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Identifying patterns of organismal distribution can provide valuable insights for basic and
applied marine and coastal ecology because understanding where animals are located
is foundational to both research and science-based conservation. Understanding
variation in distributional patterns can lead to a better assessment of ecological drivers
and an improved ability to predict consequences of natural and altered relationships.
Here, our purpose is to explore if quantifying coexisting groups of individual fish
predators advances our understanding of field distribution patterns. Toward this end, we
quantified locations of 59 acoustically tagged striped bass (Morone saxatilis) within a 26-
stationary unit telemetry receiver array in Plum Island Estuary (PIE), MA, United States.
We then used cluster analyses on spatial and temporal-spatial metrics from this dataset
to (1) assess if distinct groups of individuals coexisted, (2) quantify group characteristics,
and (3) test associations between groups and distribution (e.g., physical site type and
region). Based on multiple lines of evidence, we identified four groups of striped bass
with different space use patterns that persisted across seasons (summer and fall).
Similar-sized striped bass clustered at spatial and temporal scales at which individuals
within distinct groups could, and did, physically overlap. In addition, distributional groups
were linked to components of physical site type and region suggesting that discrete
groups of individuals can interact differently with the environment within the same
ecological system. The identification of these distinct groups of individuals creates a
baseline from which to explore further ecological implications of grouping behavior for
research and conservation in geographically large, temporally dynamic, and spatially
heterogeneous marine and coastal environments.
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INTRODUCTION

Identifying spatial patterns of organismal distribution can
provide valuable insights for marine and coastal science
because understanding where animals are located is foundational
for both ecological research and science-based conservation.
As examples, different distributional patterns of individuals,
complexities in population structure, and spatial diversification
of fisheries can influence the most effective approaches for
fisheries management (e.g., Goethel et al., 2011; Gonzalez-Mon
et al., 2021). Consequently, understanding spatial patterns of
organisms and the impacts that affect these organisms can lead to
a better assessment of ecological drivers and an improved ability
to predict consequences of natural and altered relationships (e.g.,
Mittermeier et al., 1998; Halpern et al., 2008; Su et al., 2021). Here
our purpose is to assess if identifying discrete groups of individual
fish that coexist within the same population can advance our
understanding of fish distribution patterns.

Aquatic predators provide important goods and services to
society (e.g., MacDonald et al., 2017; Hammerschlag et al., 2019),
and can impact ecosystem function through trophic cascades
(e.g., Frank et al., 2005; Estes et al., 2011; Altieri et al., 2012)
and through energetic connections across communities (e.g.,
Casini et al., 2012; Mather et al., 2013). However, variation
in spatial distributions of individual predators can reduce fish-
related goods and services, change the magnitude of ecological
impacts by and on predators, and influence relevant coastal and
marine research, and management directions (e.g., Eero et al.,
2012; Kessel et al., 2016; Shelton et al., 2020). In this research,
we use individual-based acoustic telemetry of striped bass (a
predator) to identify if quantifying behavioral groups can provide
a more accurate understanding of the distribution of these fish in
coastal seascapes.

Conceptual frameworks that explain how individuals can
form groups within populations can be useful for science-
based conservation (e.g., Merrick and Koprowski, 2017). As
an example, fisheries professionals often use statistical models
that assume that individuals are distributed randomly around
a central tendency (mean, median) as predicted by a specific
mathematical distribution (e.g., negative binomial, Poisson,
and Gaussian; Bolker, 2008). However, coexisting groups of
individuals within a population violate these assumptions,
and, if these non-random associations are not considered,
erroneous predictions can result. Behavioral syndromes and
animal personalities are examples of conceptual frameworks
that identify structure, formation, and consequences of groups
of individuals within populations (e.g., Dall et al., 2012; Wolf
and Weissing, 2012; Kelleher et al., 2018). Research related to
the conceptual frameworks of behavioral syndromes and animal
personalities show that organisms from an array of taxa can
form discrete coexisting groups that vary in aggression, boldness,
activity, exploration, and feeding (Supplementary Appendix
Table 1). Coexisting groups of individuals within populations are
difficult to detect in the field. If development, refinement, and
testing of the above-described concepts continue to move beyond
simplified environments, these frameworks that illustrate how
groups of coexisting individuals may form and be maintained

have great potential to explain highly variable distributional
patterns in natural systems.

Links among groups of coexisting conspecific individuals,
variation in distributional patterns, and ecological impacts of
this variation are often unknown because of the difficulty of
unpacking these multifaceted processes in field environments.
For example, do some individuals of an estuarine fish species
form groups that use primarily coastal riverine habitats within
an estuary while other groups explore pelagic estuarine habitats?
Can this use of specialized locations by groups of coexisting
conspecific individuals result in differences in site fidelity and
opportunistic exploration? Can these groups of individuals of the
same species that use the same geographic location in predictable
but diverse ways be linked to different patterns of diet, growth,
survival, and reproduction? Researchers simply don’t know if
differences in distributional metrics of interacting individuals
of the same species using the same seascape can account for
variation in the distribution of a population. Identifying if groups
of individuals of the same species coexist and persist within
the same field population is the first step in investigating this
chain of connections.

Tracking seasonally resident, migratory striped bass (Morone
saxatilis) within Plum Island Estuary (PIE), MA, United States,
provides an ideal opportunity to examine groups within an
interacting population of striped bass. Elsewhere, we determined
that although geomorphic habitat features helped explain
seascape distribution of these fish, organismal patterns were still
highly variable (Taylor et al., 2019). Here we test three hypotheses
that explore if quantifying groups of co-occurring individual
organisms can explain variation in field distribution. Elsewhere,
we have shown that these striped bass are in the feeding stage
of their spring-fall coastal migration (Ferry and Mather, 2012;
Mather et al., 2013). First, we hypothesize that individual subadult
and small adult striped bass can form groups that coexist
within the same foraging area. Distinct, space-based groups
could potentially provide an advantage for individual predators
if familiarity with local conditions increases fish foraging success.
Second, if groups of individuals exist, we hypothesize that
multiple metrics, rather than a single characteristic, will define
these patterns. Third, we hypothesize that some, but not all,
distributional groups could be linked to larger-scale habitat
variables (e.g., physical features, ecosystem region).

MATERIALS AND METHODS

Field Site
Plum Island Estuary is located on the northeastern coast of
Massachusetts, United States (Figure 1A). Exits (or egress points)
from our Plum Island Sound-Rowley River study area include the
Plum Island River, Parker River, Ipswich River, and the ocean
outlet at the south end of Plum Island Sound (Figure 1B). PIE
has many tidal creeks that create confluences (i.e., where two
water bodies join together). Examples of tidal creek confluences
include West Creek, Rowley River, Third Creek, and Grape Island
(Figure 1B). Plum Island Sound also contains many other sites
that may or may not be associated with physical discontinuities
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FIGURE 1 | (A) Location of our study site in Plum Island Estuary (PIE) in
northeastern MA, United States, and (B) study site characteristics including
landmarks, confluences, geographic regions, and locations of receivers by
number. Filled dots indicate stationary receiver locations. Receivers were
placed to test fish use of three types of physical sites (exits, confluences, and
non-confluences). Exit locations were at the four locations (receiver numbers
1, 2, 25, and 26). Confluences are locations where two smaller water bodies
merge. To test confluences, we deployed three receivers each at Rowley River
mouth (receivers 5, 6, and 8); West Creek (receivers 9, 10, and 11); Third
Creek (receivers 14, 15, and 16); and Grape Island (receivers 21, 22, and 23).
The non-confluence site type included six locations not directly adjacent to
any river mouth (receiver numbers 3, 12, 13, 18, 19, and 20). A few receivers
were deployed to detect fish in underrepresented areas and to provide greater
spatial coverage (receivers 4, 7, 17, and 24). We deployed receivers in four
regions (Upper region = receivers 1–4; Rowley River region = receivers 5–12;
Middle region = receivers 13–19; and Lower region = receivers 20–26). All fish
included in our analysis encountered all of the same receivers of an identical
model deployed using an identical protocol.

such as channels, drop-offs, islands, or sand bars (Kennedy et al.,
2016, 2017). PIE can be divided into four geographic regions
(Upper Sound, Middle Sound, Lower Sound, and Rowley River;
Figure 1B).

Physical Habitat Types and Locations
Sampled
We tracked acoustically tagged striped bass using a 26-unit
stationary receiver array (Figure 1B). Receivers (VR2W 69 kHz)
were intentionally placed in specific locations throughout the
estuary to test fish use of three types of physical sites (exits,
confluences, and non-confluences). Exit locations were at the

four locations described earlier (receiver numbers 1, 2, 25, and
26; Figure 1B). To test how fish use confluences, we deployed
three receivers each at Rowley River mouth (receivers 5, 6, and
8); West Creek (receivers 9, 10, and 11); Third Creek (receivers
14, 15, and 16); and Grape Island (receivers 21, 22, and 23;
Figure 1B). The non-confluence site type included six locations
not directly adjacent to any river mouth (receiver numbers 3, 12,
13, 18, 19, and 20; Figure 1B). A few additional receivers were
deployed to provide greater general spatial coverage (receivers
4, 7, 17, and 24). These receivers spanned the four above-
described regions (Upper Sound region = receivers 1–4; Rowley
River region = receivers 5–12; Middle Sound region = 13–19;
and Lower Sound region = 20–26; Figure 1B). Receiver range
(500 m) was quantified as the average distance at which tags were
detected at select test receivers. All tagged fish encountered the
same set of receivers of an identical model deployed using the
exact same protocol.

Fish Tagging
In 2015, 59 subadult and small adult striped bass (mean fish
size = 524 mm TL, range = 434–623 mm TL, and SE = 5.85) were
implanted with VEMCO V13 acoustic transmitters (weight in air:
11–13 g, weight in water: 6–6.5 g; and length: 36–48 mm) and
released near the location where they were captured (Kennedy
et al., 2016; Gerber et al., 2019). Tags transmitted at a frequency
of 69 kHz using a 180-s nominal delay pulse-code-burst [random
delay: 110–250 s; minimum delay: 110 s; maximum delay:
250 s; following the terminology of Loher et al. (2017)]. The
size range that we tagged is substantially narrower than the
size range of striped bass harvested in the 2017 Massachusetts
fisheries (commercial: 863–1,143 mm TL, 6–15 yr; recreational:
686–1,143 mm TL, 4–15 yr; Nelson, 2018). We chose to tag
similar-sized individuals, within this available size range, in order
to tease apart the effect of body size from individual variation.
Tags were less than 2% of the body weight (Bridger and Booth,
2003). Individual fish were anesthetized until they lost orientation
(Aqui-S, 30 mg-L; mean = 2 min 18 s). Using surgical scalpels
of size 12, a 15–30 mm lateral incision was made below the
pectoral fin, about 3/4 of the way to the fin tip. The acoustic
tag was sterilized (ethanol) and inserted into the body cavity.
Then the incision was closed with 2–4 simple interrupted sutures
(FS-2, 19 mm 3/8c, reverse cutting; Ethicon, Vicryl, 3-0; and mean
surgery time = 2 min 31 s). Once fish regained orientation, they
were released (mean recovery time = 6 min 15 s). This research
was conducted under the auspices of Kansas State University
IACUC Protocol #3576. Studies of variation across individuals
vary in duration from within a season (Wat et al., 2020) to across
years (Sabal et al., 2019). Here, we focus on specific space use
patterns of tagged striped bass during their summer-fall residence
(∼120 days) that represents the feeding component of their
seasonal migration.

Residence Time Data
Detections of tagged fish by receivers within the 26 unit receiver
array were modified into “residence time” (or amount of time
that fish resided at each receiver) by summing the amount of
time between detections until either tagged fish were not detected
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for 1 h or were detected by another receiver. Residence time
was calculated at each receiver location for each fish using the
VTrack package in Program R (R 2.15.2 software; R Core Team)
(Campbell et al., 2012). Residence time was further simplified as
“proportion of time” at each receiver by taking the amount of time
a fish spent at a single receiver and dividing it by the total time a
fish was detected across the entire array.

Fish Cluster Analysis
Grouping patterns were based on multiple methods: (a)
exploratory data analyses that examined individual fish trajectory
plots and seascape maps, (b) cluster analyses, (c) by-cluster metric
plots, and (d) across-cluster metric statistical comparisons. To
identify if distinct striped bass distributional groups existed,
we ran sequential hierarchical cluster analyses using Ward’s
linkage on Euclidean distance matrices (“cluster” package, R). To
determine the optimal number of clusters, the average silhouette
width was maximized (Kaufman and Rousseeuw, 1990). We
examined all clusters with a Jaccard bootstrap mean values >0.5.
Jaccard values between 0.60 and 75 were used to indicate cluster
patterns (“clusterboot” function, “fpc” package, R; Hennig, 2008).
Eight “short-timer” fish were detected briefly and sporadically at
a limited number of receivers within PIE (i.e., detected in <3
weekly intervals within a 30 day period). Of these eight “short-
timer” fish, six were detected in arrays outside of Plum Island.
Because they provided limited information about PIE space use,
these “short-timer” fish were manually removed from the dataset
and excluded from subsequent analyses.

Examination of patterns followed a two-stage protocol that
separated the effects of space alone from the effects of space
combined with time. In the first stage of our cluster analysis, we
used the metrics “proportion of time” at each of the 26 receivers
to assign fish to a cohesive spatial cluster. In the second stage
of our cluster analysis, we used four temporal-spatial metrics
on the remaining fish. The first metric, total number of days in
the Plum Island ecosystem, was measured as the days between
an individual fish’s first detection and its last detection in the
study system. We expected fish that stayed a short period of time
to behave differently than seasonally resident fish. The second
metric, total number of receivers visited, was a measure of mobility
calculated by counting the number of unique receivers each fish
visited throughout the season. A fish that visited many receivers
was likely more active than a fish that stayed close to the same
few receivers. The third metric, total number of movements, was
another measure of between receiver activity that was calculated
by summing the number of times fish moved from one receiver
to another. The fourth metric, receiver allegiance, was a measure
of site fidelity that was calculated as the proportion of time a fish
spent at the single most visited receiver, based on residence time.
A fish that stayed in the same place would have a high value of
this metric compared to a fish that spent time at many different
receivers throughout the estuary.

We examined our four metrics as boxplots to visualize
similarities and differences across clusters. Differences in
metrics across clusters were tested using a Kruskal–Wallis
non-parametric ANOVA test (“kruskal.test” function,
“stats” package, R) with post hoc Mann Whitney U
multiple comparisons.

Distributional Groups, Physical Site
Types, and Regions
We separately tested the effect of physical site types (exit,
confluence, and non-confluence) then regions (Upper Sound
Middle Sound, Lower Sound, and Rowley River) on residence
time across the four distributional groups from the above-
described cluster analyses (“anova” function, “stats” package, R).
Residence time was summed for each fish at each receiver and
individual tagged fish were treated as replicates. Data were log
transformed to meet statistical assumptions. A post hoc Tukey
test (“tukeyHSD” function, “stats” package, R) identified pairs of
significantly different treatments. For these analyses, all fish were
included (i.e., we retained fish with zero values at a receiver) to
test how the fish behaved across the entire tagged population.
A value of P < 0.05 was used to determine statistical significance.

RESULTS

Overview
Most tagged fish were detected within PIE monthly (July: 50 fish;
August: 48 fish) until they started to migrate south in the fall
(September: 38 fish, October: 8 fish; data not shown). Of the 59
fish tagged in our study, 37 fish were detected in arrays outside
PIE after they migrated. These high levels of frequent detection
suggest limited (or no) post-tagging mortality.

We identified four clusters of individual striped bass in
PIE using both spatial metrics (cluster 1; Figure 2A) and
temporal-spatial metrics (clusters 2–4; Figure 2B). Spatial
metrics identified the Rowley River group (Cluster 1, Figure 2A;
Jaccard, 0.6). Temporal-spatial metrics identified clusters 2–4
(Figure 2B), which were the groups associated with Plum Island
Sound (Cluster 2, Jaccard, 0.5), Exploratory (Cluster 3; Jaccard,
0.7), and Extreme Fidelity (Cluster 4; Jaccard, 0.6) groups.
Exploratory data analysis plots of individual fish trajectories
identified similar patterns for individual members of the same
group. For each of our four clusters, we show one representative
individual fish within each cluster to illustrate group trajectories
(i.e., locations connected by movements) and distributional maps
(Figures 3A–D). Then we use boxplots to show how mean
metrics differed across the four clusters (Figures 4A–D).

Rowley River Group
Seventeen tagged individuals that were detected within PIE
for 51–117 days formed the Rowley River group (cluster 1;
Figure 2A). Trajectories and distributional maps showed that
fish in this group remained primarily within the Rowley River
(Figure 3A). The seasonally resident Rowley River group spent
a high total number of days in PIE (average: 88.35 days, SE:
5.01; Figure 4A). This very mobile cluster of fish visited a high
total number of receivers (average: 18.47, SE: 0.69; Figure 4B),
and had a very high but variable total number of movements
(average: 451.88, SE: 43.52; Figure 4C). However, this cluster
exhibited medium high but variable receiver allegiance (average:
0.55, SE: 0.04; Figure 4D). Ecologically, individual fish in the
Rowley River cluster moved many times across many receivers,
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FIGURE 2 | Four distributional cluster groups are shown. (A) Spatial cluster dendrogram based on proportion of time spent at each of 26 receivers that identifies the
Rowley River group (Cluster 1, red box). (B) Temporal-spatial dendrogram that identified Plum Island Sound, Exploratory, and Extreme Fidelity distributional groups
(Clusters 2–4).

but these residences and movements were primarily within a
medium-scale, geographically localized subset of receivers.

Plum Island Sound Group
Fourteen tagged striped bass individuals that were detected
within PIE for 72–111 days formed the Plum Island Sound group
(cluster 2; Figure 2B). Trajectories for striped bass within this
more variable group combined movements and residence events
within both the Middle and Lower Sound (Figure 3B). Seasonally
resident striped bass within the Plum Island Sound group spent
a high total number of days in PIE (average: 89.08 days, SE: 4.32;
Figure 4A). As a group, individual fish within the Plum Island
Sound group visited a high total number of receivers (average:

17.62, SE: 0.53; Figure 4B), but were not often detected in
the Rowley River. The Plum Island Sound group was neither
as mobile nor as sedentary as other groups as reflected by an
intermediate total number of movements (average: 270.00, SE:
32.40; Figure 4C). The Plum Island Sound group was more
variable in spatial distribution than other groups because it
included two sub-groups of individual fish that spent more time
either around Middle Ground Island (Middle region) or at the
southern end of the estuary (Lower region) resulting in a low
median but highly variable receiver allegiance (average: 0.48, SE:
0.06; Figure 4D). Ecologically, the Plum Island Sound group
resided at and moved among a preferred group of receivers within
two subregions of the Sound.
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FIGURE 3 | Representative examples of individual fish in each of the four clusters (A–D) including: trajectories displaying detections and movements among
receivers over the entire study period (A-1,B-1,C-1,D-1) and maps of the average residence time that this individual fish spends at each receiver location
(A-2,B-2,C-2,D-2). The arrows at the top and the corresponding dot colors in panels (A1–D1) show the direction that the fish moved through time. The green bars
in panels (A2–D2) indicate receiver-specific residence time. When all detections (multicolor dots in A1–D1) are summed through time, the result is residence time
(green bars in A2–D2). Both panels show the same data summarized in different ways. Both inform similarities within clusters and differences across clusters.
Clusters include (A) Rowley River, (B) Plum Island Sound, (C) Exploratory, and (D) Extreme Fidelity groups. Trajectories are tracks of connected fish detections along
the X, Y (latitude, longitude), and Z axis (time; July – bottom, September – top). The Z temporal data dimension comes out of the page.

Exploratory Group
Seven tagged fish that were detected at receivers within PIE for up
to 52 days formed the Exploratory group (cluster 3; Figure 2B).
Trajectories of individuals within this Exploratory group were
characterized by residences and movements throughout the PIE
study area (Figure 3C). Statistically, the Exploratory group spent
a low total number of days in PIE (average: 34.28, SE: 6.79;
Figure 4A), visited an intermediate total number of receivers
(average: 14.00, SE: 1.56; Figure 4B), made a low total number of
movements (average: 71.29, SE: 8.89; Figure 4C), and exhibited
low but variable receiver allegiance (average: 0.50, SE: 0.08;
Figure 4D). Ecologically, the Exploratory group was a roaming
behavioral group that did not devote the majority of their time to
any specific region or receiver.

Extreme Fidelity Group
Thirteen tagged fish that were detected within PIE for
68–102 days formed the Extreme Fidelity group (cluster 4;
Figure 2B). Trajectories of the Extreme Fidelity group were
characterized by a long and localized residence event (prolonged
residence at 1–2 receivers) (Figure 3D). These fish exited the

estuary in the fall as did all of our tagged fish. We emphasize
egress and subsequent detections outside our study area for
fish in this Extreme Fidelity cluster to demonstrate that these
tagged fish (which did not move much within PIE) were alive
and retained their tags. Seasonally resident individuals within
the Extreme Fidelity group spent a high total number of days in
PIE (average: 87.92 days, SE: 3.19; Figure 4A). As their name
suggests, individuals of this behavioral group visited a low total
number of receivers (average: 11.77, SE: 0.71; Figure 4B), made
a low total number of movements (average: 109.08, SE: 20.12;
Figure 4C), but had the highest receiver allegiance (average: 0.82,
SE: 0.03; Figure 4D). Ecologically, individual fish within the
Extreme Fidelity group spent the summer-fall period at limited,
localized receiver locations from which they made few forays.

Differences in Group Metrics Across
Clusters
Differences among groups existed for multiple metrics. For the
total number of days metric, the Exploratory group spent a
significantly lower number of days in PIE than the Extreme
Fidelity, Rowley River, and Plum Island Sound groups (P < 0.05;
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FIGURE 4 | For the four clusters (Exploratory, Extreme Fidelity, Rowley, and Plum Island Sound; X axis), shown are the box plots of metrics used in the cluster
analysis (Y axis). Metrics include: (A) total days in PIE, (B) total receivers visited, (C) total number of movements, (D) receiver allegiance. Receiver allegiance is the
proportion of time a fish spent at the single most visited receiver. Letters indicate statistical differences.

Figure 4A). For the total number of receivers visited metric, the
Rowley River and Plum Island Sound groups visited significantly
more receivers than the Extreme Fidelity group (P < 0.05;
Figure 4B). For the total number of movements metric, the
Rowley River and Plum Island Sound groups had significantly
more movements compared to the Exploratory and Extreme
Fidelity groups (P < 0.05; Figure 4C). For the receiver allegiance
metric, the Extreme Fidelity group spent a significantly higher
proportion of time at a single receiver than all other groups
(P < 0.05; Figure 4D).

Physical and Regional Drivers of Fish
Distribution
Distributional groups provided additional information about
physical and regional drivers for our tagged striped bass
population. Residence times at exits were low for all four
seasonally resident groups (Figure 5A). For non-confluence sites,
mean residence time of the Extreme Fidelity group was very high,
mean residence time of the Exploratory group was low, and use of
non-confluence sites by the Rowley River and Plum Island Sound
groups was intermediate (Figure 5A). High variability in use of

non-confluence sites obscured any across-group differences in
use of this site type. However, use of confluence sites differed
across our four clusters. Striped bass in the Rowley River group
had the highest residence time at confluences, the Plum Island
Sound group had intermediate residence times at confluences,
and the Extreme Fidelity and Exploratory groups spent little time
at confluences (P < 0.05; Figure 5A).

By region, the Rowley River group spent significantly more
time in the Rowley River region (P < 0.05; Figure 5B). No group,
as a whole, spent much time in the Upper or Lower regions
(Figure 5B). However, the Middle region was used more by
the Extreme Fidelity and Plum Island Sound groups than the
Exploratory or Rowley River groups (P < 0.05; Figure 5B).

DISCUSSION

Take-Home Messages
Using multiple lines of evidence that emerged from fish telemetry
data (trajectory plots, seascape maps, cluster analysis of metrics,
by-cluster metric plots, and across-cluster metric statistical
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FIGURE 5 | (A) Bar graphs depicting the average residence time (h) (Y axis) for each cluster group (Rowley, Extreme Fidelity, Exploratory, and Plum Island Sound; X
axis) by physical site types (confluence, non-confluence, and exit; X axis). (B) Bar graphs depicting the average residence time (h) (Y axis) for each distribution group
(X axis) by region (Rowley River, Upper Sound, Middle Sound, and Lower Sound) and the whole estuary average (PIE) (X axis). Letters indicate statistical differences.

comparisons), we identified four groups of striped bass that
persisted within PIE across two seasons (summer and fall).
Our results show that individual fish were not using space
in the same way, and that individual striped bass can form
discrete distributional groups in complex field environments
(hypothesis 1). As one example, the Rowley River group (1/3 of
the tagged fish) used the river region for much of the summer
and early fall (July-September; average residence time: 108 h);
yet the rest of the tagged population spent little time in this
nearby location (<6 h average time). Our results reinforced
previous findings that mobility and distribution metrics can
vary across individuals in an ecologically meaningful way (e.g.,
Frank et al., 2009; Zhang et al., 2015; Webber et al., 2020).
Our results also confirmed previously identified trends that

individual organisms can associate non-randomly with varying
levels of specificity (e.g., Pautzke et al., 2010). However, general
associations among individual organisms (e.g., Frank et al., 2011)
are not the same as the distinct and persistent grouping of
individuals that we identified here. In contrast to other telemetry
studies in which organisms exhibit different distribution and
mobility metrics across season, size, habitat, spawning condition,
or stocking treatment (e.g., DeCelles and Cadrin, 2010; Sabal
et al., 2019), our similar-sized, striped bass clustered into
co-occurring groups at spatial and temporal scales at which
individual organisms within different groups could, and did,
physically overlap.

In our study, multiple metrics, cluster analyses, by-cluster
plots, and associated cluster-related statistical analyses identified
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insights about fish distribution. Many multivariate statistical
methods (e.g., cluster analysis, principal component analysis, and
non-metric multidimensional scaling) exist to identify patterns
in data. In exploratory data analysis, trajectory plots of raw data
identified fish groups. We chose cluster analysis because this
statistical tool provides an independent method for assigning
groups. Of course, individual variation also occurred within our
cluster groups. Examining both discrete and continuous patterns
of variation are likely important for understanding distribution
in most natural systems. The four metrics used in our two-stage
cluster analysis addressed the need to use multiple integrated
metrics in explaining space use (hypothesis 2). Specifically, the
first stage of our cluster analysis identified that groups could
form based on spatial components alone (i.e., Rowley River fish
group). The second stage of our cluster analysis identified the
interaction of multiple spatio-temporal metrics (e.g., Plum Island
Sound fish groups). Other metrics can certainly add information
here and in other studies. Likely complex distributional patterns
that are driven by multiple causes will require carefully selected
multiple metrics.

Our distributional groups were linked to physical site type
and region suggesting that groups of individuals can interact
differently with the same field environment (hypothesis 3). As
one example, the Rowley River group used confluences more
than other physical site types. Confluences are predicted to
be ecological hotspots (Poole, 2002; Benda et al., 2004; Rice
et al., 2006). In related research, these geomorphic hotspots were
commonly used, but distribution patterns were highly variable
(Taylor et al., 2019). Our present results add resolution to this
previously reported, highly variable pattern by showing that the
Rowley River cluster used confluences more than other fish
groups. As a second example, our four seasonally resident clusters
also had specific associations with estuary regions. Fish in the
Extreme Fidelity and Plum Island Sound clusters dominated the
use of the Middle Sound region. Finally, our study revealed that
identifying groups through cluster analysis explained previously
unknown spatial and temporal variation in the distribution of
individual organisms. This clarification in distributional patterns
can decrease the statistical error associated with high unexplained
variation that impedes the quantification of scientific patterns,
obscures the effects of ecological drivers, and limits effective,
science-based conservation in natural ecosystems.

Potential Future Directions of Interest
How general and broadly relevant is the identification of
behavioral groups for understanding spatial and temporal
distribution patterns in natural habitats? Recent field tests report
that organismal performance and animal personality groups may
be linked (Villegas-Ríos et al., 2017; Wat et al., 2020), may not
be linked (Lichtenstein et al., 2018; Kowalski et al., 2019), or
both may and may not be linked depending on the metric used
(Dhellemmes et al., 2021). As examples of positive links between
animal groups and performance, contingents of sticklebacks
make different shoaling choices (Harcourt et al., 2009) and fish
groups can differ in their probability of crossing an instream
barrier (Hirsch et al., 2017).

At this early stage of our understanding of the structure
and function of co-occurring groups of organisms in natural
environments, we simply don’t know how our groups of
striped bass form or the wider ecological consequences of
such groupings. An example of a potentially useful ecological
application of the groups of striped bass that we identified in
this study follows. Fishing can impact fish behavior (e.g., Uusi-
Heikkilä et al., 2008; Goetze et al., 2017). Thus, the insights that
we identify above can provide the basis for exploring behavioral
links between fish distribution and commercial/recreational
fishers. Striped bass are a popular commercial and recreational
fish in coastal areas and have been historically imperiled and
at times overfished (Richards and Rago, 1998; Shepherd et al.,
2018). Coastal striped bass are composed of separate spawning
populations (Wirgin et al., 2020) that have different distributions
and movement patterns (e.g., Rulifson and Dadswell, 1995;
Secor et al., 2020). These stock-specific movement patterns can
vary across locations, seasons, and years (e.g., Waldman et al.,
1990; Kneebone et al., 2014). In estuaries like PIE, known
spawning stocks intermix to feed (Mather et al., 2010, 2013).
Potentially, fishing could selectively remove fish with different
behaviors and drive ecological change mediated through the
clusters that we identify here. We hypothesize two intriguing
links. First, if members of the behavioral cluster that frequent
confluences are targeted and captured more often, fishing could
drive evolutionary change away from confluence usage. Second,
connections among energetic profitability, specialized forging
tactics, and fishing pressure may vary across the behavioral
clusters that we identify here. Striped bass in the Sound behavioral
clusters could have a higher but more variable growth rate
because they eat more pelagic fish prey through active foraging
in open water habitats. Striped bass in the River behavioral
cluster may use sit and wait tactics within the salt marsh habitat
to capture a predictable invertebrate diet that produces slower
growth and a smaller, less variable size distribution. If so, higher
fishing pressure on the larger Sound fish may change links
between foraging behavior, location, and diet. These links about
the potential function of behavioral clusters can be tested in the
future through focused field surveys and laboratory experiments.

What We Learned That We Didn’t Know
Before and What We Still Need to Know
Our research adds to a growing body of literature that identifies
discrete groups of individuals in field environments (Hertel et al.,
2020; Wat et al., 2020; Dhellemmes et al., 2021). Others have
suggested the important link between personalities and spatial
ecology (Nilsson et al., 2014; Spriegel et al., 2016), but many
gaps exist related to the frequency of co-occurring groups of
individuals in field environments and the consequences of these
grouping patterns. In our study, we don’t how long individuals
remain within the same groups (>1 year, one generation), by
what behavioral mechanism individual fish groups form, what
is the role of learning, whether a genetic basis exists, or if
there are ecological benefits to specific grouping patterns (e.g.,
growth, survival). Nevertheless, the space use of different groups
of striped bass, identified here, provide a foundation on which to
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build a better understanding of organismal distribution in large
complex estuarine, coastal, and marine seascapes.
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