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Ricart et al. (2021, R21) explored the potential for seagrass meadows to act as a buffer of
coastal ocean acidification (OA). This work relied largely on sensor-based pH measurements
during 29 separate instrument deployments along the California coast, arguing that (1) seagrass
aerobic metabolism consistently enhances local pH, and that (2) this OA-amelioration can
persist for lengths of up to 21 days. While pH was often greater in seagrass meadows than in
adjacent unvegetated regions, we are concerned with the extent to which this is attributed to
seagrass ecosystem metabolism, and the interpretation that this OA-amelioration is sustained over
daily and tidal timescales. By incompletely considering alternative explanations for elevated pH,
irrespective of seagrass productivity, R21 offers insufficient support of OA-mitigation as a reliable
ecosystem service of seagrasses. We therefore see the authors’ claim that seagrass ecosystems
could be “leveraged as local management tools to mitigate the consequences of OA” as worthy of
critical inspection.

First, there is a fundamental issue in R21 with the mathematical treatment of 1pH (1pH =

pHseagrass – pHnonvegetated), stemming from the fact that pH is on a logarithmic scale. To illustrate
this issue, it is a simple fact that a 1pH of 0.1 involves a change in [H+] that is 10 times larger
when starting at pH = 7 than at pH=8. This effect is made abundantly clear by the linear
relationship between pH and 1pH (Figure 1A) present in the R21 dataset. As expected, pH also
varies with salinity, with slopes that vary across sites (Figure 1B) and seasons (Figure 5 in R21).
Such comparisons of 1pH across sites, seasons, etc., are mathematically inappropriate, when made
without also considering 1[H+] (Fassbender et al., 2021). We therefore find the interpretation of
1pH in R21 to be misleading because it does not consider the impact of initial pH on the size
of 1pH.

Next, while we agree that CO2 uptake by seagrasses undeniably increases pH, many other
concurrent processes affect the carbonate system, including mixing, aerobic and anaerobic
respiration (and coincident alkalinity consumption/production), and air-water CO2 exchange.
Of concern, then, is the attribution by R21 of all positive 1pH values strictly to seagrass
photosynthetic activity. We feel that it is only reasonable to attribute positive 1pH values to
seagrass photosynthetic activity as the dominant driver when excess dissolved oxygen (DO) is
observed, such that 1DO% is greater than 0 (1DO% = DO%seagrass – DO%non−vegetated). Tidal
mixing between fresh and marine endmembers will also cause changes in pH independent of
seagrass metabolism, as can be seen in the relationships between salinity and pH, with slopes that
vary across sites and seasons (Figure 1B). Changes in salinity as small as 0.1 are associated with
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FIGURE 1 | Linear correlation (p < 0.001) between pH and 1pH (A). Relationship between salinity and [H+], separated by region and site (B). Points in (B) are

colored by site, while the shape identifies between “Seagrass” (SG) and “Non-vegetated” (NV) areas. Counts of positive and negative 1[H+] hourly averages,

separated by region and by the threshold criteria described in the legend (C). Hourly climatology (D) of 1[H+], separated by the same criteria as (C), with point size

scaled to represent sample size.
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differences in pH on the same order as the mean 1pH in R21
(mean 1pH = 0.07 ± 0.008). It is therefore only appropriate to
ascribe non-zero 1pH to a “seagrass” driver when |1S| (|1S|
= |Sseagrass – Snonvegetated|) is low enough to suggest minimal
mixing effects, and we suggest a threshold of 0.1 for this dataset.
Considering both of these conditions, we have re-analyzed
the R21 dataset, (1) using 1[H+] rather than 1pH (for the
reason above), and (2) separating 1[H+] measurements by cases
where 1DO% and |1S| are above or below thresholds of 0%
and 0.1, respectively.

Consistent with R21, we find that hourly average 1[H+] was
indeed negative (i.e., positive 1pH) marginally more often than
chance alone would dictate, at ∼62% of the time across all sites
(1,552 out of 2,501 hourly averages: Figure 1C). Approximately
38% of these potential “OA amelioration” events (negative
1[H+]) coincided with both positive 1DO% and |1S| <0.1
in the northern sites (left blue bars, top), suggesting seagrass
ecosystemmetabolism as a plausible cause. This fraction was only
8% in the southern sites (left blue bars, bottom). Across all sites,
another ∼20% of these negative 1[H+] cases occurred when
1DO% was positive but 1S suggested a mixing effect on pH
(left purple bars). To summarize, approximately two thirds (67%)
of these 1[H+] <0 excursions across all sites occurred when
1DO% was negative or when |1S| was > 0.1 (left purple, red
and green bars in Figure 1C), supporting our claim that local pH
increases were most often caused by factors other than seagrass
photosynthetic CO2 uptake. A seasonal analysis (Northern sites
only) indicates that this feature is also persistent throughout the
year (not shown in Figure 1C), and is therefore unlikely to be
related to periods of seagrass senescence or growth.

That negative 1[H+] and 1DO% so often coincide is an
intriguing feature of the R21 dataset. High allochthonous and
autochthonous organic carbon subsidies in seagrass meadows
enhance aerobic respiration (decreasing 1DO%) but also
stimulate anaerobic respiratory pathways in the sediment like
nitrate and sulfate reduction that generate alkalinity and thereby
buffer aerobic respiratory CO2 inputs. As a result, DO and
pH variations are often decoupled in seagrass meadows (Van
Dam et al., 2019), especially when benthic alkalinity inputs are
apparent (Miller and Kelley, 2021). Net alkalinity production in
the sediments, when bottom waters are oxygenated, can occur
through denitrification or through the burial of reduced products
of sulfate and iron reduction (FeSx). While these and other
alkalinity sources are likely to affect seagrass ecosystem carbon
chemistry (Van Dam et al., 2019; Akhand et al., 2020), even in the
same field sites occupied in R21 (“MB”; Kindeberg et al., 2020),
such sediment-water alkalinity fluxes are only just now explicitly
being incorporated into “blue carbon” budgets (Reithmaier et al.,
2021). Still, this leaves only 509, or∼20%, of all measurements as
potentially related to a seagrass photosynthesis effect (Figure 1C,
left teal bars), far below the 65% claimed in R21. This is partially
balanced by the count of positive 1[H+] measurements where
1DO% is also below our threshold (n = 211, right red bars).
That daytime pH increases are roughly balanced by low nighttime
pH is in line with recent findings that seagrass net metabolism is
typically close to zero, when assessed over a full diel cycle (Perez
et al., 2018; Asmala et al., 2019; Van Dam et al., 2019; Akhand
et al., 2020; Berger et al., 2020).

Lastly, the claim that OA amelioration persists over-night
and “up to 21 days” should be revisited, for two main reasons.
First, all R21 sites are mixed semidiurnal, with low tides ∼0m
(Supplementary Figure 1, R21) and tidal ranges of 2-5m,
indicating complete replacement of the water column every tidal
cycle. Water residence time shapes buffering in tidal seagrasses
(Ribas-Ribas et al., 2011; Koweek et al., 2018), and in this case
prevents the products of daytime photosynthesis from evading
tidal flushing and persisting overnight. Such tidal impacts on
seagrass carbon cycling are consistent with a global meta-
analysis showing that tidal mixing drives energy budgets (hence
carbon budgets) out of balance in these systems (Van Dam
et al., 2021). Secondly, apparent daytime proton consumption
(-1[H+]) did often coincide with +1DO and |1S| < 0.1,
consistent with seagrass ecosystem photosynthesis (Figure 1D;
bottom left panel). However, -1[H+] also frequently coincided
with other scenarios (Figure 1D; top left and bottom right
panels), suggesting that -1[H+] was a general feature of the
dataset regardless of daytime seagrass productivity, as argued
by R21.

The authors conclude that seagrass-mitigation of low pH
should be used as a management tool combatting coastal
OA. Public audiences reading this will expect that support
of seagrass restoration/protection will result in co-beneficial
ecosystem services of OA-mitigation. However, the authors make
a fundamental error in their treatment of pH by calculating and
interpreting variations in 1pH. This is mathematically incorrect,
and our closer re-analysis of R21 data using a more appropriate
scale (1[H+]) leads us to question the key claims of R21
regarding OA-amelioration. Our re-analysis indicates that any
OA-amelioration effect due to seagrass aerobic metabolism was
much more limited in spatial and temporal scope than suggested
in R21. While seagrass restoration or protection is worthy in its
own right, it may therefore fall short of the pH-mitigation effect
promised in R21.
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