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(Callinectes sapidus) Larvae
Stephen J. Tomasetti, Jeffrey R. Kraemer Jr. and Christopher J. Gobler*

School of Marine and Atmospheric Science, Stony Brook University, Southampton, NY, United States

Many shallow coastal systems experience diel fluctuations in dissolved oxygen (DO)
and pH that can intensify throughout the summer season and expose estuarine
organisms to repeated episodes of coastal hypoxia and acidification. In temperate
regions, larval release of the economically important blue crab Callinectes sapidus
occurs in the summer, and while the earliest stage (zoea I) larvae are susceptible
to persistent low DO and low pH conditions, their sensitivity to diel fluctuations
is unknown. Here, a series of short-term (≤96 h) experiments were conducted to
investigate the survival of C. sapidus zoea I larvae exposed to a range of diel cycling
hypoxic and acidified conditions and durations. Two experiments comparing a diel
cycling DO/pH treatment (fluctuating from ∼30% air saturation to ∼103% averaging
∼66%/and from pH ∼7.26 to ∼7.80 averaging ∼7.53) to a static low DO/pH treatment
(∼43%/∼7.35), a static moderate DO/pH treatment (∼68%/∼7.59), and a static control
treatment (∼106%/∼7.94) indicated that survival in the diel cycling treatment was
significantly lower than the moderate treatment (p < 0.05) by 75 and 48% over 96
and 48 h, respectively, despite comparable mean experimental DO/pH values. Three
other experiments aimed at identifying the effective minimum duration of low DO/low
pH to significantly depress larval survival under diel cycling conditions revealed that 8 h
of low DO/low pH (∼28%/∼7.43) over a 24-h diel cycle consistently decreased survival
(p < 0.05) relative to control conditions by at least 55% regardless of experimental
duration (72-, 48-, and 24-h experiments). An increase in DO beyond saturation to
supersaturation (160%) and pH beyond normocapnic to highly basified (8.34) conditions
during the day phase of the diel cycle did not improve survival of larvae exposed to
nocturnal hypoxia and acidification. Collectively, these experiments demonstrate that
diel cycling does not provide newly hatched C. sapidus larvae a temporal refuge capable
of ameliorating low DO/pH stress, but rather is more lethal than chronic exposure to
comparable average DO/pH conditions. Given that larvae exposed to a single nocturnal
episode of moderate hypoxia and acidification experience significantly reduced survival,
such occurrences may depress larval recruitment.

Keywords: hypoxia, coastal acidification, diel cycling, coastal change, larval release, blue crab, Callinectes
sapidus
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INTRODUCTION

Covarying, diel fluctuations of dissolved oxygen (DO) and pH
commonly occur across shallow estuaries worldwide. Driven
by the oscillating dominance of photosynthesis and respiration
over a diel cycle, shallow productive coastal systems experience
naturally dynamic DO, pH, and CO2 concentrations (Yates et al.,
2007; Baumann et al., 2015; Baumann and Smith, 2017). Yet,
many of these systems are additionally influenced by land-based
practices that amplify the flux of nutrients and organic matter to
coastal waters and accelerate metabolic processes (Nixon, 1995;
Caffrey, 2004). Cultural eutrophication, or the increasing supply
of organic matter to an ecosystem that is caused by anthropogenic
influences such as nutrient enrichment (Malone and Newton,
2020), can intensify the amplitude of diel cycling and elicit
repeated, severe episodes of nocturnal hypoxia as well as coastal
acidification, particularly during warmer months when metabolic
rates are maximal (Breitburg, 1990; Beck and Bruland, 2000;
Baumann and Smith, 2017). Owing to the shallow nature of these
systems, resident biota can be exposed to contemporaneous low
DO and low pH conditions regardless of their position in the
water column (Burnett, 1997; Tyler et al., 2009).

Biological responses to fluctuating hypoxia and/or
acidification vary across estuarine taxa and life stages. Some
early life stage fish species that utilize coastal habitat suffer
reduced hatching success, growth, and/or survival, or engage
in riskier behaviors that leave them more vulnerable to
predation under diel cycling conditions relative to static ambient
conditions (Davidson et al., 2016; Dixon et al., 2017; Morrell
and Gobler, 2020), while others are quite tolerant (Lifavi et al.,
2017; Targett et al., 2019) or only experience harmful effects
under elevated temperatures (Targett et al., 2019). In some
cases, diel cycling provides fish species a physiological refuge
from, or reduction in negative behavioral effects compared
to, chronically low DO and/or low pH conditions (Jarrold
et al., 2017; Jarrold and Munday, 2018a; Cross et al., 2019), a
benefit that can be temperature dependent (Laubenstein et al.,
2020) or independent (Jarrold and Munday, 2018b). Field
studies with oysters revealed significant negative differences in
growth and immunocompromisation controlled by diel cycling
hypoxia/acidification frequency and magnitude, respectively
(Breitburg et al., 2015), and in situ measures of heartbeat
rates indicated that the metabolic activity of bay scallops
increases and becomes more dynamic under diel cycling
hypoxia (Gurr et al., 2018). Lab studies suggest additional,
negative outcomes of diel cycling hypoxia and acidification
among many mollusks across larval and juvenile life stages
with increased infection prevalence by parasitic protozoan
Perkinsus spp. (Keppel et al., 2015), and increased percent
of time spent closed (Porter and Breitburg, 2016), as well as
reductions in growth and survival (Clark and Gobler, 2016;
Gobler et al., 2017) relative to ambient conditions. Studies of
diel cycling impacts among crustaceans are limited, but some
effects can be deduced from short term exposures (<24 h)
to hypoxia. Sensitivities to short term exposures vary at the
species level among decapod crustaceans, with juveniles of some
species exhibiting significant lethargy and mortality over 24-h

(Eriksson and Baden, 1997) and 2-h exposures (Gravinese, 2020)
to DO levels of ∼25% air saturation.

The Atlantic blue crab, Callinectes sapidus, a species
comprising one of the largest fisheries for the eastern
United States (National Marine Fisheries Service (NMFS),
2019), is sometimes considered a climate change “winner”
under future global change (Glandon et al., 2019). Rising coastal
temperatures increase juvenile growth rates in higher latitude
temperate systems (Brylawski and Miller, 2006; Glandon and
Miller, 2017) and are projected to benefit Chesapeake Bay
populations due to reductions in the duration of winter and
associated juvenile mortality (Glandon et al., 2019). Juvenile and
adult animals both exhibit steady or increased calcification and
growth under acidified conditions (Ries et al., 2009; Whiteley,
2011; Glandon and Miller, 2017) and are also considered
moderately tolerant of hypoxia (deFur et al., 1990; Burnett,
1997; Mangum, 1997). Recent experiments with larvae, however,
reveal sensitivities of early life stages to ocean acidification (Giltz
and Taylor, 2017) and coastal hypoxia and acidification both
individually and in combination (Tomasetti et al., 2018), further
evidencing that crustacean tolerance to low DO- and/or low
pH-stress varies throughout ontogeny often in association with
changes in respiratory physiology (Whiteley, 2011; Alter et al.,
2015; Leiva et al., 2018; Gravinese, 2020).

In temperate systems, the C. sapidus larval release coincides
with the time of year when coastal hypoxia/acidification is
the most persistent and severe (Dittel R and Epifanio, 1982;
McConaugha et al., 1983; Breitburg, 1990; Wallace et al., 2014).
Among crustaceans, the pelagic larval life stage is considered
the most sensitive to low DO (Miller et al., 2002), particularly
for C. sapidus, for which the 50% lethal DO threshold (LC50)
is higher than the majority of values published for other
larval crustacean species (Miller et al., 2002; Tomasetti et al.,
2018). Predictably, low DO effects on C. sapidus are most
acute in the larval stage, as crustacean sensitivities to hypoxia
depend on their respiratory anatomy and habitat characteristics
(Alter et al., 2015). While zoeal development of C. sapidus
occurs primarily in oxygenated surface shelf waters (Epifanio
and Garvine, 2001), newly hatched first stage (zoea I) larvae
can spend their first hours to days in estuarine or nearshore
coastal habitat (Tagatz, 1968; Sandifer, 1973; Provenzano et al.,
1983; Roman and Boicourt, 1999), where they may be exposed
to harmful conditions. Survival of zoea I larvae is reduced
significantly under low DO and combined low DO/low pH
conditions over static 4-day exposures, with nearly all larvae
perishing at DO concentrations ≤ 2.5 mg L−1 or 35% (Tomasetti
et al., 2018). However, many shallow eutrophic estuaries
across the species’ geographic range commonly experience large
fluctuations in DO and pH during summer months (Tyler et al.,
2009; Baumann et al., 2015; Baumann and Smith, 2017), and
the larval sensitivities to diel cycling low DO and low pH
exposures are unknown.

Therefore, this study presents a series of short-term
experiments to investigate the survival of C. sapidus zoea I
larvae to diel cycling hypoxia and acidification over a range
of magnitudes and durations. Specifically, varied quantities of
air, CO2 and N2 were delivered either continuously to create
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distinct static DO and pH conditions or intermittently to create
diel cycling DO and pH conditions and test our hypothesis
that exposure to diel cycling hypoxia and acidification would
negatively impact survival. Additional experiments altering the
durations of hypoxia and acidification as well as the amplitudes
of the changes in DO and pH under diel cycling were conducted
to determine the relative importance of low DO/pH exposure
durations and DO/pH fluctuations in driving larval mortality.

MATERIALS AND METHODS

Animal Collection and Maintenance
The effects of diel cycling hypoxia and acidification were
examined through laboratory experiments exposing zoea I larvae
to a range of static or cycling DO and pH values. All experiments
were completed during June–August of 2019 and 2020 at the
Stony Brook Marine Science Center in Southampton, New York.
Ovigerous female blue crabs were retrieved from Shinnecock
Bay, NY, United States (40.869415, −72.489203) as granted by a
Scientific Collectors Permit via the New York State Department
of Environmental Conservation. Individual females were placed
in separate 20-L polyethylene buckets located in an 1890-L tank
with continuous flow of mechanically (foam fractionated) and
biologically (via fixed bed aerated biotowers) filtered recirculating
UV sterilized sea water. The 20-L buckets were outfitted with
openings (∼7 cm in diameter) covered by 70 µm mesh to allow
exchange with filtered sea water but retain larvae. Individual
buckets were aerated with ambient air via plastic tubing (Tygon)
and glass bonded silica air stones until larval hatching. Newly
hatched larvae were concentrated in a 2-L polypropylene beaker
by siphoning the filtered sea water and larvae out from the
lower half of the 20-L polyethylene buckets with plastic tubing
through 1,000 µm mesh that trapped egg mass strands and other
particulates. Larvae were then distributed among experimental 1-
L polypropylene vessels at densities that varied slightly between
experiments but never exceeded 115 ind. L−1, as greater densities
(>140 ind. L−1) can impair survival (Zmora et al., 2005) and are
environmentally unrealistic (McConaugha et al., 1983). Larvae
were fed live rotifers (50 ind. ml−1 day−1) enriched with the
algae Nannochloropsis originally grown in f/2 media (Sulkin and
Epifanio, 1975; Zmora et al., 2005).

Experimental Design
Five separate larval survival experiments were conducted, two
comparing static DO/pH treatments to a diel cycling treatment,
one comparing different durations of low DO/pH over diel
cycles, and two comparing different amplitudes of diel cycling
as well as different durations of low DO/pH over diel cycles
(Table 1). Experiments varied in length (experimental duration),
experiment type, starting larval density, number of females
providing larvae, and treatments as described in Table 1. All DO
and pH values and diel cycling durations and amplitudes were
based on conditions found in US east coast estuaries and for
most cases directly measured in two shallow lagoonal estuaries
along the coast of NY hosting ovigerous female blue crabs
during the summer larval hatching season (Figure 1; Tyler et al.,

2009; Baumann et al., 2015; Baumann and Smith, 2017). Briefly,
multiparametic EXO2 sondes (Yellow Springs Instruments) were
deployed during the summer of 2020 at two well-mixed estuaries
with robust blue crab fisheries: Georgica Pond and Shinnecock
Bay, to measure temperature, salinity, DO and pHNBS (NBS
scale) at a frequency of 10 min, in addition to an Ion Sensitive
Field Effect Transistor (ISFET)-based solid state pHT (total
scale) SeaFet sensor (Satlantic) that was deployed alongside
the multiparametric sonde in Shinnecock Bay to provide pHT
measurements (Figure 1). In Georgica Pond the sensor array
was deployed on a surface buoy platform and all observations
were made at a depth of 0.7 m regardless of sea surface height.
In Shinnecock Bay the multiparametric sonde and ISFET pH
sensor were affixed atop a large cinder block and placed on the
sandy sediment (∼0.3 m height above the bottom), but because
Shinnecock Bay is a shallow, well-mixed tidal lagoon with an
average depth of <2 m, observations were made at a depth
of 1.0 ± 0.3 m (mean ± SD) and were representative of the
pelagic environment. For all experiments, salinities were 27.6–
29.9, and circulating water bath temperatures were maintained
between 24 and 26◦C (within the range of temperatures observed
at Shinnecock Bay) by multiple heating wands (Finnex Aquarium
Heaters) and an external water pump (Iwaki MD55RLT),
conditions ideal for larval development (Costlow and Bookhout,
1959). When experiments exceeded 48 h, water changes occurred
after 2 days, in which larvae were poured carefully onto a 250 µm
sieve and transferred into a glass dish of filtered seawater, before
being returned to clean experimental vessels with new filtered
seawater. Survival was quantified at the end of each experiment
and recovered individuals were considered dead if they had
undergone decay and/or did not respond with any movement to
light from a flashlight (larvae move toward the region of greatest
light intensity) after periods of >30 s (Sandoz and Rogers, 1944).

Static vs Diel Cycling DO/pH
Experiments
Two separate experiments comparing static DO/pH levels to diel
cycling hypoxia/acidification were conducted that were similar in
all aspects of experimental design but differed in experimental
duration (experiment 1: 96-h total duration, experiment 2: 48-
h total duration; Table 1). For both experiments, sixteen 1-L
polyethylene vessels containing 0.2 µm filtered seawater from
Shinnecock Bay were placed in a sea table temperature-controlled
water bath. Replicate (n = 4) vessels received gas mixtures of
ambient air, N2, and CO2 at different rates to create and maintain
either normoxic and normocapnic conditions [DO: ∼106% air
saturation (∼7.4 mg O2 L−1)/pH: ∼7.94; control treatment],
moderately hypoxic and acidified conditions [∼68% (∼4.7 mg
O2 L−1)/∼7.59; moderate treatment], hypoxic and acidified
conditions [∼43% (∼3.0 mg O2 L−1)/∼7.35; low treatment] and
diel cycling conditions (diel cycling treatment) that fluctuated
between 12 h of hypoxic/acidified conditions [∼30% (∼2.0 mg
O2 L−1)/∼7.26] at night and 12 h of normoxic/normocapnic
conditions [∼103% (∼7.2 mg O2 L−1)/∼7.80] during the day,
creating average DO and pH values [∼66% (∼4.6 mg O2
L−1)/∼7.53] comparable to the moderate treatment. The target
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TABLE 1 | Overview of experimental conditions for five experiments investigating the survival of Callinectes sapidus zoea I larvae to diel cycling hypoxia and acidification.

Experiment
number

Experiment
type

Experiment
duration

(h)

Initial density
(ind. L−1)

Larvae source Treatments
static (s)
fluctuating (f)

Diel cycling duration
(h of low DO and low

pH 24 h−1)

Diel cycling amplitude:
[range of DO (% air sat)
and pH values 24 h−1]

1 Static vs
diel cycling

96 104 1 mother Control (s) – –

Moderate (s) – –

Low (s) – –

Diel cycling
(12-h) (f)

12 Moderate
DO: 29–104%
pH: 7.21–7.78

2 Static vs
diel cycling

48 112 3 mothers Control (s) – –

Moderate (s) – –

Low (s) – –

Diel cycling
(12-h) (f)

12 Moderate
DO: 30–101%
pH: 7.31–7.82

3 Diel cycling
duration

72 114 3 mothers Control (s) – –

4-h (f) 4 Moderate
DO: 34–99%
pH: 7.34–7.90

8-h (f) 8 Moderate
DO: 32–100%
pH: 7.36–7.92

12-h (f) 12 Moderate
DO: 31–97%
pH: 7.33–7.88

4 Diel cycling
duration
and
amplitude

48 92 1 mother Control (s) – –

4-h (f) 4 Moderate
DO: 27–99%
pH: 7.45–8.00

8-h (f) 8 Moderate
DO: 30–99%
pH: 7.41–7.99

12-h (f) 12 Moderate
DO: 29–97%
pH: 7.39–7.98

12-h SC (f) 12 Strong
DO: 30–160%
pH: 7.44–8.34

5 Diel cycling
duration
and
amplitude

24 95 1 mother Control (s) – –

4-h (f) 4 Moderate
DO: 25–97%
pH: 7.54–8.04

8-h (f) 8 Moderate
DO: 27–99%
pH: 7.54–8.06

12-h (f) 12 Moderate
DO: 25–99%
pH: 7.47–8.07

12-h WC (f) 12 Weak
DO: 25–66%
pH: 7.48–7.63

Frontiers in Marine Science | www.frontiersin.org 4 August 2021 | Volume 8 | Article 720175

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-720175 August 16, 2021 Time: 15:40 # 5

Tomasetti et al. Cycling Hypoxia/Acidification Reduces Survival

FIGURE 1 | Daily fluctuations of dissolved oxygen (DO; line) and pH (circles) at two sites hosting ovigerous female blue crabs on Long Island, NY. (A) Locations of
the two sites; (B) DO and pH fluctuations of Georgica Pond (temperature: 27.7 ± 1.1◦C) a temporarily open estuary, and the site of one of the most robust blue crab
fisheries in NY; (C) DO and pH fluctuations of Shinnecock Bay (temperature: 25.1 ± 1.2◦C), the location where all ovigerous female blue crabs were sourced from for
larval experiments.

levels in the static low treatment differed from the target low
values in the diel cycling treatment because previous experiments
established that 100% larval mortality was common at ∼30%
(∼2.0 mg O2 L−1) over static 96-h exposures (Tomasetti et al.,
2018) an outcome we tried to avoid. To achieve the diel cycling,
solenoid valves were attached to a timer (Hunter) programed to
regulate the flow of tanked gas mixtures bubbled into the seawater
for 12 h at night followed by air for 12 h during the day (Clark and
Gobler, 2016; Morrell and Gobler, 2020).

Diel Cycling Duration and Amplitude
Experiments
Three additional larval survival experiments compared various
durations of low DO/pH within diel cycling conditions
(experiment 3: 72-h experiment) or compared both durations
of low DO/pH and amplitudes of diel cycling (experiments 4
and 5: 48- and 24-h experiments, respectively; Table 1). For
all experiments, replicate (n = 4) vessels were exposed to static
normoxic and normocapnic conditions [DO: ∼99% (∼6.9 mg O2
L−1)/pH: ∼7.97; control treatment], or fluctuating low DO/pH
exposures [∼28% (∼2.0 mg O2 L−1)/∼7.43] that had durations
of low DO/pH lasting for 4 h (4-h treatment), 8 h (8-h treatment),
or 12 h (12-h treatment) during the night, before cycling back
to the day phase [∼99% (∼6.9 mg O2 L−1)/∼7.97] for the
remainder of the daily 24-h cycle. All treatments with fluctuating
DO/pH values were established through regulating gas mixtures

through solenoid valves controlled by timers (Hunter) that varied
in duration (4 vs 8 vs 12 h) based on the treatment.

The final two experiments investigating low DO/pH durations
(experiments 4 and 5) also compared differences in amplitudes
of diel cycling (Table 1). When exploring different amplitudes
of diel cycling, we considered that intense photosynthetic
activity in shallow environments can supply additional DO
(increasing DO beyond saturated to supersaturated levels) and
consume substantial quantities of CO2 (increasing pH beyond
normocapnic to basified levels) in the day phase of a diel
cycle (Breitburg, 1990; Tyler et al., 2009; Baumann et al.,
2015). Alternatively, the day phase of diel cycling may only
partially alleviate hypoxic/acidified conditions, meaning DO and
pH values do not reach 100% saturation and normocapnia,
respectively (Breitburg, 1992). To compare the effects of different
amplitudes of diel cycling on larval survival, another treatment
(n = 4 replicates) was added to simulate strong (12-h strong
cycling amplitude treatment; experiment 4) or weak (12-h
weak cycling amplitude treatment; experiment 5) diel cycling
amplitudes (Table 1). To establish the 12-h strong cycling
amplitude treatment in experiment 4, nitrox gas (65% N2, 35%
O2) combined with CO2-stripped air (Keppel et al., 2016; Porter
and Breitburg, 2016; Giomi et al., 2019) was introduced in place
of ambient air for 12-h durations during the day phase of the
24-h diel cycle to create supersaturated and basified conditions
[160% (11.3 mg O2 L−1)/8.34]. The 12-h weak cycling amplitude
treatment of experiment 5, rather than receive solely ambient
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air or nitrox gas during the 12 h day phase, received a different
combination of N2, CO2, and air for 12 h, to create DO/pH
conditions of 66% (4.7 mg O2 L−1)/7.63. For both experiments,
the night phase low DO/pH values remained identical across all
diel cycling treatments (Table 1).

Chemistry
Temperature, DO, and pHT measurements were made twice
daily for all static and fluctuating (once during the night phase
and once during the day phase) treatments using a calibrated
optical DO meter (Yellow Springs Instruments, ProODO) and
a Honeywell Durafet ISFET-based pHT sensor calibrated with
Dr. Andrew Dickson’s (Scripps Institute of Oceanography)
seawater pH standard, respectively. To calculate the entire
suite of carbonate chemistry parameters for each experiment,
seawater samples were collected from replicates across each
treatment at the beginning and/or end of the experiment in
borosilicate, biological oxygen demand (BOD) bottles, preserved
with 1% mercuric chloride, and sealed with a glass stopper
using Apiezon L ultra-high vacuum grease and rubber bands, for
dissolved inorganic carbon (DIC) analyses (Riebesell et al., 2011).
A VINDTA 3D (Versatile Instrument for the Determination of
Total Carbon) delivery system extracted DIC from samples which
was released as CO2 to a UIC CM5017O coulometric titration
unit that measured total DIC. Certified reference materials
(CRM) provided by Dr. Andrew Dickson (Scripps Institute
of Oceanography) were analyzed before each set of analyses,
which only proceeded when recovery of CRM exceeded 99.6%.
For each treatment, all carbonate chemistry parameters were
calculated via the CO2SYS program1 using measured values of
pH, DIC, temperature, salinity, pressure, and H2CO3 dissociation
constants (Millero, 2010).

Statistical Analyses
RStudio statistical software (Version 1.3.959) was used for all
statistical analyses, and the map was created with ArcMap
(10.7.1). Differences in percent survival data were assessed
using Analysis of Variance (ANOVA) tests with treatment as
the explanatory variable, followed by post hoc Tukey Honest
Significant Difference tests. Shapiro-Wilk tests of normality and
Bartlett’s tests for homogeneity of variance were conducted to
test ANOVA assumptions, and if an assumption was not met
survival data was arc-sin square root transformed and retested.
All survival values are reported as means ± standard error.
Seawater chemistry values are reported as means ± standard
deviations, with temperature, DO and pH values derived from
twice daily measurements of these parameters in all replicates per
treatment, and all other carbonate chemistry parameters derived
from pH and DIC measurements from the replicates of each
treatment at the start and/or end of experiments. Differences
between average DO and pH levels in static and diel cycling
treatments were assessed via Kruskal-Wallis ANOVAs followed
by post hoc Wilcoxon rank sum tests, correcting for multiple
comparisons through the Benjamini-Hochberg procedure.

1https://cdiac.ess-dive.lbl.gov/ftp/oceans//co2sys/CO2SYS_calc_XLS_v2.3/

RESULTS

Static vs Diel Cycling DO/pH
Experiments
In the first and second experiments, C. sapidus zoea I larval
survival was compared across static control, static moderate,
static low, and diel cycling treatments (Figure 2, Table 1, and
see Supplementary Table 1 for detailed chemistry). For both
experiments average DO levels were significantly different across
all static and diel cycling treatments except for between the
moderate and diel cycling treatments, as intended (p < 0.05,
Wilcoxon test; Figure 2). The average pH in the diel cycling
treatment of experiment 1 had a slightly lower average pH value
(7.50 ± 0.05) than the moderate treatment (7.56 ± 0.02) but
were still comparable given the range of average pH conditions
among the other static treatments (7.93 and 7.31), and the average
pH in experiment 2 was statistically indistinguishable from the
moderate treatment, as intended.

For experiment 1 (96 h), among the static treatments, survival
in the low treatment (3 ± 1%) was significantly lower (p < 0.005,
Tukey HSD) than both the moderate (17 ± 2%) and control
(30 ± 6%) treatments for which there were no significant
differences in survival (Figure 2 and Supplementary Table 2).
Exposure to diel cycling did not provide refuge from low DO/pH
effects, as larval survival in the diel cycling treatment (4 ± 2%)
was significantly lower than the moderate and control treatments
(p < 0.05, Tukey HSD), and statistically indistinguishable from
the low treatment (Figure 2 and Supplementary Table 2). Given
the differences observed in the first experiment and the low
survival in the low and diel cycling treatments, the second
experiment sought to observe responses to similar chemistry
over a shorter time frame, 48 h. Unlike the first experiment,
there were no significant differences in larval survival among
the static control (33 ± 2%), moderate (30 ± 3%), and low
(25 ± 4%) treatments (Figure 2). The diel cycling treatment,
however, exhibited significantly reduced survival (16 ± 2%)
relative to the control and moderate treatments (p < 0.05, Tukey
HSD; Supplementary Table 2), while remaining statistically
indistinguishable from the low treatment (Figure 2). This further
emphasizes the failure of diel cycling to provide refuge from
hypoxic- and acidification-stress to blue crab larvae.

Diel Cycling Duration and Amplitude
Experiments
Following the static vs diel cycling experiments presented
above, three additional experiments of decreasing experimental
duration (experiment 3: 72 h, experiment 4: 48 h, experiment
5: 24 h) were performed to identify the effective minimum
duration of low DO/low pH needed to significantly depress larval
survival (Table 1). These experiments compared the survival of
C. sapidus zoea I larvae in static control conditions to that of
diel cycling conditions that varied in the (i) duration of the low
DO/pH conditions during the night phase (4 vs 8 vs 12 h), and
for experiments four and five, (ii) the amplitude (moderate vs
strong vs weak) of the diel cycling (Table 1 and Figure 3). For
each experiment, the magnitude of the low DO/pH values were
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FIGURE 2 | Survival of Callinectes sapidus zoea I larvae under static and diel cycling DO and pH regimes for experiments one (96-h experiment) and two (48-h
experiment). DO (A,D) and pH (B,E) values (see Supplementary Table 1 for all chemical values) for experiment one and two, respectively, diagrammed over a 24-h
interval from three static treatments and one diel cycling treatment (fluctuating between 12 h of hypoxic/acidified conditions and 12 h of normoxic/normocapnic
conditions every 24 h), for which shading represents the S.D. of static treatments and dotted lines represent average values of the diel cycling treatment. Average
larval survival for experiment one (C) and two (F), in which bars indicate means (±SE) and letters mark significant differences between treatments.

statistically indistinguishable across all diel cycling treatments, as
intended (p > 0.05; Kruskal-Wallis ANOVAs).

In the third experiment (72 h), DO/pH conditions were static
for the control treatment and fluctuating between a low DO/pH
phase in the night that lasted for 4, 8, or 12 h, and a high DO/pH
phase that lasted the remainder of the 24-h cycle (Figure 3
and see Supplementary Table 3 for detailed chemistry). Larval
survivorship in the 8-h (19 ± 6%) and 12-h treatments (20 ± 6%),
were significantly lower (p < 0.05, Tukey HSD) than the control
treatment (45 ± 2%), while the 4-h treatment (29 ± 3%) was not
(Figure 3 and Supplementary Table 4). There were no significant
differences in larval survival among the cycling treatments.

During the fourth experiment (48 h), a 12-h strong cycling
amplitude treatment was added, and the fourth experiment
duration was also 24 h shorter (Figure 3, Table 1, and see
Supplementary Table 5 for detailed chemistry). Fluctuating
DO/pH significantly reduced larval survival across all treatments

relative to the control (p < 0.05, Tukey HSD; Supplementary
Table 4) with the survival of 4-h (15 ± 6%), 8-h (6 ± 2%), 12-
h (0%), and 12-h strong cycling amplitude (9 ± 5%) treatments
all <50% of the control (35 ± 1%) treatment (Figure 3). Like
the prior experiment, there were no significant differences across
cycling treatments (Figure 3). Additionally, the amplitude of the
diel cycle did not significantly impact larval survival (Figure 3).
Due to the complete mortality across all replicates of the 12-h
treatment, the homogeneity of variance ANOVA assumption was
not met, however, ANOVA is robust to violations of the equal
variance assumption if the sample sizes are equal (Boneau, 1960).

In the final experiment which persisted for only 24 h
(experiment 5), a new treatment–the 12-h weak cycling
amplitude treatment–replaced the 12-h strong cycling amplitude
treatment of the prior experiment (Figure 3, Table 1, and see
Supplementary Table 6 for detailed chemistry). Larval survival
in the 8-h (15 ± 6%), 12-h (7 ± 4%), and 12-h weak cycling
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FIGURE 3 | Survival of Callinectes sapidus zoea I larvae under varying durations and amplitudes of low DO/pH diel cycling for experiments three (72-h experiment),
four (48-h experiment), and five (24-h experiment). DO (A,D,G) and pH (B,E,H) values, diagrammed over a 24-h interval from the static and cycling treatments, in
which dotted lines represent average values of the cycling treatments (see Supplementary Tables 3, 5, 6 for all chemical values and Supplementary Table 7 for
daily DO and pH averages of cycling treatments across experiments). Average larval survival (C,F,I), in which bars indicate means (±SE) and letters mark significant
differences in survival; Captions SCA and WCA denote strong cycling amplitudes and weak cycling amplitudes, respectively.

amplitude (8 ± 6%) treatments were significantly lower than
the control (48 ± 2%) treatments (p < 0.005, Tukey HSD), but
contrary to the previous two experiments, were also significantly
lower than the 4-h (51 ± 1%) treatment (p < 0.005, Tukey
HSD; Figure 3 and Supplementary Table 4). There were no
significant differences between the control and 4-h treatments,
and again the amplitude of diel cycling did not impact larval
survival (Figure 3).

DISCUSSION

Complex interactions between global and smaller scale
biogeochemical processes can create highly dynamic coastal
environmental conditions (Tyler et al., 2009; Rabalais et al., 2010;
Carstensen and Duarte, 2019; Rheuban et al., 2019). The dynamic

range of DO, CO2, and pH in shallow eutrophic estuaries over
diel cycles can force organisms to endure environmental
extremes for multiple hours each day. This study revealed
that brief exposures to coastal hypoxia and acidification under
fluctuating DO/pH regimes consistently elicited significant
mortality of C. sapidus zoea I larvae. Daily DO and pH values
of ∼66% (∼4.6 mg O2 L−1) and ∼7.59, conditions that are
commonly observed across eastern US estuaries (Baumann
and Smith, 2017), while benign under static exposures, induced
precipitous declines in survival under diel cycling exposures,
decreasing survival by as much as 75% in the diel cycling
treatment compared to the static moderate treatment over
a 4-day period (experiment 1). Indeed, significant mortality
(>90%) occurred in fluctuating treatments with daily DO and
pH averages as high as 95% (6.7 mg O2 L−1) and 7.89, conditions
common in most temperate and tropical estuaries. Despite the
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daily restoration of favorable environmental conditions, diel
cycling did not provide larvae a refuge from the physiological
stress associated with chronically low DO/pH conditions, even
when daytime DO and pH levels were supersaturated and
basified, respectively, and even when exposures were as short
as one 8-h period.

The physiological capacity to maintain homeostasis in
dynamic DO/CO2 environments likely depends on both the
adaptive history and life stage of the animal (Waldbusser and
Salisbury, 2014; Alter et al., 2015; Leiva et al., 2018). Many early-
stage decapod planktonic larvae are unable to regulate their
metabolism under declining DO (Belman and Childress, 1973;
Spicer, 1995). Their rudimentary scaphognathites (appendages
used to draw water toward the gills) and absence of functional
gills (Costlow and Bookhout, 1959) suggests that gas exchange
occurs across the body’s surface, severely restricting decapod
larvae from altering the rate of O2 uptake and CO2 expulsion
(Anger, 2001). Eight or twelve consecutive hours of hypoxia
[∼28% (∼2.0 mg O2 L−1)] under diel cycling regimes induced
significant mortality (>80%) across all experiments, regardless
of the experimental duration, including over only 1 day.
In another study, megalopae, which exhibit more developed
respiratory morphology and a greater ability to oxyregulate,
experienced >80% mortality when exposed to eighteen sustained
hours of 20% air saturation (∼1.4 mg O2 L−1 at the
temperature/salinity of our experiments), suggesting slightly
improved tolerances compared to zoea I larvae (Tankersley and
Wieber, 2000). Adults, by contrast, can endure over 350 h of
hypoxia [34% (2.46 mg O2 L−1)] and experience no significant
mortality relative to crabs in normoxic conditions (Brouwer
et al., 2005; Brown-Peterson et al., 2005). Curiously, first-instar
juveniles (J1s) were shown to deviate from the pattern of
increased hypoxia tolerance with age, as J1 individuals were
more vulnerable than megalopae (Tankersley and Wieber, 2000),
perhaps as a result of the energetic costliness of the molting
process associated with transition to the J1 stage.

Several behavioral, morphological, and physiological
adaptations have been identified that support the general
trend of increased hypoxia tolerance with age in the blue
crab. Firstly, juvenile and adult blue crabs can simply relocate
away from hypoxic habitat (Pihl et al., 1991). Additionally, the
development of functional scaphognathites and structurally
complex gills among benthic-stage blue crabs permits more
efficient O2 extraction under declining DO conditions through
hyperventilation (Batterton and Cameron, 1978; McMahon
and Wilkens, 1983). And physiologically, hypoxia can induce
increases in O2 affinity among adult blue crabs by increasing the
amount of, and stimulating a structural change to, the respiratory
protein hemocyanin (deFur et al., 1990; Mangum, 1997).
Adaptations that benefit adult blue crabs under hypoxia can also
increase tolerance to coastal acidification. Ion exchange across
the gills, for example, allows for regulation of HCO3

− in the
hemolymph (Cameron, 1985) that, in addition to hemocyanin
(Whiteley, 2011), buffers hemolymph pH (Melzner et al., 2009).
Moreover, for adult blue crabs, the high CO2 concentrations
commonly found in hypoxic environments can actually mitigate
exercise fatigue (lengthening time until fatigue and reducing

the number of turns and stops while walking) under hypoxia
(Stover et al., 2013) by increasing hemocyanin oxygen binding
affinity (Mangum and Burnett, 1986; Lehtonen and Burnett,
2016), an adaptation that improves blue crab mobility and
the ability to ultimately escape low DO/low pH conditions
(Lehtonen and Burnett, 2016).

Lacking many of these adaptations at the zoea I stage,
C. sapidus larvae exhibited rapid mortality over relatively
short (24–96 h) timescales. Consistent across all experiments,
significant negative effects were detected in the diel cycling
treatments with 8 or 12 h of low DO/pH, whereas effects of 4-
h treatments varied depending on the experiment. Eight hours
of stress over 1 day induced significantly increased mortality
(experiment 5), for instance, yet 4 h of stress each day for
three consecutive days did not (experiment 3). Hence, the lethal
threshold for daily exposure to comparable levels of low DO/pH
is likely somewhere between 4 and 8 h, above which the metabolic
strains of the high O2 demand and limited supply overwhelm
the larvae. Respiration rates of early stage decapod larvae often
decrease substantially under low partial pressures of O2 (Anger,
2001), indicating that the low availability of O2 over 8-h or longer
durations can limit energy metabolism and prevent larvae from
maintaining energy balance. Yet 4-h exposures can significantly
reduce larval survival at times, as demonstrated in experiment
4 (48-h total duration). Interestingly, the average larval survival
of the ambient treatment in that experiment was the lowest
of the three duration experiments, suggesting that larval health
may have already been compromised or that maternal effects
may contribute to short-term low DO/pH tolerance. Whenever
possible we controlled for maternal effects by stocking single
experiments with larvae from multiple mothers, however, when
larval release was not coordinated or only one female was
available the larvae were still used in experiments (Table 1).

While either nocturnal acidification, hypoxia, or a
combination of the two could have contributed to decreased
survival of crab larvae, we hypothesize that the low DO was
the primary driver of mortality. Although the challenges of
acid-base balance under low pH stress may act as a secondary
stressor, Tomasetti et al. (2018) determined that significant
acidification effects were not detected after 96 h of low pH similar
to levels explored here but were detected after 14-day exposures.
This was consistent with another study that found significant
ocean acidification effects on C. sapidus larvae after periods
exceeding 10 days and suggested that the energetic requirements
of molting may have contributed to their sensitivity to low
pH (Giltz and Taylor, 2017). Our short (≤96 h) experiments
ensured that all effects occurred days before the first molt
(Costlow and Bookhout, 1959) and were not a result of increased
vulnerability or energetic strain associated with the molting
process. Nonetheless, our experiments intentionally did not
separate the two stressors seeking instead to mimic their
covariance, so it is possible that the reported negative effects on
larval survival are the result of a combination of low DO and
low pH stress, especially since fluctuating co-stressors had not
previously been tested.

Although 12-h durations of diel cycling hypoxia/acidification
were not directly measured during our environmental
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monitoring, this severe scenario is not unrealistic for surface
waters impacted by cultural eutrophication (Tyler et al., 2009;
Wallace et al., 2014). This scenario may not apply to some systems
such as some deep stratified systems or shallow oligotrophic
systems, where shorter or less intense exposures may be more apt.
Yet we note that for some systems, the true impacts of nocturnal
hypoxia on C. sapidus larvae at times may be more severe than
reported here as our experiments used low DO conditions ∼28%
saturation or ∼2.0 mg L−1; shallow eutrophic estuaries can
experience nocturnal DO concentrations near or at the surface
that are much lower than this including anoxia (see Beck and
Bruland, 2000, measured at a depth < 1.3 m; Tyler et al., 2009,
measured throughout the entire water column; Wallace, 2020,
measured at depths of 0.7–1.3 m at multiple locations). These
findings have important implications for C. sapidus populations
and fisheries/estuarine management, as even small reductions
in larval mortality rates can markedly decrease post-dispersive
recruitment (Underwood and Fairweather, 1989). Detection of
zoea I larvae in waters with salinities as low as 16 (Sandifer, 1973)
and more commonly in polyhaline salinity zones (Sandifer,
1975), as well as detection of zoea II larvae at the mouths of
large embayments (Tagatz, 1968; Sandifer, 1973) suggests that
larval release can sometimes occur upstream of estuary mouths,
committing larvae to extended periods in the estuary. Weekly
and/or monthly sampling in Delaware and Chesapeake Bays
demonstrated that C. sapidus larval abundances peak in late
summer (Sandifer, 1973; Dittel R and Epifanio, 1982; Epifanio
et al., 1984) when coastal hypoxia/acidification is often most
severe (Breitburg, 1990; Wallace et al., 2014). Moreover, larvae
are released at night (Provenzano et al., 1983) or in the early
morning (Tankersley et al., 2002), maximizing the likelihood
of encountering the low DO/pH conditions associated with
the most stressful phase of the diel cycle (Tyler et al., 2009;
Baumann et al., 2015). Collectively, these observations suggest
that estuarine DO and pH conditions could influence the success
of larval recruitment to the juvenile stage.

Decades of larval transport research have established the
general pattern of estuarine export and offshore development
for C. sapidus larvae in the Mid-Atlantic (Epifanio, 1995, 2019;
Epifanio and Garvine, 2001). Very little is known regarding
patterns of larval release and transport north of Delaware Bay
(e.g., for populations inhabiting NY and CT waters) where the
coastal morphology, currents, and circulation patterns differ and
where profits from blue crab landings have expanded in recent
decades (National Marine Fisheries Service (NMFS), 2019). For
example, NY and other northeast United States host a plethora
of barrier island estuaries, some of which have ocean inlets
that are entirely closed to the Atlantic Ocean during summer
months (e.g., Mecox Bay, Sagaponack Pond, Georgica Pond,
NY, United States; Gobler et al., 2005). In NY, these lagoonal
estuaries host some of the most robust blue crab fisheries
of the state. The life cycle of blue crabs in these systems is
presently unknown as are the effects of the intense diel cycling
hypoxia and acidification in these systems (Figure 1) on resident
C. sapidus larvae. Additional environmental monitoring and
larval transport research in these regions is needed to clarify the
frequency and durations with which larvae of C. sapidus and
other species encounter coastal hypoxia/acidification.

The acute sensitivities of C. sapidus larvae to coastal hypoxia
revealed in our study are consistent with other meroplanktonic
decapod species that inhabit well-oxygenated coastal surface
waters for the majority of their larval development (Spicer, 1995;
Alter et al., 2015). Specific adaptations such as catadromous
migrations of adult females (Tankersley et al., 1998) and post-
hatch upward swimming motion of larvae (Sulkin et al., 1980)
likely make estuarine retention of C. sapidus over many diel
cycles rare as larvae are eventually flushed out of estuaries to the
shelf. Indeed, zoea I larvae outnumbered all other stages sampled
in Chesapeake Bay, and are commonly found at more offshore
stations in both Chesapeake and Delaware Bays (Sandifer, 1973,
1975; Epifanio et al., 1989). These patterns, however, may
also reflect the challenges of surviving even short durations of
estuarine transport, given the variable DO/pH regimes and high
predation rates.

Despite their differences from C. sapidus larvae, estuarine
species with fully estuarine larval life history strategies may not
necessarily be adapted to low DO/low pH. Rather, they may
merely be closer to specific tolerance-limits that will potentially
be encountered more frequently or for longer durations under
continued climate change (Waldbusser and Salisbury, 2014;
Breitburg et al., 2018; Grear et al., 2020). Larval Argopecten
irradians, Mercenaria mercenaria, and Crassostrea virginica,
for instance, exhibited significant reductions in survival and
growth under diel cycling hypoxia and acidification that were
no less severe than under chronic stress (Clark and Gobler,
2016). Such larval sensitivities to diel cycling hypoxic/acidified
conditions likely contribute to the challenges associated with
shellfish restoration in eutrophic environments for which

FIGURE 4 | Survival of Callinectes sapidus zoea I larvae (relative to control
treatments) as a function of daily average DO over periods ≤ 96 h of static
(triangle) or fluctuating (circle) low DO conditions. Each point represents one
experimental low DO treatment from the five experiments conducted in this
study and four experiments by Tomasetti et al. (2018). The shade of red
indicates the duration of hypoxia over a diel cycle within the fluctuating
treatments. See Supplementary Table 8 for collated data.
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shellfish populations often fail to recover to historical abundances
(Jackson et al., 2001; Mann and Powell, 2007; Johnson et al.,
2009).

CONCLUSION

Natural and direct anthropogenic pressures influence the
dynamic range of coastal DO and pH conditions and can result
in short, repeated exposure to environmental extremes over
diel and/or tidal cycles. In coastal environments subject to high
dynamicity, the extreme conditions in some cases may be more
relevant to the ecology of the system than average conditions.
Pooling percent survival data from this study and experimental
data from Tomasetti et al. (2018) where larvae were exposed
to a range of static low DO levels for periods ≤96 h (by first
time point) further evidenced that at comparable average DO
values, diel cycling hypoxic conditions often elicited more severe
reductions in larval survival than static treatments (Figure 4 and
Supplementary Table 8). For instance, static DO levels >50%
air saturation never elicited declines in survival >50%, yet under
diel cycling hypoxia >50% declines in survival were common at
daily average DO levels ranging from 62 to 95%, occurring in
10 of 12 cases with the two exceptions involving 4-h exposures
(Figure 4). Short (≤24 h) exposures to low DO have been shown
to negatively impact the survival of C. sapidus megalopae and
J1 individuals that may experience these conditions when they
return and settle in estuarine habitat (Tankersley and Wieber,
2000). Our novel findings suggest that reductions in recruitment
may similarly be influenced by coastal hypoxia/acidification
encountered at the zoea I stage via a significant increase in
mortality rates among larvae exposed briefly (8 h) to low
DO/pH conditions during estuarine export. Management plans
for coastal fisheries that consider fluctuating environmental
conditions may better support their long-term sustainability,
particularly for estuarine species, as exposures to low DO/pH
over timescales shorter than one tidal period were proven to be
lethal here. Advancements in autonomous in situ monitoring
technology can now provide more cost-effective long term,
high frequency environmental data and can reveal episodes of
hypoxia/acidification that manual measurements made during
the hours of daylight would miss. Our results highlight the
value of integrating coastal DO and carbonate system variability
into experimental designs as static scenarios can conceal adverse
outcomes. Average environmental conditions do not always
provide the most relevant information to assess vulnerability
to stressors in fluctuating environments, especially given the
high sensitivity and short timescales of biological processes such
as early shell formation or larval development. Consequently,

regulatory standards that simply rely on average DO and/or pH
conditions rather than extremes or durations of extremes may
leave aquatic life vulnerable to environmental harm, particularly
under future coastal conditions (Tomasetti and Gobler, 2020).
To address these uncertainties, additional studies examining
the tolerances of coastal biota at early life stages to multiple
stressors under various amplitudes and durations of fluctuating
conditions are required.
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