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Environmental compliance monitoring associated with the Port Miami dredging project
(2013–2015), designed to assess the impact of project-generated sediments on the
local coral community, fortuitously captured a thermal bleaching event and the first
reports of an emergent, highly contagious, white-plague-like coral disease outbreak in
the fall of 2014. The disease, now termed stony coral tissue loss disease (SCTLD), has
decimated reefs throughout Florida and is now spreading across the Caribbean. The
high prevalence of disease, the number of affected species, and the high mortality of
corals affected suggests SCTLD may be the most lethal coral disease ever recorded.
Previous analyses of the dredge monitoring data have reached mixed conclusions about
the relative impact of dredging on coral mortality and has often parsed out disease
susceptible individuals to isolate the impacts of dredging only. We use multi-variate
analyses, including time-based survival analyses, to examine the timing and impacts
of dredging, coral bleaching, and disease on local coral mortality. By examining the
status of corals monthly from the October 2013 to July 2015 observational period,
we found that coral mortality was not significantly affected by a coral’s proximity to
the dredge site or sediment burial. Instead, coral mortality was most strongly impacted
by disease and the emergence of SCTLD during the monitoring period. During the 2-
year monitoring period, 26.3% of the monitored corals died, but the only conditions
significantly affected by the dredge were partial burial and partial mortality. The strongest
link to mortality was due to disease, which impacted coral species differently depending
on their susceptibility to SCTLD. The focus on disturbances associated with dredging
created a circumstance where the greater impacts of this emergent disease were
downplayed, leading to a false narrative of the resulting mortality on the local coral
communities. The results of this study reveal that while local events such as a dredging
project do have quantifiable effects and can be harmful to corals, regional and global
threats that result in mass coral mortality such as thermal stress and disease represent
an existential threat to coral reefs and must be urgently addressed.

Keywords: bleaching, white plague disease, stony coral tissue loss disease, sedimentation, anthropogenic
stressors, climate change, ocean warming
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INTRODUCTION

In November of 2013, the Miami Harbor Phase III Deepening
Project began with the goal of making Port Miami the first
of four eastern seaboard locations in the United States to
allow access to larger post-Panamax class vessels. The Port
Miami project constituted the largest dredging project conducted
in the region for more than a decade (US Army Corps of
Engineers, 2021). Maintenance dredging activities began on
November 20, 2013, with cutter-head dredge rock removal
operations commencing on December 17, 2013. Dredging of the
offshore entrance channel was completed on March 26, 2015
(Dial Cordy and Associates Inc, 2015a,b). The existing entrance
channel to Port Miami was deepened from 12.8 to 15.2 m and
removed approximately five million cubic yards of limestone
rock and sand (US Army Corps of Engineers, 2021). The
Florida Department Environmental Protection (2012) mandated
compliance monitoring of surrounding coral communities and
was designed to quantify the impact of local dredging stress
associated with the Port Miami expansion project between
October 2013 and July 2015. In addition to estimating the impacts
of local dredging sediments on corals during the 21-month
monitoring period (Dial Cordy and Associates Inc, 2015a,b),
the monitoring program happened to captured two key events:
(1) a regional thermal anomaly in the summer of 2014 that
resulted in the worst coral bleaching episode recorded in Florida
since 1997–1998 (Kennedy, 2014; National Oceanic Atmospheric
Administration, 2014, 2015a; Gilliam et al., 2015, 2016; Manzello,
2015; Lewis et al., 2017; Walton et al., 2018; Neely et al., 2021a),
and (2) the appearance of a white plague-like disease outbreak at
the southernmost Port Miami far-field control monitoring sites in
September and October of 2014 (see Dial Cordy and Associates
Inc, 2015a,b; Precht et al., 2016, 2019; Precht, 2021). This was
the first reported case of a new emergent coral disease epizootic
now called stony coral tissue loss disease (SCTLD; Florida Coral
Disease Response Research, and Epidemiology Team, 2018).
This highly contagious, water-borne epizootic would eventually
spread across the entire Florida reef tract (Precht et al., 2016;
Aeby et al., 2017; Hayes et al., 2017; Lunz et al., 2017; Neely,
2018; Ruzicka, 2018; Walton et al., 2018; Dobbelaere et al., 2020;
Muller et al., 2020; Sharp et al., 2020; Williams et al., 2021) and
into the Bahamas and greater Caribbean (Alvarez-Filip et al.,
2019; Department of Parks and Natural Resources, USVI, 2019;
Martin, 2019; Talbot, 2019; Estrada-Saldívar et al., 2020; Dahlgren
et al., 2021; Heres et al., 2021; summarized in AGRRA, 2021),
ultimately resulting in this special Research Topic in Frontiers
in Marine Science dedicated to the etiology, epidemiology,
spread, impacts, and potential solutions (interventions) of the
SCTLD crisis1.

To date, at least three separate research groups (Miller et al.,
2016; Cunning et al., 2019; Gintert et al., 2019; Precht et al., 2019;
Precht, 2021) have analyzed the publicly available monitoring
data from the Port Miami dredging project, with the goal of
disentangling the impacts of dredging on the surrounding coral

1https://www.frontiersin.org/research-topics/16501/stony-coral-tissue-loss-
disease-in-the-caribbean

communities from other factors like coral thermal bleaching and
the outbreak of SCTLD. In all, some 643 corals were initially
tagged at 26 sites for repeated measures monitoring (see section
“Materials and Methods”). Of these, 162 (25.1%) of the corals
died, and 28 (4.4%) others disappeared during the 21-month Port
of Miami monitoring program. Removing the “lost” corals from
the data set resulted in a total mortality of 26.3% of the remaining
tagged colonies.

While the consensus view is that the monitored corals were
negatively impacted by a combination of local, regional, and
global stressors during the observational period (Dial Cordy and
Associates Inc, 2015a,b, 2017; Miller et al., 2016; Precht et al.,
2016, 2019; Cunning et al., 2019; Gintert et al., 2019; Precht,
2021), there continues to be considerable debate surrounding the
relative impacts of local sediments caused by the Port Miami
Dredge project (Miller et al., 2016; National Marine Fisheries
Service, 2016; Cunning et al., 2019) vs. mortality associated with
a regional thermal bleaching event in 2014 and the emergence
of the SCTLD outbreak in late 2014 and early 2015 across the
surveyed sites (Gintert et al., 2019; Precht et al., 2019). For
example, Cunning et al. (2019) focused mainly on the effects
of the dredge and only analyzed coral species that were not
observed with disease during monitoring. Cunning et al. (2019)
documented a significant effect of dredging on the partial burial
and partial mortality of corals in the dredge monitoring program
that were not infected by SCTLD. Miller et al. (2016) analyzed
a small subset of the sites (only four of the 26 sites) and
detected a far greater impact of mortality at two channel-side sites
adjacent to the dredge operations as compared to their paired, far-
field controls. Miller et al. (2016) attributed a twofold increase
in mortality to the exacerbation of disease-related mortality
resulting directly from sediment stress associated with dredge
operations. Gintert et al. (2019) focused mainly on the impacts
of SCTLD and concluded that 93.3% of mortality was attributed
to disease, whereas dredge related stress only attributed to 6.7%
of coral mortality.

In this study, rather than trying to exclude or isolate the
impacts of the onset of the SCTLD outbreak from dredging
impacts, we treat the SCTLD outbreak as a seminal event
and use multi-variate analyses of the full 615 tagged coral
dataset, including time-based survival analyses, to examine the
combined and relative impacts of dredging, thermally induced
coral bleaching, and SCTLD on coral mortality over the course of
the 21-month Port Miami coral monitoring project. In addition
to examining the effects of dredging on the burial, partial burial,
mortality, and partial mortality of individual coral colonies, we
focus on the direct impacts of bleaching and disease, examining
for the first time the species-specific effects of the emerging
SCTLD outbreak on coral mortality at its onset during the
Port Miami monitoring project. This is especially important
because the susceptibility (and survivorship) of corals to SCTLD
varies significantly by species with some species being highly
susceptible, while other species showed only moderate impacts,
while yet others showed little or no impacts during the 21-
month monitoring period (Gintert et al., 2019; Precht et al., 2019;
see also Precht et al., 2016). Lastly, we explore the correlations
between burial, bleaching, disease, and mortality across the
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nine most abundant coral species in the surveyed data set
and show that the SCTLD disease prevalence was strongly and
significantly correlated (R = 0.9, p = 0.0011) with coral mortality
during the monitoring study at both the channel-side and far-
field control sites.

MATERIALS AND METHODS

Study Area
This Port Miami monitoring study was undertaken in
southeastern Florida (Figure 1), off Miami-Dade County,
which lies at the northern extent of reef growth along the North
American continent (Precht and Miller, 2007). Cool winter
sea-surface temperatures (SST’s) have most often been cited as
the limiting factor for coral growth in this area (Vaughan, 1914,
1918; Ginsburg, 1956; Burns, 1985; Precht and Miller, 2007;
Toth et al., 2021). Historically, Fowey Rocks off southern Key
Biscayne (Cape Florida) was considered the northern extent
of true modern reef growth in southeast Florida and is the
northernmost reef of the Florida Reef Tract (Vaughan, 1914;
Smith, 1943; Marszalek et al., 1977; Jaap, 1984; Precht and
Miller, 2007; Toth et al., 2021). North of Fowey Rocks are a
series of submerged, shore-parallel, relict reef terraces. These
terraces are the remnants of a nearly continuous, 150-km-long,
barrier-reef system that extended northward from Miami to
Palm Beach County in the early to middle Holocene (Lighty
et al., 1978; Precht and Aronson, 2004; Stathakopoulos and Riegl,
2015; Toth et al., 2021). In Miami-Dade County, the two main
Holocene-age terraces are referred to as the inner and outer
reefs while closer to shore a nearshore hardbottom is present
and is locally known as the nearshore ridge complex (NRC). The
NRC is comprised of Pleistocene age, fossilized coquina beach
deposits of the Miami Limestone and Anatasia Formations (see
Walker, 2012).

Modern-day assemblages of stony corals, octocorals, and
sponges have colonized the surface of these relict reefs
and nearshore hardbottom habitats and those stony corals
are the focus of this study. These coral assemblages are
highly ephemeral and characterized by their small overall
size, low species richness and diversity, and low stony coral
cover (Goldberg, 1973; Marszalek, 1982; Jaap, 1984; Blair and
Flynn, 1989; Precht et al., 2016; Gilliam et al., 2018). Small-
scale latitudinal differences in species cover and composition
(diversity and richness) have also been noted in Miami-Dade
County, with an overall reduction in coral diversity and cover
from south to north (Jaap, 1984; Blair and Flynn, 1989;
Dial Cordy and Associates Inc, 2010, 2012).

Coral Condition Monitoring
Environmental compliance monitoring associated with the
Florida Department of Environmental Protection (FDEP)
mandated construction permit for the Port Miami Phase
III Deepening Project (FDEP Permit No. 0305721-001-BI)
required up to twice-weekly monitoring of 26 monitoring
stations established within Miami-Dade County when dredging
was occurring (Figure 1). This dataset represents one of

the largest and most complete benthic monitoring datasets
related to the environmental compliance of a dredging project
(see also Stoddart et al., 2019 for a similar monitoring
program performed in Western Australia). The primary
goal of the Port Miami monitoring program established by
the Florida Department Environmental Protection, 2012 was to
“detect natural variation in the resources and to assist in
determining the effects of the actual dredge operations on the
resources surrounding the project area.” A critical component of
the program was repeated measures monitoring of the 26 sites
to examine the causes of coral stress and mortality experienced
during construction and post-construction periods and, in the
case of the SCTLD epizootic, it fortuitously allowed us to evaluate
if the disease was initiated or exacerbated by the on-going
dredging activities.

Observational data used in this study was collected both north
and south of the entrance for the main shipping channel of
the Port Miami over a 21-month period between October 2013
through July 2015. Of the 26 permanent monitoring sites, 15
were located at dredge-adjacent channel-side locations and 11
at far-field controls. Of the 15 dredge-adjacent sites, seven were
in nearshore hardbottom habitats (code – HB), four in inner
reef habitats (code – R2), and four in outer reef habitats (code –
R3). Each monitoring station was established as part of a before-
and-after-impact experimental design in which dredge-adjacent
sites were paired with far-field control sites within the same
habitat and located on the same side (north or south) of the Port
Miami entrance channel (Florida Department Environmental
Protection, 2012; Figure 1). Each site was named to reflect
the reef type, direction, and whether it was a channel-side or
control site; for example, R2NC1 represents an inner reef habitat
(R2) control site located north of the dredge channel (NC)
with the end number representing the site number within that
habitat (Figure 1).

In all, 643 individually tagged corals were initially monitored,
in situ, for coral condition. These corals were scored for
burial (full or partial), bleaching, disease, and other metrics
of coral health (predation, competition, physical abrasion,
mucus production, polyp expansion, or contraction, etc.). Data
collection and methods are described in detail in Gintert et al.
(2019; see also Dial Cordy and Associates Inc, 2015a,b) and
summarized here. Monitoring began on October 23, 2013,
approximately 1 month before the initiation of dredging activity
on November 20th and concluded in July 2015, 1-month
following the cessation of all construction activities. In addition,
these same sites were re-surveyed in the late summer and fall of
2016, approximately 1-year after the project had been completed
to see if there were any residual or continuing impacts related
to the project (Dial Cordy and Associates Inc, 2017). These 2016
data were not included in this analysis but are briefly reviewed in
the Discussion. We intentionally avoided the 2016 one-off survey
so our data would not be confounded by other natural events that
transpired in the year after the cessation of dredging activities
(such as a second major coral bleaching event observed in the
summer of 2015; National Oceanic Atmospheric Administration,
2015b; Jones et al., 2021; Neely et al., 2021a), instead focusing
on causes of coral stress and mortality that occurred immediately
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FIGURE 1 | Location map of 26 monitoring sites (blue boxes) associated with the Port Miami Deepening Project. Site abbreviations are noted next to each box.
Brown horizontal line across the lower portion of the figure is the location of the outfall pipe trench for the Central Miami-Dade Wastewater Treatment Plant.

before, during, and after the Port Miami project when monitoring
was occurring on a regular basis.

At each of the 26 sites, three 20-m long permanent transects
were established (n = 78 transects in all) and oriented from
north to south. The transects were laid parallel to each other and
were spaced at least 5 m apart. Up to ten (10) stony corals were
tagged within one meter of each transect at each site (n = 643
tagged corals). In situ coral condition and stress indicators were
recorded for each of the tagged corals and corresponding still
photographs were taken in planar view during each survey by
trained scientific divers (see Gintert et al., 2019). In some cases,
additional oblique angle and close-up photographs were taken of
a specific stress indicator or an unknown condition for follow-up
desk-top analysis, and interpretation.

Coral surveys were triggered whenever the active dredging
operations occurred within 750 m of any of the channel-side sites
in any given week. Underwater surveys were not performed when
dive safety or weather conditions prevented access to the sites.
Each of the tagged corals were visited and had their conditions
recorded approximately 40 times each between October 2013
to July 2015, with some exceptions; site HBN1 (hardbottom
habitat, north of dredge channel and closest to shore) was buried
seasonally during winter and spring of both years and recorded
as “buried” during these seasonal events (Precht et al., 2021).
In addition, 28 tagged corals during the 2013–2015 observation

period became dislodged and lost. A combination of natural
bio-erosion, anchor damage, abandoned fishing gear, lobster
trap lines, and storm effects were the likely causes of the
displacement and loss of these tagged corals (Dial Cordy and
Associates Inc, 2017). Similar observations of “missing” corals
have been documented annually in the Southeast Florida Coral
Reef Monitoring Program (Gilliam, 2012). The 28 missing corals
were removed from our analysis leaving a total of 615 tagged
coral colonies in the final 2015 dataset. During the 21-month
monitoring program more than 25,000 in situ coral observations
were recorded and compared with ∼75,000 corresponding
still photographs for cross-verification and validation. Prior to
entering the validated field data into a project-specific database,
the field forms received a final desk-top review for completeness
and accuracy. This analysis was performed weekly as part of
the quality control and assurance program established for the
project (Gintert et al., 2019). During active dredging, weekly
reports were submitted to the agencies describing survey results
of coral condition at each site monitored and included statistical
comparisons between stations and their paired controls (Dial
Cordy and Associates Inc, 2015a,b, 2017).

Statistical Analysis
Based upon the required protocol, coral monitoring essentially
followed the path of the dredge; the condition of the corals at
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each of the 26 sites were recorded at least once a month resulting
in a pooled condition score for each of the 615 tagged corals over
the 21-month monitoring period; we simplified these conditions
into six different codes (dead, partially dead, bleached, diseased,
buried, or partially buried). Complete mortality represents “death
of entire colony; no live tissue remaining on the skeleton”
(Dial Cordy and Associates Inc, 2015a,b). Partial mortality at the
time of monitoring was described as “colony appears white with
no live polyps visible. Generally, occurs around the margin of
the colony” (Dial Cordy and Associates Inc, 2015a,b). For this
study, we were interested primarily in the code recorded for
white-plague disease (WPD), which was the term used for all
“white” diseases observed on non-acroporid corals in our data
set as the case description for SCTLD was not developed until
October 2018 (see Florida Coral Disease Response Research, and
Epidemiology Team, 2018). Occurrences of WPD-like symptoms
in the initial data were recorded as “diseased” in our data.
During monitoring WPD/SCTLD was described as “[W]hite
lines or bands of recently dead coral tissue affecting non-
acroporid corals” (Dial Cordy and Associates Inc, 2015a,b; see
also Gintert et al., 2019). Three different levels of bleaching
stress were recorded during monitoring (i.e., paling, partial-
bleaching, and bleaching). Because 89.0% of all tagged corals
showed some level of bleaching stress during the monitoring
program, for this study we only focused on corals that were
recorded as “bleaching”; these individuals were described as
having “[L]ive tissue with complete loss of color across the
entire colony” (Dial Cordy and Associates Inc, 2015a,b). Four
levels of sediment indicators were recorded in the original
monitoring data set (i.e., sediment, sediment accumulation,
partial burial, and burial). As with the bleaching codes, because
most corals showed some level of sediment exposure during
the monitoring program (both natural and dredge induced),
in this study only partial burial and full burial were used.
Partial burial was described as “portion(s) of the colony buried
by sediment” (Dial Cordy and Associates Inc, 2015a,b). Full
burial was recorded if the “entire colony buried by sediment”
(Dial Cordy and Associates Inc, 2015a,b).

Negative binomial generalized linear mixed effect models
(GLMs) were first used to examine the fixed effects of channel
(dredging channel vs. channel control), habitat (nearshore, inner
or outer reef) and direction (north vs. south) and random
effects of transect and species [glmer model: dependent variable
∼ Dredge × Habitat × Direction + (1| Transect + (1|
Species)] and run independently for each of the six dependent
variables (conditions; i.e., mortality, partial mortality, burial,
partial burial, disease, and bleaching; after Cunning et al.,
2019) in R using the “lme4” package (Bates et al., 2007) and
“bobyqa” optimizer (when necessary) to improve efficiency of
the models (Chung et al., 2013). In cases where the full glmer
model failed to converge, we report the simplified model in
our results. Type-2 ANOVA summaries using the “Car” package
(Fox and Weisberg, 2018) were used to calculate chi-squared
and p-values for the main effects and interactions. Estimated
marginal means (emmeans) post hoc comparisons were used to
further compare any significant main (i.e., fixed) effects in the
model using the “emmeans” package (Searle et al., 1980) and

then directly compared using the “contrast” function using the
“pairwise” method.

Survival analyses were also performed to take advantage
of the monthly census data on mortality patterns over the
21-month monitoring period using the R package “Survival”
(Therneau and Lumley, 2021). We first used Cox regression
model [coxph(Surv(months, census)∼Channel+Habitat+Dir,
data = df_all)] to determine if the main effects of Channel,
Habitat, and Direction had a significant impact on coral mortality
over the census period across all 615 tagged corals. Significance
was determined using ANOVA type 2 tests using the R package
“Car” (Fox and Weisberg, 2018) and the results of the Cox
proportional hazard ratio (HR) models were plotted using
ggforest, a function of the R package “survminer” (Kassambara
et al., 2021). Kaplan–Meier survival plots were then used to
visualize the significant main effects on coral survival over time.

Because some coral species are better represented in the
dataset than others, we then ran survival analyses focused on
the top nine species with the highest total abundances in the
survey; this subset included the species Pseudodiploria clivosa
(PCLI), Dichocoenia stokesi (DSTO), Pseudodiploria strigosa
(PSTR), Montastrea cavernosa (MCAV), Meandrina meandrites
(MMEA), Porites astreoides (PAST), Solenastrea bournoni
(SBOU), Stephanocoenia intercepta (SINT), and Siderastrea
siderea (SSID). This allowed us to incorporate species as a main
effect into our Cox regression models, Cox proportional HRs,
and Kaplan–Meier survivorship plots to examine the effect
of species, channel, habitat, and direction on coral mortality.
One of the top nine most abundant species – the coral species
SINT – did not experience any mortality during the monitoring
period and thus was removed from the survival analyses because
of convergence issues. The four-letter abbreviations for coral
species in our data set follow the acronym naming protocol in
AGRRA (2013) as those were the codes that were used during
the collection of field data during the Port Miami project.
Subsequently, however, AGRRA (2016) changed some codes that
match the latest taxonomic nomenclature for Caribbean corals
(see Budd et al., 2012).

Lastly, correlation analyses were conducted to test for
significant correlations between coral mortality and the other
main coral conditions (burial, bleaching, and disease) using
proportional data from the nine most abundant coral species
as the unit of replication. A correlation matrix was generated
using rcorr function from the R package “Hmisc” (Harrell,
2021) using the Pearson rank correlation coefficients for all
possible column pairs in the matrix (n = 9), and then
plotting the pairwise correlations using the R package “corrplot”
(Wei and Simko, 2021).

RESULTS

In all, 162 out of the 615 (26.3%) tagged corals monitored in this
study died during the October 2013 to July 2015 observational
period, and 240 (39.0%) of corals experienced partial mortality.
47 out of 615 (7.6%) of the tagged corals were fully buried at
least once, and 369 out of 615 (60.0%) of the tagged corals were
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partially buried at some point during the monitoring period. The
monitoring period also captured a thermal stress event during the
late summer of 2014 (Figure 2). Onset of thermally induced coral
bleaching occurred in July 2014 and peaked in September a few
weeks after SSTs reached their seasonal thermal maximum (see
Precht et al., 2019). Corals began to regain their zooxanthellae in
October 2014 as temperatures cooled. Most colonies showed little
or no outward signs of the mass bleaching event by December
2014. All reef habitats and all coral taxa were affected to some
degree, with 89.0% of all tagged colonies bleaching at some
point during this thermal anomaly. However, full or complete
bleaching was recorded on only 70 out of 615 (11.4%) of the
monitored corals. Only four of these tagged corals (<1%) died
as a direct result of bleaching-related stress.

The first recorded appearance of a disease affecting more than
(four out of 25) 5% of the corals at a particular site (R2SC2)
occurred in late September of 2014 (Gintert et al., 2019). On
that day three colonies of MMEA and one colony of DSTO
were observed with initial signs of the emerging disease, By the
end of the monitoring in July 2015, 112 out of 615 (18.2%)
of the tagged corals had confirmed SCTLD disease signs (Dial
Cordy and Associates Inc, 2015a,b). Figure 2 plots the number
of tagged corals scored as buried, bleached or diseased over
the course of the 21-month observational period. Cumulative
mortality across the 21-month period is also plotted. The total
number of buried corals peaked at 23 tagged corals in November
2013 after the passage of a series of early winter storms that may
have been further compounded by the initiation of mantinenece
dredge activities after November 20th, however, the total number
of buried corals remained below 10 corals throughout the
remainder of the monitoring program. The number of corals
with signs of coral bleaching peaked in September 2014 at 55
tagged corals and was associated with the warm-water event
recorded in the summer of 2014 (Gintert et al., 2019). Corals
with signs of WPD first appear in the Port Miami dataset
during the first week of baseline monitoring in October 2013
(Supplementary Figure 1) and correspond to observations of
minor, background levels of coral disease being distributed across
South Florida at this time (Peters and Fogarty, 2016). Many reefs
throughout the region show low (<3%) WPD prevalence year-
round (Borger, 2005; Gilliam et al., 2015; Aeby et al., 2017),
suggesting that background levels of WPD continually exist
within coral populations. Richardson and Aronson, 2002 noted
that in Florida colonies of DSTO often exhibited a continuous
background WPD prevalence of about 3%, however, the initial
disease signs observed in these corals did not progress or result
in full colony mortality. Corals that showed signs of WPD
early in the Port Miami monitoring study went into remission
when water conditions cooled during the winter of 2013–2014
resulting in only partial mortality of the colonies (Supplementary
Figure 1). However, may have been further corals with WPD-
like signs that were first noted in late-September of 2014 (initially
labeled as “unknown condition” on the field data sheets on
September 26, 2014; Supplementary Figure 2) appeared to be
highly contagious, with the disease spreading rapidly within and
between sites in the following weeks and months (Precht et al.,
2016; Gintert et al., 2019). This disease outbreak was identified

as distinct from WPD with many colonies dying rapidly (within
weeks to months) and resulted in the case definition of SCTLD
(Florida Coral Disease Response Research, and Epidemiology
Team, 2018; see also Neely et al., 2021a). The number of tagged
colonies with SCTLD disease signs rose in the fall of 2014 as the
disease spread locally from the southern control sites north to the
channel-side sites, fell slightly during the winter of 2015, and then
rose sharply again when the disease reached the northernmost
far-field control sites. The numbers of diseased colonies remained
high until the end of the survey period in July 2015. Full coral
mortality remained low over the first year of dredging and
then rose sharply following the thermal bleaching event and
initial outbreak of SCTLD in the fall of 2014 (see Figure 2 and
Supplementary Figure 3).

Summary statistics for the six independent negative binomial
GLMs examining the main (fixed) effects of dredge (channel),
habitat, and direction on coral mortality, partial mortality, burial,
partial burial, disease, and bleaching are summarized in Table 1.
No significant effects of dredge (χ2 = 0.940, df = 1, and
p = 0.332), habitat (χ2 = 3.616, df = 2, and p = 0.164), or
direction (χ2 = 2.083, df = 1, and p = 0.149) were detected
for full coral mortality. In our analysis, corals near the dredge
channel had a 16.7% chance of experiencing full mortality while
corals at control sites had a 14.4%. For full coral mortality,
negative binomial GLM to converge the random effect of site
was dropped. Dredging did have a significant impact on coral
partial mortality (χ2 = 29.696, df = 1, and p < 0.001) and a
two-way habitat:direction interaction (χ2 = 10.752, df = 2, and
p < 0.005) and a three-way dredge:habitat:direction interaction
(χ2 = 6.826, df = 2, and p < 0.05). Post hoc analyses show
that corals near the dredge channel had a 59.2% probability of
experiencing partial mortality vs. a 18% chance at the control
sites (Figure 3). This increased risk did not result in a significant
difference in full mortality.

Full or partial burial is a possible consequence of dredging,
and we did detect a significant effect of dredging on partial burial
(χ2 = 90.913, df = 1, and p < 0.001) where channel-side corals
had an 88.4% chance of partial burial compared to corals at
control sites which had a 22.8% chance (Figure 3). For the partial
burial negative binomial GLM to converge, site was dropped
as a random effect and the fixed effects were additive instead
of interactive. However, dredge effects were not significant for
full burial (χ2 = 0.021, df = 1, and p = 0.884); instead, only
direction had a significant impact on full burial (χ2 = 9.990,
df = 1, and p < 0.005), with burial north of the channel being
more likely. For the burial negative binomial GLM to converge,
transect was dropped as a random effect and the fixed effects were
additive instead of interactive. No significant effects of dredge,
direction, or habitat were detected for complete thermal coral
bleaching (Table 1). For the bleaching negative binomial GLM
to converge, the fixed effects were additive instead of interactive.
For SCTLD, only direction was significant (χ2 = 7.393, df = 1, and
p < 0.01) with corals from the sites south of the channel having
a 11.2% chance of contracting vs. a 5.5% chance in corals located
north of the channel. For the disease negative binomial GLM to
converge, site was dropped as a random effect and habitat was
dropped as a fixed effect. This was the result of several factors

Frontiers in Marine Science | www.frontiersin.org 6 September 2021 | Volume 8 | Article 723998

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-723998 September 16, 2021 Time: 15:19 # 7

Spadafore et al. Onset of SCTLD in Florida

FIGURE 2 | Coral conditions (buried, bleaching, disease, and mortality) plotted by month over the 21-month monitoring period. The timing of dredging, the 2014
summer hyperthermal event and the onset of the Stony Coral Tissue Loss Disease (SCLTD) outbreak starting in September 2014 are also shown. Number of corals
with each of the conditions is labeled for each month. Cumulative mortality is plotted in red.

TABLE 1 | Summary of the Type 2 ANOVA results [chi-square(χ2), degree of freedom (df), and p-value (p)] from the negative binomial generalized linear mixed effect
models for each of the six coral conditions (mortality, partial mortality, burial, partial burial, bleaching, and disease).

Mortality Partial mortality Burial Partial burial Bleaching Disease

Dredge χ2 = 0.940, df = 1,
p = 0.332

χ 2 = 29.696, df = 1,
p < 0.001

χ2 = 0.021, df = 1,
p = 0.884

χ 2 = 90.913, df = 1,
p < 0.001

χ2 = 0.001, df = 1,
p = 0.982

χ2 = 0.498, df = 1,
p = 0.481

Habitat χ2 = 3.616, df = 2,
p = 0.164

χ2 = 4.386, df = 2,
p = 0.112

χ2 = 3.383, df = 2,
p = 0.184

χ2 = 1.714, df = 2,
p = 0.424

χ2 = 4.452, df = 2,
p = 0.108

Direction χ2 = 2.083, df = 1,
p = 0.149

χ2 = 0.373, df = 1,
p = 0.541

χ 2 = 9.990, df = 1,
p < 0.005

χ2 = 2.313, df = 1,
p = 0.128

χ2 = 0.034, df = 1,
p = 0.854

χ 2 = 7.393, df = 1,
p < 0.01

Dredge:Habitat χ2 = 1.580, df = 2,
p = 0.149

χ2 = 5.838, df = 2,
p = 0.054

Dredge:Direction χ2 = 0.281, df = 1,
p = 0.596

χ2 = 0.166, df = 1,
p = 0.683

χ2 = 0.766, df = 1,
p = 0.382

Habitat:Direction χ2 = 0.277, df = 2,
p = 0.871

χ 2 = 10.752, df = 2,
p < 0.005

Dredge:Habitat:
Direction

χ2 = 0.176, df = 2,
p = 0.916

χ 2 = 6.826, df = 2,
p < 0.05

Bold text represents a significant p value for the main effects (Dredge, Habitat, and Direction) and their interactions. Empty boxes represent fixed effect and/or interactive
effects that were not included in model due to convergence issues.

and the causes responsible for this difference are elucidated in
the discussion.

Survivorship analyses were then performed to examine the
relationship between coral survival over time across the main
effects of dredge, habitat, and direction for the full dataset
as well as species-specific effects for the eight most abundant

coral species in the dataset (as previously noted SINT did not
experience any mortality during the monitoring period and was
removed from this analysis lowering the total coral species from
nine to eight). For the full 615 coral dataset, Cox regression
models identified a significant effect of habitat (χ2 = 25.803,
df = 2, and p < 0.0001) and direction (χ2 = 37.287, df = 1, and
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FIGURE 3 | Estimated marginal means (emmeans) post-hoc analysis comparing the probability of (A) mortality, (B) partial mortality, (C) burial, (D) partial burial, (E)
bleaching, or (F) disease based on a coral’s location to the dredge (control vs. channel site) with the upper and lower 95% confidence intervals. Analyses are for the
full 615 tagged coral data set.

p < 0.0001), but not for location near the dredging channel on
coral survival over time. Cox proportional hazard model shows
that corals from the inner reef had significantly higher median
HRs (HR = 1.8) compared to their counterparts from hardbottom
habitats (Figure 4A) while corals from south of the dredge
channel had significantly higher median HR of 1.8 compared
to corals from north of the channel. Survival plots comparing
the effects of habitat and direction (Figure 4B) show the sharp
decline in coral survival over time on the inner reef and between
the south vs. north channel sites.

To examine the impact of coral species on survival, we then
preformed survivorship analyses on the eight most abundant
coral species in the dataset PCLI, DSTO, PSTR, MCAV, MMEA,
PAST, SBOU, and SSID (note that SINT is abundant, but was
excluded because no mortality was observed in this species).
Survival analyses on the eight species dataset identified significant
effects of habitat (χ2 = 29.64, df = 2, and p < 0.0001) and species
(χ2 = 475.44, df = 7, and p < 0.0001), but not direction or
dredging. Cox proportional hazard model (Figure 5) shows that
corals from the inner and outer reef habitats had significantly
higher median HRs (HR = 2.0 and 2.0, each) compared to
their counterparts from hardbottom habitats (Figure 5). Median
HRs comparing species against SSID (which had 95% survival)
showed that MMEA (HR = 13.8), PSTO (HR = 10.2), PSTR
(HR = 10.1), PCLI (HR = 6.6), followed by SBOU (HR = 1.9)
all had significantly higher HRs than SSID, whereas the HRs

of MCAV and PAST did not differ significantly from the
HR of SSID. These dramatic differences in survival across
species and habitat are apparent in the survival plots after
the onset of SCTLD in the monitoring sites (Supplementary
Figure 4) and in the estimated survival probabilities across
species (Figure 6).

When examining the conditions (mortality, burial, bleaching,
and disease) that affected this subset of corals by species, there
was an uneven distribution of mortality across coral species
(Figure 7). To determine if any of the major coral conditions
(full burial, bleaching, or disease) were correlated with full coral
mortality, we performed pairwise correlation analyses on the
proportions of each state using the nine common corals species
as replicates; the resulting correlation matrix shows that disease
is strongly and significantly correlated with mortality (Pearson
R = 0.9, p = 0.0011) and negatively correlated with burial (R = –
0.89, p = 0.0014). The only other significant correlation was a
negative correlation (R = –0.68, p = 0.0459) between corals with
no observed condition and mortality (Figure 8).

The strong positive correlation between disease and mortality
across the nine species (Figure 9) shows that the highest mortality
was observed in the species that had the highest proportion of
diseased corals like MMEA, PSTR, and DSTO, which are highly
susceptible to SCTLD, whereas the highest survival was observed
in corals like SSID, PAST, and SINT, which did not contract
SCTLD at our sites during the 21-month study window.
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FIGURE 4 | Cox-proportional hazard model (A) comparing the effects of dredge (control vs. channel), habitat (hardbottom vs. inner reef and outer reef), and direction
(north vs. south) on coral survival across the 21-month observation period for the full 615 tagged coral dataset along with survival curves (B) plotting the significant
main effects of direction and habitat on coral survival. In the Cox-proportional hazard model (A) the median hazard ratios (HR) +/– the standard errors are shown
along with the p-values (far right) showing the pairwise comparisons between the reference level and the comparison (e.g., control as the reference for dredging
compared to channel).

DISCUSSION

Coral reefs are dynamic and open systems that experience a
wide range of anthropogenic stressors at the local, regional, and
global level. With coral reefs declining worldwide, knowing how
these stressors impact coral survival is key to their protection
and stewardship (Aronson and Precht, 2009, 2016). In this study,
we examined how dredging, bleaching, and the first reported
outbreak of SCTLD influence the survivorship of the corals
monitored during the 21-month Miami Dredge project where
162 out of 615 (26.3%) corals died. Our results clearly show
that dredging and the impacts of local sedimentation had an
impact on the partial mortality of individual coral colonies,
but importantly, did not have a significant impact on the total
coral mortality over the 21-month monitoring period. An almost

identical pattern was reported for a dredging project performed
off Miami-Dade County in the late 1970s (see Marszalek, 1982).
Our results documented a strong and significant link between
the outbreak of SCTLD that initiated in late September 2014,
to the widespread mortality of corals documented at the study
sites. The most highly susceptible species like MMEA, PSTR, and
DSTO showed the strongest effects and proportionally suffered
the greatest losses (see also Precht et al., 2016; Gintert et al., 2019).

Our analyses support the findings of Cunning et al. (2019)
who documented a significant effect of dredging on partial (but
not full) coral mortality in the Port Miami monitoring dataset. In
our analyses of the full 615 tagged coral dataset, we demonstrate
that corals near the dredging sites experience a 59.2% chance
of partial mortality whereas corals in the control sites have a
18.0% chance (Figure 3). Importantly, our results demonstrate
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FIGURE 5 | Cox-proportional hazard model comparing the effects of dredge (control vs. channel), habitat (hardbottom vs. inner reef and outer reef), direction (north
vs. south) and species across the top eight coral species in the dataset that experienced at least some mortality. In the Cox-proportional hazard model the median
hazard ratios (HR) +/– the standard errors are shown along with the p-values (far right) showing the pairwise comparisons between the reference level and the
comparison (e.g., control as the reference for dredging compared to channel).

that sediment burial did not result in a significant increase in
full coral mortality. Instead, the data indicate that the high coral
mortality observed in the study was strongly associated with the
SCTLD outbreak that was first observed during this monitoring
study in late September 2014 and has since spread throughout
Florida and into the greater Caribbean (AGRRA, 2021). Thus,
while we detected the same significant effects of dredging on the
partial mortality of corals, our findings stand in stark contrast to
the conclusions of Cunning et al. (2019) who attributed most of

the coral mortality to the impacts of the local dredging effects
rather than other regional and global factors such as bleaching
and disease. Cunning et al. (2019) estimated “that over half a
million corals were killed during the dredging period” directly
due to burial by dredge-related sediments. Unfortunately, this
conclusion by Cunning et al. (2019) is not supported by the
data and likely obscured the much larger impact of the SCTLD
outbreak that was documented during the monitoring period.
During the dredge monitoring period, only eight (17.0%) of the
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FIGURE 6 | Twenty One-month survivorship probabilities (+/– standard errors) across the nine most common coral species in the monitoring data. Nine species
include Stephanocoenia intercepta (SINT), Siderastrea siderea (SSID), Porites astreoides (PAST), Montastrea cavernosa (MCAV), Solenastrea bournoni (SBOU),
Pseudodiploria clivosa (PCLI), Dichocoenia stokesi (DSTO), Psuedodiploria strigosa (PSTR), Meandrina meandrites (MMEA), and are ranked by the highest to lowest
mean survival.

FIGURE 7 | Coral conditions plotted for each of the nine most abundant coral species – Solenastrea bournoni (SBOU), Siderastrea siderea (SSID), Porites astreoides
(PAST), Pseudodiploria clivosa (PCLI), Montastrea cavernosa (MCAV), Stephanocoenia intercepta (SINT), Dichocoenia stokesi (DSTO), Psuedodiploria strigosa
(PSTR), and Meandrina meandrites (MMEA). The x-axis plots the percent of individual corals with the condition and the number shows the actual number of
individuals with that condition.
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FIGURE 8 | Pairwise correlation plots comparing mortality, burial, disease,
bleaching, no conditions and partial mortality for the nine most abundant coral
species – Pseudodiploria clivosa (PCLI), Dichocoenia stokesi (DSTO),
Psuedodiploria strigosa (PSTR), Montastrea cavernosa (MCAV), Meandrina
meandrites (MMEA), Porites astreoides (PAST), Solenastrea bournoni (SBOU),
Stephanocoenia intercepta (SINT), and Siderastrea siderea (SSID). Pearson
correlation (r-value) is shown with significant values (p < 0.05) shown in bold
and colored by strength (blue for highest positive correlation and red for lowest
negative correlation). Non-significant correlations are crossed out in the matrix.

47 tagged corals that became fully buried were characterized as
having experienced complete mortality between October 2013
and July 2015. However, follow-up surveys performed in the
summer of 2016 found that two of these colonies were still alive
(Supplementary Figure 5). Using the photographic database to
evaluate the full sequence of events prior to their death, it is
likely that these corals died directly from exposure to long-term,
sediment burial. Because these corals were all found at Channel-
side locations we assume that there was a likely association with
dredge activities. However, because other sources of sediment are
locally present, including the regular discharge of sediment-laden
plumes from the Miami River through the Port Miami dredge
channel (Government Cut), it is impossible to disentangle the
proportion of sediment attributed only to the dredge project (see
Supplementary Figure 6).

Instead, our findings build on previous work by Gintert et al.
(2019) who demonstrated that “species-specific susceptibility
to disease is the determining factor in 93.3% of coral
mortality evaluated throughout Miami-Dade County, whereas
local dredging stress only accurately predicted coral mortality
levels 6.7% of the time.” Once we began to look at coral
mortality across different species (Figure 7), the data shows that
the strong species-specific effect relates to disease susceptibility
(Figure 9), where SCTLD susceptible species like MMEA, PSTR,
and DSTO had higher species mortality compared to SSID,
PAST, and SINT. Importantly, the pattern of survivorship of
corals by species (Figure 6) for the Port Miami monitoring
project, where SCTLD was first documented, essentially matches
the species-specific susceptibility patterns that have since been

recorded across Florida and the broader Caribbean (Precht
et al., 2016; Florida Coral Disease Response Research, and
Epidemiology Team, 2018; Neely, 2018; Alvarez-Filip et al.,
2019; Sharp et al., 2020; Dahlgren et al., 2021; Heres et al.,
2021; Warrender et al., 2021). The coral species with the
lowest chance of survival (MMEA, PSTR, and DSTO) are all
considered highly susceptible species (see Precht et al., 2016;
Florida Coral Disease Response Research, and Epidemiology
Team, 2018; Gintert et al., 2019). The next three corals with
slightly higher survivability (PCLI, SBOU, and MCAV) are corals
that were considered moderately susceptible to SCTLD in Miami-
Dade County (Gintert et al., 2019). The corals with the highest
survivorship (SSID, PAST, and SINT) are all species that were
initially found to have low susceptibility to SCTLD and appeared
to be unaffected by the initial SCTLD outbreak in Miami-Dade
County (Precht et al., 2016). However, SSID was found to show
signs of an emerging disease termed Siderastrea white-botch
syndrome in Miami-Dade County during the summer of 2015
(see Precht et al., 2018). There is presently some question as to
whether this disease is unique or related to SCTLD (see Florida
Coral Disease Response Research, and Epidemiology Team, 2018;
Heres et al., 2021). The significant positive relationship between
SCTLD and mortality was confirmed by a correlation plot of the
nine most common coral species in this study (Figure 8).

As previously mentioned, there was a significant negative
correlation (R = –0.68, p = 0.0459) between corals with no
observed condition(s) and mortality, this was because 32 corals
died with no recorded conditions between surveys. Even though
these corals were assumed to be killed by disease (see Gintert
et al., 2019), we were extremely conservative in our analysis,
and did not try to attribute a cause of mortality to corals that
died with no previous recorded condition. Elsewhere, the losses
of these corals were termed “sudden death.” Specifically, Miller
et al. (2016) stated “[T]he complete mortality of a colony between
sequential photos in the time series, presumably attributable to
disease, (though no active disease signs were observable) were
recorded in sequence. We included ‘sudden death’ in a category
of disease impact given consistency with described patterns
of mortality (i.e., complete colony mortality over a period of
weeks) associated with a regional outbreak of ‘White Plague’
[SCTLD] disease affecting most species of mounding corals
during this time frame (Precht et al., 2016), a lack of other
known disturbances such as storms, and the presumption that the
longer interval of images during which most of the ‘sudden death’
occurred (winter 2014–2015) was during a period when dredging
activities were distant according to permit requirements (hence
transient sediment burial unlikely).” Placing these corals with
“no observed condition” prior to dying in the disease category
(Supplementary Figure 7), as had been done in Precht et al.
(2016), Precht et al. (2019), and Gintert et al. (2019) would
have increased the impact of SCTLD in our analysis from 18.2
to 23.4%. Thus, while our analysis shows a significant effect of
disease on coral mortality, it likely is an under-estimate of the
actual effects of the SCTLD on coral communities in Miami-Dade
County and the Southeast Florida reef tract during the 21-month
study. For instance, Walton et al. (2018) stated “the 2014 to 2016
disease outbreak was arguably the most devastating disturbance
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FIGURE 9 | Proportion of diseased corals plotted against coral mortality using the proportions from the top most abundant corals as the unit of replication. R and
p-values from the correlation analyses are shown along with a fitted linear regression and the 95% confidence intervals. Coral mortality is colored from red (highest)
to blue (lowest). Nine species include: Pseudodiploria clivosa (PCLI), Dichocoenia stokesi (DSTO), Psuedodiploria strigosa (PSTR), Montastrea cavernosa (MCAV),
Meandrina meandrites (MMEA), Porites astreoides (PAST), Solenastrea bournoni (SBOU), Stephanocoenia intercepta (SINT), and Siderastrea siderea (SSID).

event yet documented in the Southeast Florida coral reef tract
(SEFCRT) and has altered ecosystem function to a point where
recovery is greatly challenged. Our data estimates that regionally
as much as 30% of coral colony density and 60% of live tissue area
was lost.”

The results of the Cox proportional hazard model (Figure 5)
shows that corals from the inner and outer reef habitats had
significantly higher median HRs (HR = 2.0 and 2.0, each)
compared to their counterparts from nearshore hardbottom
habitats. These nearshore hardbottom habitats were also some
of the last to become infected with SCTLD. This result mimics
the offshore to onshore patterns of SCTLD impacts recorded
in the Florida Keys (Rippe et al., 2019; Kolodziej et al., 2021;
Williams et al., 2021). It may be that these inshore sites may
be more adapted to various stressors such as fluctuating water
quality and marginal environmental conditions (Lirman and
Fong, 2007), possibly making them more resistant to disease
outbreaks (Rubin et al., 2021).

We believe that the repeated in situ observations made during
dredge monitoring also allowed us to isolate the initial signs of
the SCTLD disease outbreak and then follow the spread of the
disease through time and space. North/south differences in our
survival analysis support the pattern of the spread of the infection
described in Precht et al. (2016) where the disease moved from
the southern to northern monitoring sites with the direction
of the prevailing currents (Kourafalou and Kang, 2012; Muller
et al., 2020). While the disease did also move south through time,
albeit more slowly (see Precht et al., 2016), we were unable to
detect that spread in the Port Miami monitoring data because

the disease signs were first observed at the southernmost far-field
control monitoring site. In our analysis, we also found that corals
south of the active dredge channel were more likely to become
infected by SCTLD (Supplementary Figure 8) and therefore
have a lower chance of survival than corals NC (Figure 4B).
This is likely due to a combination of two main factors: (1) the
species composition of the tagged corals south of the dredge
channel contained more disease susceptible species than those
north of the channel (Gintert et al., 2019); and (2) because
the disease had only arrived at the northernmost sites toward
the end of the monitoring program, the disease had not yet
run its course through the coral community at these sites.
Interestingly, in a subsequent re-survey of these same tagged
corals performed approximately 1-year later, during the summer
of 2016 (Precht et al., 2019), it was noted that the SCTLD
outbreak was still active and 17 (4.3%) of the remaining 391
live tagged colonies still had progressive SCTLD lesions. This
was mostly observed on colonies of MCAV and SBOU, at sites
NC (Figure 4B). These subsequent observations confirm that
the northernmost monitoring sites were the last to become
infected with the disease. These findings support the idea that
this study likely captured the onset of the SCTLD outbreak in
southeast Florida (see also Gintert et al., 2019). In addition,
corals north of the channel were either buried or partially buried
by sediment more frequently than those to the south (again
due to the prevailing currents) resulting in greater levels of
partial mortality. Accordingly, overall coral survivorship patterns
should have shown lower levels of mortality in corals south
of the channel if dredging, not disease, were responsible for
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their demise during the monitoring period. As well, if sediment
stress increased disease susceptibility as proffered by Miller et al.
(2016), then coral disease should have been higher at channel-side
sites irrespective of species composition. However, the highest
mortality was observed in the species that had the highest
proportion of disease susceptible coral species like MMEA,
PSTR, and DSTO regardless of location, habitat, or proximity to
dredge operations.

Starting in the summer of 2015, other scientific teams
who were collecting data at their long-term monitoring sites
throughout Miami-Dade County, including at sites far from
the dredging project, also reported similar levels of devastation
caused by this disease (Gilliam et al., 2015, 2016, 2018;
Coastal Systems International Inc, 2016; Miami-Dade County
Department Environmental Resource Management, 2016; Hayes
et al., 2017; Walton et al., 2018; Sinigalliano et al., 2019). Thus,
the impact of SCTLD on the mortality in the Port Miami
monitoring data that we report match, and in some cases
underperform, the high levels of disease mortality documented
in these other studies (see Figure 3 in Precht et al., 2019). Thus,
it is clear from our survivorship analysis that the impact of
SCTLD should not be underestimated as the overriding cause
of coral mortality at our monitoring sites as well as throughout
southeastern Florida.

The results of this study show that while partial mortality of
corals was affected by the Miami Deep Dredge Project (see also
Dial Cordy and Associates Inc, 2015a,b), the stressor that was
most influential in coral survivorship was the emergence and
prevalence of SCTLD. Unfortunately, coral disease outbreaks and
bleaching events are predicted to become more frequent with
rising sea temperatures (Harvell et al., 2007; Hoegh-Guldberg
and Bruno, 2010; Maynard et al., 2015; Zvuloni et al., 2015),
which are expected to increase by 1–2◦C by 2050 and up to
4◦C by 2100 (Intergovernmental Panel on Climate Change,
2013). Elevated SST is one of the proximal drivers of coral
disease epizootics (Bruno et al., 2007; Harvell et al., 2007;
Heron et al., 2010; Randall et al., 2014). Warmer temperatures
increase the virulence and abundance of pathogens, especially
bacterial pathogens (Ward et al., 2007; Sokolow, 2009; Mao-
Jones et al., 2010; Palmer et al., 2011; Maynard et al., 2015).
Increased temperatures also increase the susceptibility of the
host to disease by compromising the coral’s immune system
(Harvell et al., 2007; Ainsworth and Hoegh-Guldberg, 2009; Reed
et al., 2010; Burge et al., 2014; Pinzón et al., 2015; Merselis
et al., 2018; Muller et al., 2018). Specifically, Pinzón et al. (2015)
noted that the effects of thermal stress (bleaching) can extend
for years following an event including a significant increase in
disease prevalence. They stated “[T]he relationship between coral
bleaching and disease outbreaks suggests that the host’s innate
immune system is affected by bleaching and the changes persist
long after the stressful conditions are over” (see Mydlarz et al.,
2009). Eakin et al. (2010) commented that the pattern of high
thermal stress followed by subsequent mortality across much of
the Caribbean was consistent with outbreaks of coral diseases
that emerged in the years that succeeded thermal stress and
bleaching events. Lesser et al. (2007) also noted that episodes
of thermal stress and coral bleaching likely facilitate disease

epizootics. For instance, Muller et al. (2008) specifically showed
that disease-associated mortality in the United States Virgin
Islands was only apparent on Acropora palmata when the coral
host had bleached prior to the disease outbreak. In a similar
study, Brandt and McManus (2009) documented that colonies
that contracted WPD in the Florida Keys were colonies that
previously experienced extensive bleaching during a significant
thermal anomaly in 2005. Similar results were documented
in the eastern Caribbean following the 2005 regional thermal
anomaly (Cowan, 2006; Harding et al., 2008; Cróquer and Weil,
2009; Miller et al., 2009; Rogers et al., 2009). Together, these
results reflect a consistent relationship between thermal stress,
bleaching, and disease prevalence.

Contrary to some of these earlier studies, the results of the
2014–2015 SCTLD outbreak reported herein shows that there
was not a significant correlation between bleaching and disease
(R = –0.37, p = 0.3269) or between bleaching and mortality
(R = –0.24, p = 0.5409), and that bleaching was not a prerequisite
of disease infection or mortality (see also Precht et al., 2016).
However, because essentially every coral showed some level of
bleaching stress during the monitoring program (89.0% of all
tagged corals showed some outward signs of beaching between
July 2014 and July 2015), we only analyzed whether “full”
bleaching had an impact on coral mortality. In our analysis,
only four corals were observed through the photographic
database to have been killed directly from bleaching-induced
stress. However, Brodnicke et al. (2019) stated that even mild
bleaching caused a threefold increase in accumulated tissue loss
(69.6 ± 10.5%) associated with an outbreak of white syndrome,
on the Great Barrier Reef in 2017, suggesting that disease
exacerbated mortality in bleached corals, and not the bleaching
itself, contributed significantly to the substantial loss of corals.
It should also be noted that bleaching-induced mortality should
not be confused with bleaching-related stress and that the onset
of SCTLD in Miami-Dade County in 2014 followed the worst
thermal stress event recorded regionwide in more than two
decades (Manzello, 2015; Precht et al., 2016).

The initiation of the SCTLD outbreak in Miami-Dade County
appears to have been temporally linked with warm winter and
spring temperatures followed by an anomalously warm summer
in 2014 (Manzello, 2015). This one-two punch, a mild winter
and spring followed by warm summer, corresponded to the
onset widespread coral bleaching and the lethal coral disease
outbreak that followed (Figure 2). Heron et al. (2010) found
that mild winters frequently preceded the thermal anomalies
associated with white syndrome disease outbreaks along the
Great Barrier Reef, Australia. Importantly, during the summer of
2014 in southeast Florida, SST’s exceeded the regional bleaching
threshold of 30.4◦C (Manzello et al., 2007) for 44 days at Bear
Cut and 29 days at Fowey Rocks (National Oceanic Atmospheric
Administration, 2021a,b), resulting in significant temperature
stress and widespread coral bleaching (Manzello, 2015; Gintert
et al., 2019). However, the first signs of the onset of the SCTLD
epizootic were not noted until after peak bleaching and as SST’s
began to cool (see Gintert et al., 2019). An almost identical
scenario of a white-syndrome coral disease outbreak followed
on the heels of a significant bleaching event in Kaneohe Bay,
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Hawaii just as corals there were showing signs of recovery from a
significant bleaching event in the fall of 2014 and as SST’s began
to cool (Hawaii Department of Land and Natural Resources,
2015). Similarly, in the Red Sea, Zvuloni et al. (2015) noted that
WPD prevalence lagged about 3 months behind the warmest
SST’s. In the United States Virgin Islands, Miller et al. (2009)
reported that the greatest amount of WPD-induced mortality
occurred within several months after the highest prevalence of
a major coral bleaching event in the summer of 2005. Miller
et al. (2009) showed that maximum disease-induced mortality
did not occur at the same time for each of their sites and that
>65% of the disease-induced mortality occurred within 6 months
after bleaching was first observed. Thus, in these cases the pattern
of disease onset following significant thermal anomalies and
bleaching events appear to show a direct causal relationship.

Although it is clear that extremely warm water temperatures
preceded the onset of SCTLD throughout southeast Florida
(Manzello, 2015; Precht et al., 2016; Walton et al., 2018; Jones
et al., 2021), once the disease outbreak was spreading regionwide
there was no clear link between the time of year, temperature,
and initiation of SCTLD (Muller et al., 2020). Thus, water
temperatures at the time of disease onset may be irrelevant to its
initiation. This is likely a delayed response of the coral host to
earlier cumulative stressors including temperature (Lesser et al.,
2007) and the infectious, water-borne nature of this contagion as
it progressed across the region (Dobbelaere et al., 2020). Porter
et al. (2001) emphasized the repeated theme of a link between
coral disease and temperature, although seasonality was not
always apparent. Importantly, the outbreak of SCTLD that began
in the fall of 2014, has spread regionwide during the warmest
decade on record, with the warmest 6 years all having occurred
since 2015 (World Meterological Organization., 2020). Warming
during this period was greater in the Caribbean and the sub-
tropical western Atlantic than the global average. Thus, coral
colonies throughout Florida and the Caribbean have regularly
and repeatedly been subjected to significant thermal stress
throughout the period of the SCTLD outbreak with unknown
long-term consequences.

There were localized areas in the Middle Florida Keys that saw
a decrease in incidence and death rates in corals already infected
with SCTLD during the warmest months in the late summer of
2018 (Sharp et al., 2020; see also Williams et al., 2021) questioning
a direct link to temperature stress and the impact of SCTLD.
While Sharp et al. (2020) showed that the rate of tissue loss
among SCTLD-affected colonies slowed or stopped across their
sites during the summer of 2018 and coincided with the seasonal
peak in coral bleaching, they did not observe a similar decrease
in disease rates during the summer of 2019. In the United States
Virgin Islands, Meiling et al. (2020) also showed a decrease in the
rate of tissue loss associated with a SCTLD outbreak as thermal
stress accumulated in the late summer. Thus, the relationship
between thermal stress and the pathogenesis of SCTLD is not
straightforward and remains a question for the future. It has
also been shown that disease outbreaks can often linger for years
in a coral population following its introduction (Aronson and
Precht, 2001; Miller et al., 2009). This is certainly true for SCTLD
which has been ravaging coral populations throughout Florida for

more than 6 years and is now actively spreading throughout the
Caribbean (AGRRA, 2021).

While numerous hypotheses have been developed to explain
the potential origin of where and why this disease started off
Miami-Dade County when it did (Gintert et al., 2019; see also
Precht, 2021), to date the origin and etiology of this disease
remains poorly understood. Edge et al. (2013) noted that corals
near the Port Miami inlet experienced significant changes in
expression of stress responsive and symbiont (zooxanthella)-
specific genes after periods of heavy precipitation. Coincidentally,
Sinigalliano et al. (2019) found a salinity minimum observed
in September 2014 following significant late-summer rainfall
resulting in high canal flow, and increased discharge of the
Miami River into the waters off Miami-Dade County. This
freshwater event also resulted in elevated concentrations of
nutrients and was concomitant with peak coral bleaching that
was observed regionwide. In addition, Staley et al. (2017)
found that microbial communities that originated primarily
from wastewater treatment plant outfalls were the predominant
sources of pollution that directly influenced the structure of the
microbial communities in reef water and in coral tissues off
Miami-Dade County. Therefore, it is important to note that the
2014 SCTLD outbreak was first observed at the southern far-
field control inner-reef site (R2SC2) that was located adjacent to
the oceanic outfall discharge pipe of the Miami Central District
Municipal Wastewater Treatment Plant located off Virginia
Key (Figure 1). This discharge pipe discharges approximately
150 million gallons of partially treated wastewater directly into
the Atlantic Ocean every day and was known to be leaking
(Staletovich, 2017). All these stressors were percussors to the
onset of SCTLD.

Thus, while increased temperature and diminished water
quality were the likely stressors that triggered this disease
outbreak in Miami-Dade County in the fall of 2014 (see
Staley et al., 2017; Walton et al., 2018; Gintert et al., 2019;
Sinigalliano et al., 2019; Whitall et al., 2019; Jones et al.,
2021), it is still important to know the origin of the purported
pathogen(s). This is especially important for developing disease
amelioration strategies for reefs impacted by SCTLD (Precht,
2021). Unfortunately, the specific etiology of this disease outbreak
remains elusive (Aeby et al., 2019; Meyer et al., 2019; Iwanowicz
et al., 2020; Landsberg et al., 2020; Rosales et al., 2020; Ushijima
et al., 2020; Thome et al., 2021). Until we can unravel this mystery,
we can only speculate as to the exact cause of SCTLD. Similarly,
identifying the pathogen(s) responsible for white-band disease
(WBD) in the Caribbean Acropora spp. continues to remain an
enigma well more than four decades after it was first described
(see Gignoux-Wolfsohn et al., 2020). Kline and Vollmer (2011)
noted that for many coral diseases using the traditional Henle–
Koch’s postulate testing method is fraught with problems because
the potential pathogens either cannot be cultured or because the
disease is caused by a consortium of organisms. However, because
the infectious agents in WBD can be treated with antibiotics
(Kline and Vollmer, 2011; Sweet et al., 2014) it has been suggested
that several bacterial taxa are likely the potential pathogens.
For SCTLD it has recently been shown that topical amoxicillin
treatments successfully arrested disease lesion progression on
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multiple species of corals affected by the disease (Neely et al.,
2020) giving credence to the hypothesis that the pathogen(s)
responsible are also likely to be bacterial in origin (see also Miller
et al., 2020; Neely et al., 2021b; Shilling et al., 2021; Walker et al.,
2021). However, examination of tissues from SCTLD affected
corals by transmission electron microscopy suggests that SCTLD
may be a viral infection of zooxanthellae that leads to coral host
cell death (Work, 2021: see also Correa et al., 2016). Viral origins
of WPD have been previously ascribed for Orbicella spp. in the
Caribbean (see Soffer et al., 2014).

Whatever the root cause, the reality is that the ongoing SCTLD
epizootic that started off in Miami-Dade County in 2014 has
changed the community structure and potentially the ecosystem
dynamics of the entire Florida reef tract (Aeby et al., 2017; Hayes
et al., 2017; Lunz et al., 2017; Neely, 2018; Ruzicka, 2018; Walker,
2018; Sharp et al., 2020; Jones et al., 2021; Williams et al., 2021)
and is now affecting reefs at sites throughout the Caribbean
(AGRRA, 2021). Given the high SCTLD-based mortality rates
observed in this study and across Florida as well as the current
diminished capacity for coral recovery regionwide (Moulding,
2005; Smith et al., 2013; van Woesik et al., 2014), the future
of reef-building stony coral communities in Florida and the
Caribbean is unsettling to say the least.

The initial outbreak of SCTLD in Southeast Florida is arguably
one of the most lethal coral disease events ever recorded on
a contemporary coral reef system. In a few short years, the
ecological extirpation of many key species has fundamentally
changed the way these reefs look and function (Precht et al.,
2016; Walton et al., 2018; Gintert et al., 2019; Jones et al., 2021;
Neely et al., 2021a). The resulting community shift caused by
SCTLD is just the last in a series of regional coral mortality events
responsible for a multi-decadal trend of reefs being dominated
by a few small, highly ephemeral, stress-tolerant species (Green
et al., 2008; Burman et al., 2012; Smith et al., 2013; Toth
et al., 2014, 2019; Estrada-Saldívar et al., 2019). While ballast
water from ships has been hypothesized to spread the disease
(see Dahlgren et al., 2021), the results of SCTLD outbreaks
from sites across the Caribbean currently show no direct link
between local anthropogenic factors on the initiation of the
disease or on the ultimate impact (prevalence and mortality)
of the disease on the local coral communities. As noted above,
some nearshore coral communities in Florida appear to show
greater resilience to SCTLD than their offshore counterparts
(Rippe et al., 2019). This is potentially the result of increased
nutrient concentrations, turbidity, chlorophyll, and temperature
variability seen in inshore reef and hardbottom environments
(Lirman and Fong, 2007) that may convey increased coral fitness
to stressors including those responsible for SCTLD (Kolodziej
et al., 2021; Rubin et al., 2021). However, the composition of
the coral community present in terms of susceptible vs. non-
susceptible species appears to have the greatest control on the
ultimate outcome and impact on the resultant coral population
at any given site. While local threats such as sedimentation
from dredging (Erftemeijer et al., 2012) can add stress to a
coral community already overwhelmed by a combination of
stressors both natural and anthropogenic in origin, mitigating
local stressors while critically important (Lamb et al., 2016), will

be not be sufficient to save what remains of our unique coral
resources if we do not focus on the more immediate threat to
the survivorship of corals by working tirelessly to address the
existential threat posed by regional and global stressors including
coral bleaching and disease.
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