
environmental conditions in the current (2020), mid (2050)
and late (2080) periods of the twenty-first century derived
from the five AOGCMs were compared to the projections of
recent 5 years of 2012–2016 under two emission scenarios
(RCP 4.5 and RCP 8.5). In the future habitat distribution
projection (2020–2080) of each AOGCM, model projections
were performed with the fixed factor “Year” kept at the mid-
year between 1997 and 2016. Flag factor was set to a longline
fleet (e.g., TW) that simply represents a scaling parameter for
the catchability. For some AOGCMs (IPSL and HadGEM) that
certain environmental variables were unavailable (MLD and
DO100), the quarterly average value derived from other GCMs
was used as a substitute.

Ensemble Forecasting
This study used ensemble analysis to deal with the uncertainty
between climate models, it has been proved to outperform a
single model in past studies (Diniz-Filho et al., 2009; Crimmins
et al., 2013). We used two ensemble methods to measure the
distribution of the south Pacific albacore. First, the consensus
forecasting (Araújo et al., 2005; Araújo and New, 2007) was
made by calculating the central tendency (e.g., the mean or
median) of the GAM predictions based on the environmental
data projected by five AOGCMs under the RCP 4.5 and 8.5
scenarios, therefore reduce inter-model variances propagated
from the AOGCMs. The median prediction is deemed less
sensitive to outliers than the mean; therefore, in the present
study, consensus forecasting was employed to GAMs predictions
using the median value (Alabia et al., 2016). Furthermore,
the spatial distributions of the anomaly of relative abundance
of south Pacific albacore were calculated by subtracting the
predictions from the median ensemble GAM projections by
the current (2020), mid (2050), and late (2080) periods of the
twenty-first century from the recent average of 2012–2016. The
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second ensemble approach used in this study was probabilistic
forecasting. This involved computing the likelihood of the
presence of preferred albacore habitats from each AOGCM and
expressing this in the form of a probability map. The set of grid
cells that may be considered preferred habitats were defined as
those for which predicted relative abundance from the GAM is in
the top 15% (Su et al., 2013). Thus, the probability of preferred
habitats at each 1◦ × 1◦ cell was based on the percentage of
five AOGCMs for which the predicted relative abundance at
that location is considered preferred, called “agreement map”
(Porfirio et al., 2014).

Expected Changes in Exclusive
Economic Zones
The potential relative abundance change averaged per grid cell
for the south Pacific albacore under future climate change was
estimated within the exclusive economic zones (EEZs) for the
countries and territories in our study area. EEZ data (downloaded
fromhttp://www.marineregions.org) delimit the 200 nautical
miles boundary from each coast (Flanders Marine Institute,
2018). This study only analyzed those countries or territories with
more than 30% of the grid cells of fishery data inside the EEZ
to ensure it was representative of relative abundance (Erauskin-
Extramiana et al., 2019). For each RCP scenario, the change in
relative abundance was calculated by subtracting the predicted
relative abundance of median ensemble during the main fishing
season within each EEZ in 2020, 2050, and 2080 from that in the
recent 5 years of 2012-2016.

RESULTS

Variable Selection and Model Validation
Scatterplots between environmental variables suggested low
collinearity that the absolute values of correlation coefficients are
less than 0.5 (Supplementary Figure 1). Results for each of the
top five candidate models (model, predictor variables, effective
degrees of freedom, AIC, P-value, and deviance explained)
selected by dredge function were shown in Table 2. In all the
models, the smooth terms were highly significant (P < 0.001).
Overall, the full GAM had the lowest AIC value and the highest
deviance explained (62.1%). Variable rankings based on the
percentage relative changes in the explained deviance for the
three most influential explanatory variables were: (1) DO100
(22.3%); (2) Flag (21.5%); and (3) SST (6.5%) (Supplementary
Table 3). Cross-validation testing suggested that the full GAM
had slightly better performance, with the highest R2 values for
the training (0.62) and validation (0.61) datasets, compared to
other candidate models (ranged 0.59–0.61 for both training and
validation). A negligible difference in the R2 values indicated
the absence of overfitting. Furthermore, the residuals of the
full GAM conform well to the assumption of lognormality
based on the distribution of residuals and quantile-quantile
(QQ) plots (Supplementary Figure 2). Therefore, the full
GAM was selected as the best model for the future habitat
distribution prediction.

Generalized Additive Models-Derived
Habitat Characteristics for Albacore
Tuna
The response curves for environmental variables derived from
the full GAM were interpreted in terms of habitat suitability of
the south Pacific albacore. The fitted smooth curves show the
preferred SST range of 13–22◦C with a peak at around 15◦C and
SSS ranges of 34–35 PSU and > 36 PSU. Preferred MLD was
between 20 and 60 m and the DO100 between 0.2 and 0.25 mmol
L−1 (Figure 1). Approximate confidence interval envelopes were
also plotted for each function. Lower precision was observed
in the estimations for lower values of SST (<15◦C), SSS (<34
PSU), DO100 (<0.1 mmol L−1) and higher values of MLD
(>100 m) and DO100 (>0.25 mmol L−1) because of fewer data.
The estimates of the year, quarter, and flag factors from the GAM
were shown in Supplementary Figure 3. The year factor showed
a significant decline during 1997–2003 and increase during 2004–
2010. There is a significant seasonal variation in the quarter factor
with the higher estimates in quarters 2 and 3. The flag factor
showed higher estimates for CK, NC, US, and WS, but lower
estimates for FM, AU, JP, KR, and NZ.

Historical and Future Albacore Distribution Projection
The quarterly average distribution of albacore during 1997–2016
was shown in Figure 2. Model prediction has mimicked an
apparent north-south seasonal variation of albacore distribution.
The predicted spatial distributions in quarters 2–4 generally
match well with the CPUE of longline vessels, in which the
Pearson correlation coefficient (r) ranged from 0.62 to 0.71.
However, the prediction fitted relatively poorly in the first quarter
for the fishery data located north of 35◦S (r = 0.6). In addition,
annual aggregated CPUE values superimposed on the projected
distributions had the r values ranged from 0.41 to 0.68, which
indicated that the ensemble approach could generally yield
reliable predictions overtime except for 2002.

Annual time-series of the areal-averaged of the environmental
variables from 2020 to 2080 projected by the five AOGCMs
were shown in Supplementary Figure 4. The predicted levels
of environmental changes across the five AOGCMs exhibited
differences in magnitude, for example, the lowest SST predictions
by the IPSL and the highest by the HadGEM. Under the RCP 4.5,
the median value was expected to increase from 20.8 to 21.1◦C for
SST, decrease from 81.3 to 73.9 m for MLD, and decrease from
0.22 to 0.218 mmol L−1 for DO100, respectively, during 2020-
2080, while no trend was found in the SSS. Under the RCP 8.5,
the more pronounced changes in SST with 2◦C warming and in
MLD with 12 m shallowed were observed during 2020–2080.

The future ensemble projections of albacore distributions in
the main fishing season [i.e., quarter 3, which represents the
highest (36%) historical harvest] derived from the five AOGCMs
for the current (2020), mid (2050), and late (2080) periods of
the twenty-first century by each RCP scenario were illustrated in
Figure 3. The northern boundary of albacore preferred habitat
(defined as CPUE > 25 number/1,000 hooks) in the western
Pacific was projected to shift southward from 20◦S in 2020 to 22◦S
in 2050 and 25◦S in 2080 for the RCP 4.5. A similar pattern of
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TABLE 2 | Top five candidate models selected by the dredge function of the “MuMIn” R-package.

Model Predictor variable Df/Edf AIC P-value Dev. explained (%)

Year+Quarter+Flag+SST +SSS+MLD+DO100 Year 19 40,022 <0.001 62.1

Quarter 3 <0.001

Flag 20 <0.001

SST 8.86 <0.001

SSS 8.71 <0.001

MLD 2.83 <0.001

DO100 8.84 <0.001

Year+Quarter+Flag+SST +SSS+DO100 Year 19 40,155 <0.001 61.7

Quarter 3 <0.001

Flag 20 <0.001

SST 8.87 <0.001

SSS 7.88 <0.001

DO100 7.92 <0.001

Quarter+Flag+SST+SSS +MLD+DO100 Quarter 3 <0.001 61.5

Flag 20 <0.001

SST 8.87 40,259 <0.001

SSS 7.87 <0.001

MLD 2.86 <0.001

DO100 7.9 <0.001

Quarter+Flag+SST+SSS +DO100 Quarter 3 40,419 <0.001 61

Flag 20 <0.001

SST 8.87 <0.001

SSS 7.88 <0.001

DO100 7.92 <0.001

Year+Quarter+Flag+SST +MLD+DO100 Year 19 40,911 <0.001 59.9

Quarter 3 <0.001

Flag 20 <0.001

SST 8.88 <0.001

MLD 2.91 <0.001

DO100 7.86 <0.001

The model, predictor variable used, the degrees of freedom (Df), effective degrees of freedom (Edf), Akaike Information Criterion (AIC) value, and percentage of
deviance explained. The “best” model was selected based on the significance of predictor terms, the minimum value of AIC, and the maximum value of deviance
explained.

southward shifting was observed for the RCP 8.5, with a wider
spatial extent compared to the RCP 4.5. More specifically, the
northern boundary has shown a similar degree of shifting as RCP
4.5, while the southern boundary in the Tasman Sea has shifted
from 40◦S in 2020 to 43◦S in 2050 and 45◦S in 2080.

The spatial distributions of the anomaly of relative abundance
in quarter 3 by 2020, 2050, and 2080 under two RCP scenarios
were shown in Figure 4. The potential albacore habitats increased
in the latitudes of 30–40◦S but decreased in 20–30◦S of the
western Pacific in 2020, 2050, and 2080 for the RCP 4.5, that the
pattern of the gains and losses of potential habitat has become
more apparent overtime. A similar pattern was observed for the
RCP 8.5, however, the potential albacore habitats increased in the
higher latitudes south of 40 ◦S in 2080 in the western Pacific,
especially in the Tasman Sea, and in the eastern Pacific (east of
110 ◦W) during 2020–2080 compared to the RCP 4.5.

Ensemble agreement maps for future albacore distribution in
quarter 3 over five AOGCMs under two RCP scenarios were
shown in Figure 5. For the RCP 4.5, the core habitats in western
Pacific (red areas in Figure 5A) have shifted southward slightly

during 2020–2080. The habitat ranges (blue areas) also shifted
southward with an increase of 15% by 2050 and 16% by 2080
in the area south of 30◦S relative to 2020, respectively. A similar
southward displacement was also observed under the RCP 8.5
(Figure 5B), the latitudinal boundaries of core habitats showed
an obvious southward shift in the Tasman Sea from 25 to 32◦S
in 2020 to 27–36◦S in 2050 and to 32–39◦S in 2080, respectively,
and the habitat ranges in the area south of 30 ◦S increased 15% in
2050 and 21% in 2080.

Albacore Relative Abundance Changes
in Exclusive Economic Zones
The results of the projected changes in albacore relative
abundance during the main fishing season within the EEZs in
2020, 2050, and 2080 relative to 2012–2016 under the RCP 4.5
and 8.5 scenarios were shown in Figure 6. Under the RCP 4.5,
albacore relative abundance is projected to decrease in most EEZs
overtime (by about 25% in 2080), but was projected to slightly
increase in 2020 and then decreased after 2050 for the EEZs of
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FIGURE 1 | Response curves for the environmental variables, including the (A) sea surface temperature (SST, ◦C); (B) sea surface salinity (SSS, PSU); (C) mixed
layer depth (MLD, m), and (D) dissolved oxygen concentration under 100 m depth (DO100, mmol L−1), derived from the GAM model. The blue points represent the
partial residuals of observed CPUE data, and the gray polygons represent the 95% confidence interval. The hatch marks at the bottom are a descriptor of the
frequency of data points.

FIGURE 2 | Quarterly average catch-per-unit-effort (CPUE) (number/1,000 hooks) distributions (open circles) for the south Pacific albacore overlaid on the
median-ensemble relative abundance map (color contours) based on the GAM which was developed with data from 1997 to 2016.

Kiribati (KI), Tuvalu (TV), and Tokelau (TK) (Figure 6A). The
EEZ of New Caledonia (NC) has the greatest projected depletion
in relative abundance by 2080 (43%). The relative abundance is
projected to increase by 13 and 21% by 2080 in the EEZs of
New Zealand (NZ) and Norfolk Island (NK), respectively. Similar

patterns of relative abundance decline in most EEZs overtime
were found for the RCP 8.5 (Figure 6B). A more significant
negative and positive impact on the change of albacore relative
abundance in 2080 was found for the EEZs of NC and both NZ
and NK, respectively. The decline of relative abundance in 2080
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FIGURE 3 | The future ensemble projections of south Pacific albacore relative abundance (number/1,000 hooks) distributions in quarter 3 estimated from the five
atmosphere-ocean general circulation models (AOGCMs) for the current (2020), mid (2050), and late (2080) periods of the twenty-first century under the (A) RCP 4.5
and (B) RCP 8.5 (right panel) scenarios. The solid black lines denote the preferred habitat boundaries defined by relative abundance > 25 number/1,000 hooks.

FIGURE 4 | The spatial distributions of the anomaly of relative abundance for south Pacific albacore in quarter 3 calculated by subtracting the predictions of the
median ensemble GAM projections in 2020, 2050, and 2080 from the recent average of 2012–2016 under the (A) RCP 4.5 and (B) RCP 8.5 scenarios.
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FIGURE 5 | Ensemble agreement maps of the south Pacific albacore habitat predictions by five atmosphere-ocean general circulation models (AOGCMs) for the
current (2020), mid (2050), and late (2080) periods of the twenty-first century under the (A) RCP 4.5 and (B) RCP 8.5 (right panel) scenarios. Colors denote the
probabilities of habitat map based on the levels of agreement among five AOGCMs.

FIGURE 6 | Changes in albacore relative abundance (number/1,000 hooks) within the exclusive economic zones (EEZs) of the countries or territories in the south
Pacific Ocean for the current (2020), mid (2050), and late (2080) periods of the twenty-first century relative to 2012–2016 under the (A) RCP 4.5 and (B) RCP 8.5
scenarios. Only those countries or territories that had more than 30% of fishery data inside their EEZs were analyzed in this study. Countries or territories were
ordered per mean latitude of the EEZ. The vertical dashed lines denote the reference line of ± 5 in anomaly of relative abundance. Country codes not shown in
Supplementary Table 1 were illustrated below. EC, Galapagos Islands; TK, Tokelau; NU, Niue; PC, Pitcairn; NK, Norfolk Island.
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for the EEZ of Australia (AUS) was slightly improved in RCP 8.5
(–2%) compared to RCP 4.5 (–11%).

DISCUSSION

In this study, we developed an ensemble forecast framework
to evaluate the projected future potential distribution of south
Pacific albacore under the scenarios of intermediate and high
degrees of ocean warming (RCP 4.5 and RCP 8.5). The northern
boundary of albacore preferred habitat is expected to shift
southward by about 5◦ latitude and the relative abundance is
expected to gradually increase south of 30◦S from 2020 to 2080
for both RCP scenarios, especially with a higher degree of change
for the RCP 8.5. This study highlights that investigating the
future spatio-temporal patterns of the potential albacore habitats
could lend significant implications on the availability of tuna
resources to the fishery and subsequent evaluation of tuna fishery
management options under climate change.

The results of this study may be considered as reliable
predictions of the south Pacific albacore because the data used
has contained a substantial amount (>90%) of the albacore
catch and included all fleets covered a wide geographical range
of the convention areas of the WCPFC and IATTC. Erauskin-
Extramiana et al. (2019) only used the Japanese longline fishery
data, constrained in the areas of 20◦S northward and the waters
off the eastern coast of Australia, which may not be informative
to characterize the habitat preferences of albacore. Although the
raw CPUE variability among various flags has been addressed
in the GAM, the results with catchability adjustment can be
biased due to the time-variant changes in fishing processes
(e.g., gear saturation, fishing power, and fishing behavior). For
example, the targeting tactic by Taiwanese distant water longline
fishery has changed over time from only targeting albacore to
both tropical tuna (mainly bigeye and yellowfin) and albacore
(Chang et al., 2011). We recommend that the future albacore
distribution model should further consider the possible changes
in catchability to adjust the potential confounding effects on the
estimation of relative abundance based on the detailed set-by-set
longline data (including a variety of operational variables).

The south Pacific longline fisheries tend to exploit the larger
size of albacore (>80 cm fork length) while the juvenile albacore
is mainly targeted by the troll fishery near the coastal area of
New Zealand (Hare et al., 2020; Jordán et al., 2021; Vidal et al.,
2021). The projected results of this study may be considered as a
proxy for the young adult and adult population. This highlights
that using data from other types of fishing gear (i.e., troll fishery)
may provide additional information to better understand the
ontogenetic habitat preferences of the south Pacific albacore in
future analysis.

The GAM used in this study was shown to robustly fit
the data (deviance explained = 62%) because the residuals (in
log-space) for the lognormal error distribution appear normal.
Cross-validation testing also suggested that the GAM performed
well without overfitting. However, quarter 1, not represents the
main fishing season of albacore, had a relatively poor model
performance compared to other quarters. The albacore may
prefer a variety of habitat conditions in quarter 1 because some

spawning adults in the second phase of spawning season are
present in the tropical habitat of warmer temperature, but a
large portion returns to their favorable feeding zones driven
by the local cues in feeding habitat (Senina et al., 2019).
A further extension of the GAM would be to estimate a seasonally
variant habitat effect within the model, potentially improving the
uncertainty of seasonal predictions. However, this was outside the
scope of this study.

This study used a long-time series dataset (20 years of
longline catch and effort data) with a wide range of observations
for quantifying the relationships between the environmental
variables and albacore catch rate, which improves the reliability
of albacore response curve. Although all the environmental
variables included in this study showed statistically significant
impacts on albacore’s catch rate, the spatial distribution of
albacore may be influenced by other factors in addition to the
environmental variables used in the GAM. A range of observed
or satellite-based oceanographic and biological variables has
also been used to describe albacore-environment associations,
including meridional and zonal geostrophic currents, sea surface
height, thermal fronts, eddies, meso-zooplankton biomass over
0–100 m (Zainuddin et al., 2006; Lan et al., 2012; Xu et al., 2013;
Arrizabalaga et al., 2015). However, one of the major issues to
explore a broad range of oceanographic and biological variables
for evaluating the future distribution shift is the availability of
those variables from the future climate models. Furthermore,
with a highly uncertain future environment, the predictions from
AOGCMs could change in large amounts among each other
compared to the historical predictions (e.g., CHL in this study).
The above issues prevented further improvement for this study.

This study indicated that DO100 is the predominant
environmental predictor of the distribution of south Pacific
albacore because it contributed a substantial amount of
explanatory power (22%) to the GAM. The albacore habitat was
expected to decrease in the north of 15◦S under the influence
of a decrease in DO100 projected by the AOGCMs. The strong
association between DO concentration and albacore distribution
was confirmed by Lehodey et al. (2015) and Senina et al.
(2018) through the sensitivity analysis in SEAPODYM that the
future distribution and abundance of albacore tuna is likely to
significantly decrease and remain stable in the South Pacific
Ocean with and without a projected decrease in DO, respectively.
The empirical study also supports the sensitivity of DO that
albacore is not tolerant to low DO concentration compared to
other tunas (Brill, 1994). On the other hand, studies indicated that
albacore is highly sensitive to the temperature changes in both
their spawning and feeding environments (Williams et al., 2015;
Reglero et al., 2017), which is in agreement with the GAM analysis
of this study that SST is considered as the second most important
environmental factor (6%). Furthermore, the pronounced spatial
changes in potential future albacore habitats could be also
explained by the substantial changes in projected SST under
ocean warming scenarios. This emphasizes that accuracy and
precision in ensemble forecasts of albacore tuna distribution are
fundamentally linked to the performance of the AOGCMs in
being able to realistically describe future changes in DO and SST.

The southward distribution shift and changes in habitat
suitability of south Pacific albacore identified in this study

Frontiers in Marine Science | www.frontiersin.org 10 September 2021 | Volume 8 | Article 731950

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-731950 September 22, 2021 Time: 18:23 # 11

Chang et al. Albacore Distribution Ensemble Forecasting

are consistent with the previous studies (Lehodey et al.,
2015; Erauskin-Extramiana et al., 2019). However, the expected
southward shift found by the above studies did not agree well
with the study by Senina et al. (2018). This is due to the
temperature spawning function implemented in SEAPODYM
by Senina et al. (2018) tends to estimate a warmer favorable
spawning habitat, resulted in future projected spawning ground
similar to the present day. This indicated the importance of
understanding the biological mechanism associated with shifts
in albacore spawning ground under ocean warming. In addition,
the distribution of albacore could be strongly influenced by
the changes in growth, reproduction, and survival rate, and
therefore the relevant mechanisms should be investigated in
further analysis.

The uncertainty among the projections from the five
AOGCMs and the two ocean warming scenarios that represent
the plausible atmospheric forcings and emission pathways was
taken into account through the ensemble analysis in this study.
In addition to the uncertainty of climate projections, it would
be desirable to explore other species distribution modeling
approaches (e.g., Random forest, Maximum entropy, and
Boosted regression tree models) to reduce the risk that structural
inadequacies, inappropriate parameter specifications, or bias in
each approach may unduly influence the final outputs (Robert
et al., 2016; Georgian et al., 2019). Although ensemble forecasting
could emphasize the “signal” that one is interested in emerges
from the “noise” associated with individual model errors and
uncertainties, the overall ensemble accuracy remains dependent
on individual predictions (Araújo and New, 2007). Therefore,
better individual forecasts will provide better combined forecast.
Despite these issues, the ensemble forecasting approach could
substantially reduce the likelihood of making false management
decisions based on predictions that are far from the truth.

In this study, the albacore abundance is projected to decrease
in most EEZs by 2080 with the greatest depletion for New
Caledonia, but is projected to increase for New Zealand and
Norfolk Island. The projections by Senina et al. (2018) indicated
that the largest biomass increases occurred in the EEZs of Palau,
Papua New Guinea, Federated States of Micronesia and Nauru
at the end of the century under the simulation scenario with
projected changes in the DO concentration, but decreases in the
EEZs of Fiji, New Caledonia, and Vanuatu. Erauskin-Extramiana
et al. (2019) suggested that the south Pacific albacore abundance
would decrease in Kiribati, Tuvalu, Tokelau, Cook Islands, and
Australia, but an increase in New Zealand. The result of this
study generally supports the published evidence of the expected
changes of albacore abundance in EEZs of PICTs except for the
Palau, Federated States of Micronesia, and Nauru. The reason
why those EEZs was not identified is because the present study
only analyzed the countries or territories with more than 30%
of the grid cells of fishery data inside the EEZs. Although the
present study showed a decrease of abundance for Australia
compared to the identified increase by Erauskin-Extramiana et al.
(2019), Australia was found to have the smallest decrease of
abundance among all countries and territories that located in
the study area under the RCP 8.5. Currently, the conservation
management measure (CMM-2015-2) for south Pacific albacore

by the WCPFC has forbidden any increase in fishing vessels
south of 20◦S above 2005 levels (WCPFC, 2015). Under the
current fishing effort constraint by the CMM, the future harvest
catch of south Pacific albacore is expected to decrease because
the potential albacore habitats are likely to increase in the
latitudes of 30–40◦S but decreased in 20–30◦S of the western
Pacific. This suggests that the effectiveness of CMM to achieve
the fishery management goals could be impacted by the future
potential distribution shifting. We assert not only the need but
also the feasibility of incorporating approaches to address such
shifts directly in the analysis of stocks and the management
(e.g., management strategies evaluation, Punt et al., 2016) based
thereon, so that the stock can be managed in a proactive and
precautionary manner.
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