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Fleshy Red Algae Mats Influence
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Mediterranean Sea
Neele Schmidt*†, Yusuf C. El-Khaled, Felix I. Roßbach and Christian Wild

Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany

In the Mediterranean Sea, the fleshy red alga Phyllophora crispa forms dense mats
of up to 15 cm thickness, mainly located on rocky substrates in water depths below
20 m. Because of the observed density of these mats and some first observations,
we hypothesize that P. crispa is a yet undescribed ecosystem engineer that provides a
multitude of ecological niches for associated organisms along small-scale environmental
gradients. Therefore, we conducted an in-situ pilot study in the Western Mediterranean
Sea to assess potential influence of the algae mats on the key environmental factors
water movement, temperature and light intensity. We comparatively and simultaneously
measured in P. crispa mats, in neighboring Posidonia oceanica seagrass meadows, on
neighboring bare rocky substrates without algae mats, and in the directly overlying water
column. We used several underwater logging sensors and gypsum clod cards. Findings
revealed that P. crispa significantly reduced water movement by 41% compared to the
overlying water column, whereas water movement was not affected by P. oceanica
meadows and bare rocky substrates. Surprisingly, P. crispa increased the water
temperature by 0.3◦C relative to the water column, while the water temperature in
P. oceanica and on bare rocky substrates was reduced by 0.5◦C. Light intensity
inside the red algae mats was reduced significantly by 69% compared to the water
column. This was similar to measured light reduction of 77% by P. oceanica. These
findings highlight the strong influence of the dense red algae mats on some key
environmental factors. Their influence is obviously similar or even higher than for the well-
known seagrass ecosystem engineer. This may be a factor that facilitates associated
biodiversity similarly as described for P. oceanica.

Keywords: macroalgae, seagrass, Posidonia oceanica, phytal habitat, hard-bottom communities, environmental
gradients

INTRODUCTION

Ecosystem engineers are defined as organisms that control the availability of resources either
directly or indirectly by their ability to change the physical state of abiotic or biotic material
(Jones et al., 1994, 1997). Therefore, ecosystem engineers can create or modify habitats (Crooks,
2002) by affecting environmental parameters, such as light, temperature, pH, oxygen and
availability of substrate. Jones et al. (1994, 1997) define two types of bioengineering organisms:
(1) autogenic engineers which modify their environment by endogenous processes, such as growth
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(e.g., trees) and (2) allogenic engineers which modify other living
or non-living material in their surrounding (e.g., beaver).

Corals are a prominent example of structural engineers,
a subgroup of autogenic engineers, which physically create
substrate, control resources and shape their environment (Jones
et al., 1997; Berke, 2010). For example, the metabolism
of both corals and their symbiotic algae (i.e., respiration
and photosynthesis) cause oxygen micro-gradients near reefs
(Shashar et al., 1993) that can affect a range of associated species
(Vogel, 1981; Atkinson, 1992). Mangroves are another example of
structural ecosystem engineers that create habitat for numerous
aquatic species (Robertson and Blaber, 1992; Kandasamy and
Bingham, 2001). The complex structure of their roots provides
shelter from predators (Laegdsgaard and Johnson, 2001; Macia
et al., 2003). Moreover, kelp algae modify their surroundings’
physical state through their morphology in coastal environments
worldwide (Jones et al., 1997). Aggregations of such macroalgae
form a unique habitat for marine organisms (Christie et al., 2003)
by dampening water currents (Jackson, 1997; Gaylord et al., 2007)
and diminishing light (Pearse and Hines, 1979; Reed and Foster,
1984; Stewart et al., 2008).

In the Mediterranean Sea, a member of the seagrass family
Posidoniaceae, the endemic Posidonia oceanica (Delile, 1813)
acts as a well-known biodiversity hotspot (Montefalcone et al.,
2007; Pergent et al., 2014) and an autogenic ecosystem engineer.
It forms wide meadows that can, among others, affect the
hydrodynamics of currents and waves (Gambi et al., 1990; Bouma
et al., 2005). Further, P. oceanica promotes sediment stability by
buffering resuspension (Gacia et al., 1999; Terrados and Duarte,
2000; Gacia and Duarte, 2001).

Another potential habitat-building species in the
Mediterranean Sea is the fleshy red alga Phyllophora crispa
(Dixon, 1964). In water depths below 20 m, the alga forms
discontinuous mats of at least 5 cm thickness, mainly on rocky
substrates, which can cover large parts of the seafloor (Bonifazi
et al., 2017). A massive development of these red-algae mats lead
to it becoming a dominant benthic habitat around the Island of
Giglio since 2012 (Bonifazi et al., 2017).

Bonifazi et al. (2017) provided a first description of the
associated fauna of P. crispa, and its role as a habitat forming
species at the Island of Giglio, Italy, and came to the
conclusion that biodiversity of mobile and sessile invertebrates
associated with the mats is high. A reason for this finding is
likely that P. crispa mats create a range of micro-niches by
influencing key environmental parameters such as water current
exposure, temperature and light availability. Because of the
observed density of these mats and some first observations, we
hypothesize that P. crispa is a yet undescribed ecosystem engineer
that provides a multitude of ecological niches for associated
organisms along small-scale environmental gradients. This study
thus aimed to investigate the potential role of P. crispa as an
ecosystem engineer and answer the following research question:
What are the differences in water movement, temperature and
light availability between P. crispa mats, P. oceanica meadows
and rocky substrates without any overlying mats? To answer this
question, we conducted a series of comparative and simultaneous
in-situ measurements in the Mediterranean Sea.

MATERIALS AND METHODS

Study Site and Habitat Characterization
The study was performed in September and October 2019 on
the Island of Giglio, Tuscany, Italy. All observational surveys
were conducted in situ via scuba-diving at a depth of 28–30 m
at the dive site “Punta del Morto” (42◦23′22.2′′N 10◦53′24.3′′E),
which is located at the northern coast of Giglio. The study area
was on the west side of the dive site, where, starting at a depth
of 20 m, granite blocks cover most parts of the seafloor. In
the Mediterranean Sea, the occurrence of small patches of bare
granitic rock at water depths of 30 m is common. Additionally,
dense Posidonia oceanica seagrass meadows, characterized by
straight, single leaves, and dense P. crispa mats of robust,
branched, and entangled structure are present at the study site.
All three habitats (i.e., P. crispa mats of at least 5 cm thickness,
P. oceanica seagrass meadows of at least 20 cm height, bare rocky
substrate; Supplementary Figure 1) were found at the same water
depth in an area of about 250 m2. Limiting the study to this
one sampling site allowed for a direct comparison by quantifying
environmental conditions within these three habitats, as we
expect that all habitats experienced identical external conditions
(e.g., temperature, salinity, insolation, hydrodynamics, etc.). The
rhizome part of P. oceanica, above and below ground, was not
included in this study.

Environmental Parameters
Effects on water movement relative to the water column by
P. crispa and the other two ecosystem types were measured
simultaneously using the gypsum dissolution technique (Eckman
et al., 1989; Duggins et al., 1990). While this method is
not appropriate to measure absolute water flow, it is well
suitable for relative comparison of water movement (Jokiel and
Morissey, 1993; Thompson and Glenn, 1994; Evans and Abdo,
2010). Gypsum of smooth consistency (Quick-mix gips, toom
# 3050388, CaSO4) was poured into muffin cups. Air bubbles
were removed with continuous finger snapping for 30 s. After
a drying period of 24 h at air temperature, gypsum balls were
taken out of the cups and dried to constant weight in an oven at
60◦C before being glued to plastic cards avoiding gaps between
both the cards and the gypsum balls. Then, clod cards were
numbered and weighed. Clod cards were placed at heights of
0 cm (seafloor), 1 cm (within P. crispa mats), 5 cm (algae-
water interface) and 20 cm (above the algal mats) by attaching
them to a 30 cm long metal rod with cable ties (Supplementary
Figure 2). Replication was done primarily temporal, with rods
being deployed at four different time points. A total of eleven
rods was placed in P. crispa at all four timepoints. The same
set-up was used at one timepoint on rocky substrates, resulting
in two replicates. Since seagrass meadows grow higher than the
red algae mats, a metal rod of 80 cm length was used and an
additional clod card was placed 30 cm from the ground. This
setup allowed selecting the same positions that were used for
P. crispa and rocky substrates: 0 cm (seafloor), 1 cm (within
P. oceanica meadow), 5 cm (within P. oceanica meadow), 20 cm
(meadow-water interface) and 30 cm (above the meadow). A total
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of three rods was deployed at three different time points in
P. oceanica, resulting in a replication of three. The size of the
gypsum balls was similar for all environments. The set-ups were
prepared before deploying in situ and stayed in the water for 6–
7 days after deployment. The set-ups were then transported out
of the water, clod cards were carefully removed from the metal
stick, rinsed with fresh water and placed on a drying rack. Then,
clod cards were dried in an oven at 60◦C until a constant dry
weight was reached. The relative weight loss of gypsum balls
[presented as a reduction of daily average weight loss of gypsum
balls relative to the overlaying water (%)] was used as an indicator
for the strength of relative water movement. We used this relative
approach to exclude effects of habitat volume differences on the
results. Calculations were made as follows:

weight loss [%day−1
] =

w1(
wl
t

)
∗ 100

(1)

reduction of daily average weight loss relative to the overlaying
water

[%] = 100 − {100 − [(
100

mean (wlw)
) ∗mean(wlp)]} (2)

with w1 = weight before water exposure, wl = total weight loss
[g], t = time in the water [days], wlw = weight loss at position [%
day−1], wlp = weight loss at position [% day−1].

For light and temperature measurements, the same set-up as
for the water movement measurements was used simultaneously
in P. crispa, P. oceanica and on rocky substrates using Onset
HOBO Pendant Data Loggers (part # UA-002-64, accuracy
temperature: ± 0.53◦C, light unit: lux). These loggers are
designed for measurements of relative light intensity differences,
as they are not accurate for measuring absolute light intensities
(Ali et al., 2016). For P. oceanica, the loggers were positioned at 0,
1, 5, 20, 35, and 55 cm distance from the seafloor to increase the
vertical resolution of measurements. A total of seven rods were
placed in P. crispa mats at four time points, a total of three rods in
P. oceanica meadows at three time points, and a total of eight rods
were placed at four time points on rocky substrates. Data loggers
were exchanged and placed alternately in different habitats and in
different heights above the seafloor for each observation to avoid
any systematic error. Data collection intervals were set at 15 s,
and loggers collected data for five consecutive days. The resulting
replication for temperature and light observations in the different
habitats is shown in Supplementary Table 1. Loggers were read
out with the program “HOBOware” (version 3.7.17).

This study was conducted simultaneously in the three
investigated habitats, which means that all habitats experienced
identical environmental conditions. Our findings therefore reveal
differences in environmental factors resulting directly from the
different characteristics of the investigated habitats.

Statistical Analysis
Statistical analysis was conducted using the statistic program “R”
(version 3.5.1) and the package “car” (Fox and Weisberg, 2011).
One-Way-ANOVA was used to calculate significant differences

between data sets when the sample size was three or higher.
Due to the small sample size, differences regarding weight loss
of gypsum balls on rocky substrates were calculated with a t-test.
Differences were considered as significant at p-values below 0.05.

For temperature and light analysis, data points used for
calculations correspond to the mean of single data points over a
period of 5 min [data point5 min = mean (20 ×data point15 s)].
Light data of light hours, from 6 am to 8 pm, was used
for the analysis.

RESULTS

Water Movement
The weight loss of gypsum clod cards was used as an indirect
measurement of water movement. Overall, results show a
reduction in weight loss of gypsum clod cards relative to the
water column by 41 ± 8% in P. crispa mats, 25 ± 16% in
Posidonia oceanica seagrass meadows, and 13 ± 8% on the
rocky substrates (Figure 1). Only in P. crispa mats, the weight
loss was significantly different among heights above seafloor
(Supplementary Table 2A). Gypsum balls placed on the substrate
surface inside the P. crispa mats showed a significantly lower
weight loss of 41 ± 8% compared to the gypsum balls in the
overlaying open water (ANOVA: F1,21 = 26.28; p ≤ 0.001).

Temperature
The daily temperature cycle was similar in all three habitats,
as increasing temperatures from morning (6 am) to evening
(6 pm) were observed. Then, temperatures decreased until
midnight and remained stable until the morning (Figure 2).
The temperature in P. crispa mats ranged from a minimum
of 18.6 to a maximum of 20.4◦C, from 17.2 to 19.3◦C in
P. oceanica, and from 18.2 to 20.0◦C on rocky substrates.
Furthermore, temperature stratifications varied within the
investigated habitats. Temperatures at the bottom of P. crispa
mats (0 cm) were significantly higher than those measured at
1, 5, and 20 cm distance from the seafloor (Supplementary
Table 2B), which all were in a similar range (Figure 2A).
For P. oceanica, the temperatures observed at the seafloor
were significantly (ANOVA: F1,575 = 156.98; p ≤ 0.001) lower
than temperatures found 35 and 55 cm above the seafloor
(Figure 2B). On rocky substrates, temperatures measured at
the seafloor (i.e., 0 cm) were significantly lower compared to
the other positions (Figure 2C). The water temperature was
0.31◦C higher at the seafloor compared to the water column for
P. crispa. For P. oceanica and the bare rocky substrates, the water
temperature was 0.5◦C lower at the seafloor compared to the
water column, respectively.

Light Intensity
Light stratification was different for the three investigated
habitats (Figure 3). In P. crispa mats (Figure 3A), light intensity
was consistent at 0 cm and 1 cm above the seafloor, i.e.,
within the mat, while the light intensity was twofold higher at
5 and 20 cm above the seafloor (Supplementary Table 2C).
Close to the seafloor, a relative light intensity of 31 ± 0.3%
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FIGURE 1 | Reduction of daily average weight loss of gypsum balls in Phyllophora crispa (A), Posidonia oceanica (B) and on rocky substrates (C) relative to the
overlaying water (0%). Displayed are mean values and standard error. n = number of rods deployed in situ. No significant differences are indicated by the same letter,
significant differences by different letters.

compared to the overlying water was recorded in this habitat.
Similar light values were recorded for P. oceanica (Figure 3B)
0, 1, and 5 cm above the seafloor. Higher light intensities
occurred 20 cm above the seafloor, while the highest light
values were noted 35 cm and 55 cm above the seafloor.
Lowest values of minimum 23 ± 0.2% light intensity relative
to the overlying water were recorded close to the seafloor
in seagrass. On rocky substrates (Figure 3C), light intensity
showed an irregular increase with increasing distance from
the seafloor. A reduction of light intensity in the absence
of plant canopies, on rocky substrates, was less intense, i.e.,

58 ± 0.3% relative to the logger placed furthest away from the
seafloor at 20 cm height. Overall, a reduction in light intensity
from the highest to the lowest position of 69 ± 0.3% for
P. crispa, 77 ± 0.2% for P. oceanica and 43 ± 0.3% for rocky
substrates was noted.

DISCUSSION

It has recently been shown that the red alga P. crispa
harbors many associated organisms in the north-western
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FIGURE 2 | Average temperature in Phyllophora crispa (A), Posidonia oceanica (B) and on rocky substrates (C). Displayed are mean values. No differences are
indicated by the same letter, significant differences by different letters.

part of the Mediterranean Sea (Bianchi et al., 2010; Casoli
et al., 2016, 2019; Bonifazi et al., 2017). In this study, we
investigated the influence of P. crispa on the environmental
factors water movement, temperature and light intensity.
Furthermore, we related our finding of P. crispa to neighboring
Posidonia oceanica meadows and bare rocky substrates. Our
results indicate a potential role of P. crispa as an autogenic
ecosystem engineer.

Characteristics of Investigated Habitats
The water movement was reduced by 41% at the deepest part of
the P. crispa mats compared to the water movement 20 cm above
the seafloor. Studies on soft-sediment macro algae canopies with
a similar structure found similar results, showing reduced water
flow and mixing in the lower part of the canopy (Kregting et al.,
2011). Both, rocky substrates and P. oceanica meadows showed
a less intense decrease (13 and 25%, respectively) in relative
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FIGURE 3 | Relative light intensity compared to loggers placed above canopy [%] in Phyllophora crispa (A), Posidonia oceanica (B) or at similar water depth on
rocky substrates (C). Displayed are mean values observed during light hours from 8 am to 6 pm. References (100%) are included in the legend for the display of
statistical differences. No statistical differences are indicated by the same letter, significant statistical differences by different letters.

water movement toward the substrate, which was not statistically
significant, potentially due to low replication. Previous studies
(Koch and Gust, 1999; Arumugam et al., 2013; Bacci et al., 2016)
found significant reductions of water currents inside seagrass
meadows that were located at a water depth of 10 m (e.g.,
Peterson et al., 2004; Bouma et al., 2005; Koch et al., 2006).
However, investigated seagrass meadows in the present study

were located at a depth of 28 m, in which current is usually weaker
than in more shallow areas, which hypothetically explain the
absence of statistically significant effects. Water movement in the
water column directly above P. crispa and P. oceanica was similar
to rocky substrates, which indicates that the differences between
the three investigated habitats are likely caused by the lack of
topography of the rocky substrates compared to the structural
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complexity of the plant canopy habitats as shown for i.e., seagrass
(Fonseca et al., 1982; Gambi et al., 1990). Structural complexity
or heterogeneity of a habitat is characterized by the spatial
arrangement and diversity of substratum types (McCormick,
1994) and has previously been shown to correlate with lowered
water flow (Gorman and Karr, 1978; Willis et al., 2005) and
the degree of protection from predation (Hereu et al., 2004).
A stronger reduction of water movement was observed in the
rather thin P. crispa mats over a shorter distance, compared to the
P. oceanica meadows, suggesting a higher structural complexity
of the thalli, which have a relatively high surface area within a
small volume compared to seagrass leaves.

Temperatures were significantly higher at the bottom of
the algae mats, on average by 0.31◦C. Although observed
differences were within the range of accuracy of the data logger,
all replicates showed similar differences. Since a temperature
gradient was observed on the bare rocky substrates with
decreasing temperatures toward the seafloor, the observed
differences in P. crispa likely do not originate from potential
temperature differences within the water column. It has been
shown for seagrass, that their leaves retain organic matter from
the water (Bacci et al., 2016). As the structural complexity
seems higher in P. crispa mats, the filter capacity may also be
higher, resulting in potentially high microbial activity. Habitat
complexity also promotes micro-scale heterogeneity (Bell et al.,
2001; Ondiviela et al., 2018) and additionally provides a large
surface area for high microbial activity. It has been shown that
P. crispa enlarges the seafloor surface by a factor of 4.9 (YC El-
Khaled et al., unpublished data), which could potentially lead to
high microbial activity. High rates of microbial replication and
activity have been observed to create a heat output in laboratory
experiments (Djamali et al., 2012). Potential warming underneath
the algae mat could therefore likely be a result of the intense
respiration activity of associated (micro) organisms.

Temperatures in P. oceanica meadows and on rocky
substrates decreased with decreasing distance to the seafloor.
The combination of less self-shading, limited water exchange
and enhanced microbial activity could cause the temperature
differences in P. crispa mats as opposed to P. oceanica meadows
and rocky substrates (Table 1; Arumugam et al., 2013). Although
an increase in temperature as indicated for P. crispa could not
be observed for seagrass leaves, it may potentially occur in the
rhizomes, as water current reduction is expected, and the habitat
structure becomes more complex (Buia et al., 2000).

TABLE 1 | Environmental gradients in different habitats observed in this study [*]
and previous reports by [1] Bacci et al. (2016), [2] Arumugam et al. (2013),
[3] Dalla Via et al. (1998).

Posidonia meadow Phyllophora mat Rocky substrates

Water currents [*]→ [1] ↓ [*] ↓ [*]→

Temperature [*,2] ↓ [*] ↑ [*] ↓

Light [*,3] ↓ [*] ↓ [*]→

No significant influence on environmental factor is indicated by a horizontal
arrow, an increase by an arrow heading upward, a decrease by an arrow
heading downward.

Overall, a statistically significant gradient in light intensity
occurred on rocky substrates, and in the observed plant canopy
habitats of P. crispa and P. oceanica. Light intensity gradients
observed on rocky substrate were presumably the same as in
the open water for all substrates. P. crispa mats decreased the
light intensity by 69% from the overlaying water to the bottom
of the mat, which is a strong environmental light gradient
across the relatively thin mat of about 5 cm thickness. For
P. oceanica meadows, a decrease in light intensity of 77%
compared to the overlaying water was observed. Previous studies
also showed strong light gradients in habitats of macrophyte
dominance, i.e., P. oceanica meadows, of up to 70% and confirm
self-shading effects (Dalla Via et al., 1998). These structures
reduced the incidence of the blue, green and red wavelengths by,
respectively, 57–58%, 61–63%, and 51–53% within the seagrass
stands, additionally to light attenuation of the water column.
A third interconnected light gradient occurs due to direct shading
of macrophyte structures caused by epiphytes (Riedl, 1966;
Dalla Via et al., 1998), which can reach a thickness of up to
6 cm on P. crispa mats (Bonifazi et al., 2017). In combination
with self-shading induced by the entangled thalli of the alga
and horizontally lying blades, this can explain the exceptional
strong light gradient.

Potential Relevance for Ecosystem
Functions
Based on several studies, lowered water movement inside
P. crispa mats potentially promotes sediment trapping and
reduces resuspension, as described for seagrass meadows (Gacia
et al., 1999; Gacia and Duarte, 2001; Hendriks et al., 2008).
Subsequently, this could affect the associated biodiversity, as
large amounts of sediment trapped within P. crispa mats provide
a heterogeneous habitat for infauna species and offer building
material and food in form of organic and inorganic matter for
tube-building species (Prathep et al., 2003). Previously, the global
occurrence of algal turfs has been related to stressful habitats
(Hay, 1981; Benedetti-Cecchi et al., 2001; Piazzi and Cinelli, 2001)
and their structural characteristic of sediment trapping (Piazzi
and Cinelli, 2001). However, the coast of Giglio island is affected
by sediment deposition, which consists of fine terrigenous
particles controlled by rainfall and larger particles derived from
erosion of granite rocks (Bonifazi et al., 2017). Sedimentary
processes in this area are therefore a natural scenario rather
than the result of anthropogenic stressors, such as pollution
(Bonifazi et al., 2017).

Moreover, the community composition can be affected by
reduced water movement within the algae mat. A similar
pattern has been observed for the eelgrass Zostera marina (L.),
where lowered water movement enhances the accumulation
of planktonic organisms, such as invertebrate larvae and
protozoans (Eckman, 1987). The settlement of invertebrate
larvae is greatly affected by small-scale fluid dynamics (Koehl,
2007) and thus by changing these parameters, P. crispa mats
consequently change the community composition. Reduced
water movement could favor the settlement of e.g., certain
bryozoan species (Ryland, 1970; McKinney and Jackson, 1991)
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and other sessile invertebrates. Experimental studies have shown
that low water turbulence and velocity enhance the settlement of
some species of e.g., hydroids (Mullineaux and Garland, 1993),
bryozoans (Mullineaux and Garland, 1993; Qian et al., 1999,
2000), barnacles (Mullineaux and Butman, 1991; Mullineaux
and Garland, 1993), bivalves (Judge and Craig, 1997), and
polychaetes (Qian et al., 1999), while it decreases the settlement
of other species of the same taxa (Mullineaux and Garland,
1993; Judge and Craig, 1997; Qian et al., 1999). In general,
we expect a high number of settling invertebrate larvae in
P. crispa, as low water movement increases the acceptance of
surfaces by post-settled larvae and therefore the attaching of
certain species, e.g., barnacles (Mullineaux and Butman, 1991;
Jonsson et al., 2004; Larsson and Jonsson, 2006). Further, high
numbers of mobile organisms, particularly larvae and juveniles,
may be attracted to this habitat as it offers protection from
water turbulences.

Observed higher temperatures at the bottom of P. crispa
mats could potentially indicate a thermal insulation effect of
P. crispa. However, future studies are required to confirm
this hypothesis. While many studies focused on the effect of
temperature on algae growth (e.g., Butterwick et al., 2004;
Baker et al., 2007; Martin and Gattuso, 2009), the effects
of algae on the habitat’s temperature are so far unstudied.
Studies of another important ecosystem engineer, however,
report similar effects on temperature: shallow water scleractinians
increased water temperatures in their microenvironment, due
to solar radiation and water holding capacities by surface
heterogeneity (Jimenez et al., 2008; Ong et al., 2017). While
solar radiation plays only a minor role in the deep layer of
P. crispa mats, we showed that water movement is low in the
algae mats, which could indicate a long water residence time
and explain a similar effect on the thermal microenvironment
of this habitat.

P. crispa provides a habitat that differs in light intensity
to bare rocky substrates, as the plant structures create shade.
The alga’s phylloids hinder light to reach the seafloor, which
limits requirements for primary production within the red algae
mats. Light availability is most important for photoautotrophic
organisms and therefore an important factor for overall oxygen
availability. Hence, in seagrass meadows, oxygen availability
generally increases with the distance to the rhizome (Borum et al.,
2007). Other macroalgae mats have been shown to inhabit a
high abundance of microphytobenthos along a vertical gradient,
which is a food source for associated organisms (Shadrin et al.,
2019, 2021; Prazukin et al., 2020) and causes high phototrophic
activity. In the present study, we found a 1.1-fold stronger
light gradient over a shorter distance in P. crispa mats, which
implies that the layer of high phototrophic activity is in closer
proximity to the deeper layer of heterotrophic activity. This could
lead to higher oxygen availability for heterotrophic organisms,
especially heterotrophic microbes, and hence fuel the potential
warming effect of microbial activity inside the mats. High
microbe abundance is beneficial for suspension feeders, such as
certain Porifera (Larsen and Riisgård, 1994), ascidians (Jørgensen
et al., 1984; Riisgård, 1998), bryozoans (e.g., Ryland, 1976;
Grünbaum et al., 1998; Lisberg and Petersen, 2000), bivalves (e.g.,

Beninger, 2000; Riisgård and Larsen, 2000; Silverman et al., 2000),
cnidarians (Miglietta et al., 2000), crustaceans (Trager et al., 1990;
Riisgård, 2015), and polychaetes (Emlet, 1990; Hansen, 1993),
that feed on microbes. The aforementioned active benthic filter
feeders create their own currents, e.g., by using their cilia or
muscles (Jørgensen, 1966; Riisgård and Larsen, 2000), and are
therefore not affected by the lowered water movement inside
P. crispa mats.

Ecological Implications
Phyllophora crispa widely covers rocky substrates and increases
in abundance with increasing water depth beyond 25 m (Sagarra
and François, 2015; Bonifazi et al., 2017). Loss of P. oceanica
meadows and rocky substrate communities threaten the overall
high biodiversity in the Mediterranean Sea (Coll et al., 2010).
P. crispa potentially recolonizes these degraded habitats following
the concept of algal phase shifts. The importance of P. crispa as an
autogenic ecosystem engineer was stated by Zaitsev (2008) in the
Black Sea, where P. crispa is a key species along the north-western
rocky coasts. More than 100 species of invertebrates and 40
species of fish, some of which are endangered or rare (Shcherbak
et al., 1994), inhabited the P. crispa mats in this area. This
associated community benefits from the algal habitat as a food
source, substratum for spawning, material for the construction
of nests, or shelter from predators (Zaitsev, 2008). Provision
of food or protection for rich associated communities are also
characteristics of other algal habitats, such as Cladophora mats
(Shadrin et al., 2019, 2021; Prazukin et al., 2020) or Cystoseira
beds (Mineur et al., 2015).

The term “ecosystem engineer” is often associated with large-
scale bioengineers, such as corals, mangroves, and seagrasses,
which create extensive contiguous habitats covering wide areas
(e.g., Copper, 1994; Kandasamy and Bingham, 2001; Duarte,
2002). However, referring to Jones et al. (1994, 1997), scale is not a
parameter defining “ecosystem engineers.” Bivalves for example,
such as mussels or oysters, are well-recognized structural small-
scale bioengineers that form dense beds or reefs (Ruesink et al.,
2005; Bouma et al., 2009), which create habitats of smaller volume
and act mainly on a local scale (Kelaher and Castilla, 2005). Their
shells provide substrate for other organisms to colonize (Padilla,
2010), alter the local water flow regime (Widdows et al., 2009), as
well as the local dynamics of sediment (Padilla, 2010). This study
showed that P. crispa influences its environment in a similar way,
i.e., by reducing water movement and creating habitat. Despite
reaching heights of only about 15 cm, this red alga therefore acts
as a small-scale ecosystem engineer, forming dense but thin mats,
that can cover areas of up to 10,000 km2, as shown for the Black
Sea (Zaitsev, 2008).

Our study showed that key environmental parameters are
shaped by P. crispa, thus a complex and valuable habitat is
likely provided in the Mediterranean Sea. As the complexity of
a habitat increases biodiversity (Russ, 1979) and P. crispa mats
show highly complex structures and environmental gradients,
they could act as a biodiversity hotspot in the Mediterranean Sea,
similar to the Black Sea, as already indicated by the pilot study
of Bonifazi et al. (2017). A total of 99 non-colonial invertebrate
taxa were collected in P. crispa mats in the Mediterranean Sea,
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while polychaetes were the most abundant group, followed by
Mollusca and Crustacea (Bonifazi et al., 2017). Additionally,
that study reports 37 taxa of colonial invertebrates, which were
dominated by Bryozoa and Porifera, but also included Tunicata
and Anthozoa. Further, Bonifazi et al. (2017) state that P. crispa
mats significantly increase species richness and abundance of
sessile filter feeders in contrast to shallower areas without the
red algae mats. This could be the result of enhanced invertebrate
larvae settlement due to reduced water movement in P. crispa
mats observed in this study, which has been previously shown
for seagrass meadows (Eckman, 1987). The dominance of sessile
filter feeders within P. crispa mats observed (Bonifazi et al., 2017)
strengthens our hypothesis of high oxygen availability due to high
microphytobenthos abundance in the mats that enhances overall
microbial abundance resulting in a higher food availability for
active filter feeders.

This study provides the first attempt to investigate the
potential role of the red alga P. crispa as an autogenic ecosystem
engineer, which may harbor high associated biodiversity. Our
results indicate the possibility that P. crispa provides resources
for associated organisms by retaining sediment, providing food,
and creating habitat. While we were able to show that P. crispa
serves a habitat by influencing the key environmental factors
water movement and light intensity, its effect on temperature
needs to be studied further.

Future studies should investigate the diversity of infauna in
Mediterranean P. crispa mats to understand their role as potential
biodiversity hotspots and also confirm the abundance of P. crispa
in other regions of the Mediterranean coast. Further, studies on
the turnover rate of P. crispa mats are needed to understand the
ability to generate refuge for organisms, which may suffer from
habitat loss due to anthropogenic pressure and climate change.
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