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Species delimitation of corals is one of the most challenging issues in coral reef
ecology and conservation. Morphology can obscure evolutionary relationships, and
molecular datasets are consistently revealing greater within-species diversity than
currently understood. Most phylogenetic studies, however, have examined narrow
geographic areas and phylogeographic expansion is required to obtain more robust
interpretations of within- and among- species relationships. In the case of the blue
coral Heliopora, there are currently two valid species (H. coerulea and H. hiberniana) as
evidenced by integrated genetic and morphological analyses in northwestern Australia.
There are also two distinct genetic lineages of H. coerulea in the Kuroshio Current
region that are morphologically and reproductively different from each other. Sampling
from all Heliopora spp. across the Indo-Pacific is essential to obtain a more complete
picture of phylogeographic patterns. To examine phylogenetic relationships within
the genus Heliopora, we applied Multiplexed inter simple sequence repeat (ISSR)
Genotyping by sequencing (MIG-seq) on > 1287 colonies across the Indo-West Pacific.
Maximum likelihood phylogenetic trees indicated the examined Heliopora samples
comprise three genetically distinct groups: H. coerulea group, H. hiberniana group,
and a new undescribed Heliopora sp. group with further subdivisions within each
group. Geographic structuring is evident among the three species with H. hiberniana
group found in the Indo-Malay Archipelago and biased toward the Indian Ocean whilst
Heliopora sp. was only found in the Kuroshio Current region and Singapore, indicating
that this taxon is distributed in the western Pacific and the Indo-Malay Archipelago.
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Heliopora coerulea has a wider distribution, being across the Indian Ocean and western
Pacific. This study highlights the effectiveness of phylogenetic analysis using genome-
wide markers and the importance of examining populations across their distribution
range to understand localized genetic structure and speciation patterns of corals.

Keywords: MIG-seq, single nucleotide polymorphism, Helioporadae, octocoral, species delimitation, coral reef,
evolutionary relationships, species diversity

INTRODUCTION

Coral reef ecosystems have the highest biodiversity of all marine
ecosystems (Fisher et al., 2015) and are important in terms of
their scientific, economic, and social value (Moberg and Folke,
1999; Spalding et al., 2001; Cesar et al., 2003). However, reef-
building corals, the foundation organisms in coral reefs, have
been rapidly deteriorating (Hughes et al., 2003; Altieri et al., 2017;
Eyre et al., 2018) due to coral mass bleaching and other threats
associated with the on-going climate change (e.g., global warming
and ocean acidification) (Hoegh-Guldberg et al., 2007; Hoegh-
Guldberg and Bruno, 2010; Hoegh-Guldberg, 2011; Hughes et al.,
2018); local anthropogenic impacts (e.g., red-soil runoff, nutrient
enrichment, and marine plastic pollution) (Halpern et al., 2008;
Omori, 2011; Huang et al., 2020; de Oliveira Soares et al.,
2020); outbreaks of corallivorous animals (Birkeland and Lucas,
1990; Yasuda, 2018; Montalbetti et al., 2019) and coral disease
(Bruno et al., 2003, 2007; Burge et al., 2014). Approximately one-
third of the world’s reef-building corals are facing an elevated
risk of extinction (Carpenter et al., 2008; Wilkinson, 2008), but
many more cryptic species may be undescribed (Bickford et al.,
2007) and if the natural range of species is misunderstood, their
threatened status may be under-estimated (Richards et al., 2016).

The classification of reef-building coral species has
traditionally been based mainly on morphological characteristics
(Veron, 2000; Fabricius and Alderslade, 2001). In some cases,
however, morphological classification has been difficult due
to a high level of phenotypic plasticity across geographic and
depth gradients, and in some genera, there is a lack of discrete
morphological features that can be used to underpin species
identifications (e.g., Forsman et al., 2009; Marti-Puig et al., 2014;
McFadden et al., 2017). More recently, genetic information
based on several molecular markers has shown morphology
can conceal cryptic evolutionary relationships (Richards et al.,
2013) and it is increasingly common for genetically distinct
cryptic species or lineages to be found within widespread
coral species (e.g., Nakajima et al., 2012; Pinzón et al., 2013;
Warner et al., 2015). Such discordance between morphology and
genetics has led to confusion regarding the species boundaries
in many groups (e.g., Acropora, van Oppen et al., 2001;
Marquez et al., 2002, Pocillopora, Flot et al., 2008; Souter,
2010; Schmidt-Roach et al., 2013). Such ambiguity threatens
to undermine effective biodiversity conservation efforts and
prevents the true complexity of coral reef ecosystems from being
properly understood.

Molecular data is not, however, always able to provide a
definitive answer about species boundaries within reef-building
corals. Molecular systematic studies have been partly hindered by

the lack of appropriate genetic markers and the traditionally used
mitochondrial markers have suffered from inadequate analytical
resolution (Shearer et al., 2002; Ridgway and Gates, 2006;
Bilewitch and Degnan, 2011). The ability to interpret nuclear
datasets is also hampered by the multi-copy nature of genes
(Vollmer and Palumbi, 2004) even those that were originally
thought to be single copy (e.g., Pax-C, Rosser et al., 2017),
introgressive hybridization events (Veron, 1995; Richards et al.,
2013) and/or incomplete lineage sorting (e.g., van Oppen et al.,
2001; Souter, 2010; Yasuda et al., 2015). Recent advances in High-
Throughput Sequencing (HTS) have enabled the use of genome-
wide polymorphisms such as restriction site associated DNA
sequencing (RAD-seq, Miller et al., 2007; Baird et al., 2008; Rowe
et al., 2011; and Dart-seq, Rosser et al., 2017) and Multiplexed
inter simple sequence repeat (ISSR) genotyping by sequencing
(MIG-seq, Suyama and Matsuki, 2015) to infer phylogenetic
relationships. Such techniques often successfully delimit species
of non-model organisms including corals with higher resolution
than traditional genetic markers (RAD-seq, e.g., Pante et al., 2015;
Herrera and Shank, 2016; Quattrini et al., 2019 and MIG-seq, e.g.,
Tamaki et al., 2017; Park et al., 2019; Hirai, 2019).

MIG-seq is an easy, cost-effective, novel method to obtain a
moderate number of single nucleotide polymorphisms (SNPs) of
non-model organisms with polymerase chain reaction (PCR) and
HTS technology. The number of SNPs from MIG-seq analysis
is generally less than those obtained using other techniques
such as RAD-seq. However, MIG-seq has several advantages,
since the method can be performed with small amounts and/or
low-quality DNA and is relatively easy and cheap. Indeed,
MIG-seq successfully revealed species boundaries of octocoral
species that could be undetectable by traditional genetic markers
(Richards et al., 2018; Takata et al., 2019).While some studies
examined genetic relationships of closely related reef-building
corals using HTS techniques in geographically restricted regions
(e.g., Forsman et al., 2017; Johnston et al., 2017), only a
few studies have analyzed speciation and/or genetic divergence
patterns covering the Indo-Pacific scale (but see Warner et al.,
2015; Nakajima et al., 2017; Arrigoni et al., 2020; Wepfer et al.,
2020). For a more comprehensive picture of the phylogeographic
structure of coral species in the Indo-Pacific, and to understand
the species diversity of corals, it is necessary to obtain more
extensive representation of species across their geographic range.

Increasingly recognized is the importance of integrating
information about reproductive timing and physiology with
genetic and morphological data to obtain more robust estimates
of coral species (see Ohki et al., 2015; Rosser, 2015; Villanueva,
2016; Luzon et al., 2017; Richards et al., 2018). Timing of
reproduction in broadcast spawning species is particularly
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important because gametes are viable for only a few hours,
so individuals that spawn more than a few hours apart are
unlikely to cross-fertilize (Levitan et al., 2011) and in this regard,
reproductive timing heavily influences evolutionary patterns.
Whilst integrated datasets that include reproductive data and
cover a wide geographic area are emerging as the gold standard
in phylogenetic studies, practical and logistical constraints often
mean it is not possible to obtain complete sampling coverage in
every region (Keyse et al., 2014; Wepfer et al., 2021). Nevertheless,
examining the species boundaries, ecological preferences, and
distribution of reef-building corals is fundamental for promoting
effective conservation and management strategies.

The blue corals (genus Heliopora) are members of octocorals,
though it has a well-developed aragonite skeleton like those
of scleractinians (Quattrini et al., 2020). Owning to their hard
skeleton, Heliopora spp. play an important role in coral reef
accretion in various Indo-West Pacific reefs (e.g., Zann and
Bolton, 1985; Planck et al., 1988; Abe et al., 2008; Takino
et al., 2010), and therefore is an important reef-building
coral taxon. Heliopora coerulea (Pallas, 1766) has mainly three
growth forms, namely lobate, columnar, and encrusting (Dana,
1846), but with high morphological plasticity and continuous
variations among growth forms (Eguchi, 1948; Colgan, 1984;
H. Taninaka pers. obs.). Heliopora coerulea has long been
regarded as a living fossil, being the sole extant member
of the family Helioporidae (Colgan, 1984) until the recent
description of Heliopora hiberniana Richards et al., 2018, a
morphologically, genetically and reproductively distinct species
from northwestern Australia in the Indian Ocean (Richards
et al., 2018). To date, H. coerulea is known to be distributed
throughout the Indo-Pacific realm (Wells, 1954; Bouillon
and Houvenaghel-Crévecoeur, 1970; Zann and Bolton, 1985),
whereas H. hiberniana is known from the north-west shelf of
Western Australia, the Maldives, and the Wakatobi and Gili
Islands in Indonesia (Richards et al., 2018, 2020).

Heliopora spp. are gonochoric, brooding corals (Babcock,
1990) with short larval dispersal durations (Harii et al., 2002;
Harii and Kayanne, 2003). Due to such a low larval dispersal
ability, genetic connectivity among geographically separate
populations may be limited, a pattern that was evident within
the scale of several hundred square kilometers (Taninaka et al.,
2019). Therefore, it is possible that Heliopora includes further
genetically distinct lineages in the Indo-Pacific. Previous genetic
studies have indicated that additional cryptic species may indeed
be present within H. coerulea along the Kuroshio Current region
of the Philippines, Taiwan and Japan (Yasuda et al., 2014). Study
from Yasuda et al., 2014 hypothesized that there are at least two
genetically distinct lineages (HC-A and HC-B) of H. coerulea in
the Kuroshio Current region that can also be distinguished by
different gross morphologies (small branch for HC-A and flat
shapes for HC-B, Yasuda et al., 2014, 2015; Iguchi et al., 2019).
Subsequent observations (Saito et al., 2015; Villanueva, 2016)
and histological examination (Taninaka et al., 2018) revealed
that the reproductive timing of the two lineages is different by
almost one month even under similar environmental conditions.
However, the phylogeographical relationships among HC-A and
B in the Kuroshio Current regions, and with H. hiberniana and

H. coerulea in northwestern Australia are still unknown. The
aim of this study was to clarify the phylogenetic relationships
and distributions of the genus Heliopora across the Indo-West
Pacific to gain insights on the speciation patterns of Indo-Pacific
coral species. To achieve this goal, we collected Heliopora samples
widely from the Indo-West Pacific region and applied genome-
wide phylogenetic, phylogeographic, and population genetic
analyses using the MIG-seq method.

MATERIALS AND METHODS

Sample Collection and DNA Extraction
A total of 1287 Heliopora samples from a total of 73
sites across three western Pacific regions (Japan, Taiwan
and Guam) and Singapore, and three Indian Ocean regions
(northwestern Australia, Thailand, and the Maldives) were
collected using SCUBA from 2008 to 2019 (Supplementary
Table 1). Additionally, we used previously collected samples from
Japan and northwestern Australia (Supplementary Table 1).
The samples include those from the northernmost distribution
site (Yaku Island in Japan; Nakabayashi et al., 2017), and the
known deepest depth (from 50 m depth from Green Island,
Taiwan). All coral fragments were preserved in 99.5% EtOH and
kept at −20◦C until DNA extraction. During sampling, colonies
were photographed, and GPS information was acquired wherever
possible. All overseas sample collection was conducted through
legal procedures and collection cooperation with the support
of local research collaborating institutions; Academia Sinica in
Taiwan, University of Guam in Guam, National University of
Singapore in Singapore, Western Australian Museum and Curtin
University in Western Australia, Phuket Marine Biological
Center in Thailand, University of Milano-Bicocca and Marine
Research and High Education Center in Maldives (see also
FIELD STUDY PERMISSION). Genomic DNA was extracted
from the preserved samples using the hot alkaline solution
method (Meeker et al., 2007) or QIAGEN DNeasy Blood &
Tissue kit (QIAGEN, Hilden, Germany) on site. The first
PCR procedure of MIG-seq analysis was carried out at each
overseas laboratory except for Thailand samples from which
ethanol preserved coral fragments were imported in 2011 (CITES
number: AC.0510.2/407). We used them in this study under an
additional permit from the Department of Marine and Coastal
Resources in Thailand.

MIG-seq Library Preparation and
Sequencing
All the DNA extraction and first PCR procedure except for
domestic samples were carried out locally, and the first PCR
products were transported to Miyazaki, Japan. The first PCR step
was performed by using 8 pairs of multiplex ISSR primers of
Suyama and Matsuki (2015). The fragments were amplified with
the Multiplex PCR Assay Kit Ver.2 using a total volume of 7 µL
reaction in a thermal cycler with the following modified profile:
94◦C for 1 min followed by 29 cycles at 94◦C for 30 s, 38◦C for
1 min, 72◦C for 1 min, and a final extension at 72◦C for 10 min.
The 50-fold diluted first PCR product was used as the template
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DNA for the second, tailed-PCR to add the individual index
and the Illumina adapter sequence to each sample. PrimeSTAR
GXL DNA polymerase (TaKaRa Bio Inc., Otsu, Shiga, Japan) was
used for second PCR with a total volume of 12 µL reaction in a
thermal cycler with a following profile: 20 cycles at 98◦C for 10 s,
54◦C for 15 s, 68◦C for 1 min. The second PCR products were
pooled as a single mixture library by using 1µL of each product.
The mixed sample was electrophoresed on 0.1% agarose gel to
verify amplification. The size ranged from 350 to 800 bp and
DNA was manually extracted from the gel on a transilluminator.
After extracting genomic DNA from the gel using FastGene
Gel/PCR Extraction Kit (Nippon Genetics, Tokyo, Japan), library
concentration was measured with a Qubit fluorometer (Thermo
Fisher Scientific, Waltham, MA, United States). Finally, the DNA
library was sequenced on a MiSeq Sequencer (sequencing control
software v2.0.12, Illumina, San Diego, CA, United States) using
a MiSeq Reagent Kit v3 (150 cycles; Illumina). Image analysis
and base calling were performed using real-time analysis software
v1.17.21 (Illumina). DarkCycle option was changed “Amplicon-
dark 17-3” to “Amplicon-dark 17-17” on the “Chemistry” line
(see also Suyama and Matsuki, 2015).

Sequence Processing and SNP
Genotyping
The FASTX-toolkit version 0.0.14 (Gordon and Hannon, 2012),
with a fastq-quality-filter setting of –Q 33 –q 30 –p 40, was
used to eliminate low-quality reads and primer sequences
from the MIG-seq raw data. Adapter sequences for Illmina
MiSeq were removed from both 5’ end and 3’ end using
Cutadapt version 2.10 (Martin, 2011). Short reads less than
80 bp were excluded using an in-house python script. To
further exclude contamination from Symbiodiniaceae-DNA, and
to obtain larger numbers of loci (Shafer et al., 2017), the
filtered raw reads were mapped onto the reference genome
of Heliopora coerulea obtained from Symbiodiniaceae-free
larvae (10.6084/m9.figshare.14356418) using Stacks version 2.2.0
(Catchen et al., 2011; Rochette et al., 2019) with the reference-
aligned pipeline for single nucleotide polymorphism (SNP)
discovery and genotyping. As a first step, the unpaired reads
were removed using the repair.sh software tool within BBtools
software package (Bushnell, 2017). Next, the retained reads
were aligned to the reference genome using Burrows-Wheeler
Aligner (BWA) version 0.0.17-r118 (bwa index and mem with
default parameters) (Li and Durbin, 2009). Alignments were then
compressed, sorted, and indexed with SAMtools version 1.10 (Li
et al., 2009). Finally, SNP genotyping for each individual was
carried out using the gstacks program in Stacks with default
setting. SNP calling for each genetic analysis was carried out
using the populations program in Stacks with the option -r to
obtain different minimum proportions of genotyped individuals
per locus (0.1 for phylogenetic analyses, 0.9 for assigning clones
and population genetic analyses), and the option –ordered_export
to ensure that only one of the overlapping SNPs is output from
reference aligned data. All the output files from Stacks were
converted to the appropriate formats for each genetic analysis
using PGDSpider version 2.1.1.5 (Lischer and Excoffier, 2012).

Assign Clones
We used the software GenoDive version 3.04 (Meirmans, 2020)
to assign possible clones within each population based on the
infinite allele model (IAM) omitting all missing data. Less
than 12 differences of multi-locus genotype within the same
population were identified as possible clone mates (estimated
by inspection of the pairwise distance histogram in GenoDive).
All clone mates except for one individual with the least missing
data were removed from this study. After removing possible
clones, we selected up to three least missing data samples per
sampling site. In case multiple different gross morphologies
and/or genetically different lineages were found within the same
site, up to three samples per morphology were selected. Finally,
we rerun Stacks using this selected dataset excluding possible
clones to obtain new SNPs for phylogenetic and population
genetic analyses.

Phylogenetic Analysis
We estimated phylogenetic trees based on the Maximum
likelihood (ML) method. The program IQ-TREE2 version 2.0.6
(Minh et al., 2020), using the TVM + F + R5 model selected
based on the Bayesian Information Criterion (BIC), was used
to reconstruct a phylogenetic hypothesis for Heliopora spp.
The bootstrap analysis was performed with 1000 replicates
using UFBoot, Ultrafast Bootstrap Approximation (Minh et al.,
2013). The final tree was drawn using FigTree version 1.4.4
(Rambaut, 2012).

Population Genetic Analysis
We conducted Principal Coordinates Analysis (PCoA) to
examine genetic relationships among Heliopora individuals
using GenAlEx version 6.502 (Peakall and Smouse, 2012).
In addition, Discriminant Analysis of Principal Components
(DAPC) (adegenet package version 2.1.3 in R version 4.0.2)
(Jombart, 2008; Jombart et al., 2010; Jombart and Ahmed, 2011)
was performed to visualize the genetic structure. The lowest BIC
was used to detect the optimal number of K clusters.

RESULTS

Number of Reads and SNPs From
MIG-seq Analysis
In total 339,818,358 raw reads with an average of 264,039 reads
per sample were obtained for 1,287 individuals. After filtering
low-quality reads, 335,164,915 reads with an average of 260,423
reads per sample were obtained. After excluding index, adapter,
and short reads less than 80 bp, 139,837,592 reads with an
average of 108,654 reads were obtained. In total 67,119,478
reads were mapped onto the reference-genome with an average
of 52,152 reads per sample. We used 795 SNPs across 1,287
individuals (r = 0.9) to find possible clones, and then excluded
576 individuals from the subsequently genetic analyses. We
finally selected 245 individuals from 73 sampling sites from 7
regions (DRA Accession No. DRA012077) for phylogenetic (ML
tree; 24,741 SNPs, r = 0.1) and population genetic analyses
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(PCoA and DAPC; 1,092 SNPs, r= 0.9). For the latter, we selected
238 individuals from the final dataset after excluding seven
individuals with a missing rate of more than 50% per 1,092 SNPs.

Phylogenetic Relationships
ML phylogenetic analysis revealed three major groups of
Heliopora spp. in the Indo-West Pacific with 100% bootstrap
values (Figure 1). The phylogenetic hypothesis presented here
indicated that there is one new undescribed group (hereafter
Heliopora sp. group) genetically different from the other two
groups, each of which includes typical morphologies of the
previously described species (slender-branching growth form
H. hiberniana whose type locality is in the northwestern
Australia; lobate growth form H. coerulea whose type locality
is in the Indian Ocean). The “Heliopora sp.” group (shown in
blue in Figure 1) comprises the HC-A lineage found in Kuroshio
Current regions including Japan and Taiwan (Yasuda et al.,
2010, 2014, 2015; Taninaka et al., 2019), and Singapore. The
“H. hiberniana” group (shown in green in Figure 1) includes
the holotype of H. hiberniana found in northwestern Australia
(Richards et al., 2018) and the eastern Indian Ocean samples from
Thailand and the Maldives. The “H. coerulea” group (shown in

red in Figure 1) comprises mainly lobate growth morphs HC-
B lineage found in Kuroshio Current regions including Japan
and Taiwan (Yasuda et al., 2010, 2014, 2015; Taninaka et al.,
2019), Guam, and H. coerulea found in northwestern Australia
(Richards et al., 2018). In addition, there were genetically
isolated subclades within each group that clustered together
by different growth forms or geographic regions (Figure 1;
sp.1–3, hib.1–2, and coe.1–3). The Heliopora sp. group was
divided into three subclades: Singapore subclade (sp.1), HC-
A with only columnar growth form subclade of Japan (sp.2),
and HC-A with both encrusting and columnar growth forms
subclade found in both Japan and Taiwan (sp.3). Heliopora sp.3
also included a sample collected from 50m depth in Green
Island, Taiwan. A sample collected from Yaku Island in Japan,
the northernmost distribution site, looks like an outgroup of
sp.2 and sp.3 in the phylogeny, possibly because it had a
hybrid genotype between Heliopora sp.2 and sp.3 based on
STRUCTURE analysis (data shown in Supplementary Figure 1).
The group “H. hiberniana” was divided into two subclades:
northwestern Australia H. hiberniana subclade (hib.1) and a
subclade consisting of Thailand and the Maldives samples (hib.2).
The group “H. coerulea” was divided into three subclades; a

FIGURE 1 | Maximum likelihood phylogeny of Heliopora spp. Node supports are provided if bootstrap values =90%. Blue Heliopora sp. group composed of three
subclades; Singapore subclade (sp.1), a subclade of HC-A with columnar growth form found in Japan (sp.2), and a subclade of HC-A with both encrusting and
columnar growth forms found in Japan and Taiwan (sp.3). Green H. hiberniana group composed of two subclades; a subclade including the holotype of
H. hiberniana found in northwestern Australia (hib.1) and a Thailand and the Maldives subclade (hib.2). Red H. coerulea group composed of three subclades; Guam
subclade (coe.1), a subclade of H. coerulea in northwestern Australia (coe.2), and a subclade of HC-B found in Japan and Taiwan (coe.3).
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Guam subclade (coe.1), H. coerulea in northwestern Australia
subclade (coe.2), and a subclade consisting of HC-B found in
Japan and Taiwan samples (coe.3).

Individual-Based Genetic Differentiation
Consistent with the phylogenetic analysis result, population
genetic analyses revealed three genetic isolated groups of
Heliopora with eight subclades in the Indo-West Pacific
(Figures 2A,B). The PCoA showed three clusters based on
11.73% (PC1) and 7.3% (PC2) of the total variability (Figure 2A).
The DAPC also showed clear genetic separation of the three
clusters and eight subclades (Figure 2B). K = 3 was selected
supporting the ML phylogeny result, while K = 8 was determined
as the optimal number of clusters by calculating the first
200 PCs for the maximum of 50 clusters based on BIC. The
posterior DAPC assignments of both K = 3 and 8 were

consistent with the prior clusters (all blue crosses were on
red rectangles).

Geographical Distribution
The three groups of Heliopora indicated uneven geographical
distribution (Figure 3A). The distribution of Heliopora sp. group
was biased to western Pacific Ocean side including Kuroshio
Current region (Japan and Taiwan) and the South China Sea
(Singapore). On the contrary, the distribution of H. hiberniana
group was mainly in the Indian Ocean side such as Kimberley
region and Christmas Island in northwestern Australia, the
Andaman Sea (Thailand), and the Maldives. The H. coerulea
group was distributed both in the Indian Ocean and western
Pacific ranging from the Guam and the Kuroshio Current region
(Japan and Taiwan) to Kimberley and Christmas Island in
northwestern Australia. The distribution of H. coerulea group

FIGURE 2 | (A) Principal coordinates analysis calculated by GenAlEx v.6.502 using pairwise codominant genotypic distance. Each point represents an individual.
(B) Genotype clusters composition plots (above two), and a graph of inference of the number of the PCs and BIC values (below two) of the DAPC. Each bar
represents an individual and the colors represent proportional membership coefficients, K = 3 based on 2 PCs and K = 8 based on 7 PCs groups. All the colors
used in (A) and (B) correspond with those in the ML tree (Figure 1).
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FIGURE 3 | (A) Geographical distributions of the three Heliopora spp. groups. (B) Gross morphologies of the three Heliopora spp. groups. H. coerulea group; (a)
lobate growth form in Guam (coe.1), (b) lobate growth form in northwestern Australia (coe.2), (c) lobate growth form in Japan and (d) Taiwan (coe.3), and (e)
thick-branching growth in Guam (coe.1). H. hiberniana group; (f) slender-branching form in the type locality in northwestern Australia (hib.1), and (g)
slender-branching and (h–j) lobate growth form in the Maldives (hib.2). Heliopora sp. group; (k) columnar growth form in Singapore (sp.1), (l) columnar growth form
in Japan (sp.2), (m) columnar growth form in Japan (sp.3), (n) encrusting growth form in Japan (sp.3), and (o) encrusting growth form in the mesophotic zone (50 m)
in Taiwan (sp.3).

was partly overlapping with the other two species groups in Japan,
Taiwan, and northwestern Australia (Figure 3A, coe.2 and hib.1;
coe.3 and sp.2-3).

Gross Morphology
The gross morphologies of the three groups of Heliopora were
highly variable (Figure 3B). H. coerulea group included two
typical morphs; lobate growth form (Figure 3B, a–d) and thick-
branching growth form (Figure 3B, e). H. hiberniana group
included two typical morphs; slender-branching growth form
(Figure 3B, f,g) and lobate growth form (Figure 3B, h–j).
Heliopora sp. group included two typical morphs; columnar
growth form (Figure 3B, k–m) and encrusting growth form
(Figure 3B, n,o). The typical growth forms of Heliopora sp.
group were relatively distinct from other two species, while
the morphologies of H. hiberniana group and H. coerulea

group partly overlapped and were difficult to identify by
gross morphology.

DISCUSSION

In the present study, we examined the phylogenetic relationships,
gross morphological variations, and the geographical
distributions of Heliopora spp. collected from the Indo-
West Pacific region. Our phylogenetic reconstruction indicates
that there are three genetically isolated species groups in the
genus Heliopora and we provide evidence that there is substantial
subcladal genetic structuring within each group.

We do not describe the newly found Heliopora sp. group
or its subclades as new species of the genus Heliopora in this
study. Cladistic analysis and formal species description are being
undertaken separately.
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Phylogeography and Speciation Patterns
of Heliopora
Phylogenetic and population genetic analyses using genome-
wide SNPs by MIG-seq showed that the Indo-West Pacific
Heliopora was divided into three groups: H. coerulea group,
distributed in the Indo-West Pacific and including HC-
B in the Kuroshio Current region; H. hiberniana group
distributed mainly in the Indian Ocean including the
type locality of H. hiberniana in northwestern Australia;
and a new undescribed Heliopora sp. group distributed
mainly in the Western Pacific Ocean, including HC-A
in the Kuroshio Current region (Figures 1, 2 and 3A;
Supplementary Table 1).

The new undescribed Heliopora sp. group was distributed
mainly in the Western Pacific (Japan and Taiwan) and Singapore
in this study, while H. hiberniana group was distributed mainly
in the Indian Ocean (northwestern Australia, the Andaman Sea
in Thailand, and the Maldives in this study; distributed also
in Indonesia, Richards et al., 2020). Such uneven geographical
distributions imply the origin of Heliopora sp. group could
be in the Pacific Ocean and that of H. hiberniana could be
in the Indian Ocean, but this remains to be tested with a
dated phylogeny. Cenozoic tectonic events (Hall and Holloway,
1998) and sea-level fluctuations associated with climate change
(Pillans et al., 1998) in the area between the Indian and Pacific
Oceans are thought to have promoted allopatric speciation in
many coral reef organisms (Carpenter et al., 2011) including
starfish (Benzie, 1999; Vogler et al., 2008) and reef fishes
(Gaither et al., 2011; Bowen et al., 2013). It is, therefore,
possible that the genus Heliopora has also allopatrically speciated
into the two groups, Heliopora sp. and H. hiberniana, due to
the physical division between the Indian and Pacific Oceans
caused by past tectonic and climatic changes. Morphological
and molecular analyses on other Indo-Pacific reef-building
coral species also found sibling species between the Indian
and Pacific Oceans (Veron, 1995; van Oppen et al., 2001;
Pinzón et al., 2013; Huang et al., 2014; Arrigoni et al., 2020;
Wepfer et al., 2020).

The H. coerulea group is distributed in both the Indian
and Western Pacific Oceans. The distribution of H. coerulea
group partially overlaps with the Heliopora sp. group in
the western Pacific and with the H. hiberniana group in
northwestern Australia. Previous studies revealed sympatrically
distributed Heliopora spp. have different reproductive timing:
the reproductive timing of Heliopora sp. group (HC-A)
and H. coerulea group (HC-B) in Japan (Saito et al., 2015:
Taninaka et al., 2018) and the Philippines (Villanueva,
2016) differ by almost one month. Heliopora hiberniana
and H. coerulea colonies in northwestern Australia also
have been found to have different reproductive timings
even when found in sympatry (Richards et al., 2018). These
patterns suggest that endogenetic regulation may contribute
to differences in reproductive timing. A previous study
revealed that there are fixed species-specific substitutions in
the dopamine receptor 2-like gene (Isomura et al., 2013) and
cryptochrome-1 (Oldach et al., 2017), both of which were

identified as the genes that regulate reproductive timing
in Acropora species (Iguchi et al., 2019). It is possible
that allochronic speciation have occurred between these
sympatrically distributed Heliopora spp. groups, or at least
allochronism in reproductive timing plays a central role to
keep their species boundaries after speciation. The difference
in reproductive timing is an important mechanism as a
prezygotic isolation for marine species that release gametes
into the water column (Knowlton, 1993; Palumbi, 1994).
Indeed, many of the sympatrically distributed broadcast
spawning coral species have different reproductive timing
in the same genus (e.g., Orbicella, Knowlton et al., 1997;
Szmant et al., 1997; Acropora, Fukami et al., 2003; Nakajima
et al., 2012; Ohki et al., 2015). Generally, the reproductive
timing of corals is also strongly associated with environmental
factors (e.g., moon phases, moonlight, solar radiation, water
temperature) in addition to genetic factors (e.g., circadian
clock genes, photoreceptor proteins) that correlate with
the environmental factors (e.g., Levy et al., 2007; Brady
et al., 2009; Crowder et al., 2017; Oldach et al., 2017). Thus,
future studies on reproductive timing of Heliopora spp. that
include both environmental and genetic factors may provide
further insights into speciation of sympatrically distributed
Heliopora spp.

The Heliopora sp. group was found both in Yaku Island
in Japan (N 30◦16′21.45′′, Nakabayashi et al., 2017), the
northernmost site and at a depth of 50 m on Green Island
in Taiwan, the deepest habitat records of the genus Heliopora.
Therefore, contrary to previous knowledge on the ecological
traits of H. coerulea that it prefers warm shallow water
habitats (Zann and Bolton, 1985), Heliopora sp. group could be
found in colder and deeper habitat; the northernmost known
habitat of H. coerulea group (HC-B) is Miyako Island (N
24◦51′52.10′′, Yasuda et al., 2014) and that of Heliopora sp.
group (HC-A) is Yaku Island (N 30◦16′21.45′′, Nakabayashi
et al., 2017). In the field, contrasting ecological differences
have been previously observed for Heliopora sp. group (HC-
A) and H. coerulea group (HC-B). Colonies of Heliopora sp.
group (HC-A) are relatively small and more abundant outside
the well-developed fringing reef, where water temperature is
lower, while colonies of H. coerulea group (HC-B) can be
larger, forming micro-atolls, and dominating inner reef habitats
where water temperature is higher (Yasuda et al., 2010; Taninaka
et al., 2018), providing evidence of niche differentiation which
further support the hypothesis of ecological speciation between
these two groups.

Gross Morphological Diversity of
Heliopora
There are some specific growth forms within each Heliopora
group. Columnar and encrusting growth forms are relatively
distinct from other morphologies and specific to Heliopora sp.
group (Figure 3B, k–o). Slender-branching growth form with
whitish skeleton (Figure 3B, f–g) is also specific to H. hiberniana
group. However, lobate growth form (Figure 3B, a–d and h–j)
can be found in both H. coerulea and H. hiberniana groups. Like
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other reef-building coral species, young and/or juvenile stages
are hard to distinguish among closely related species (Babcock,
1992; Babcock et al., 2003). Previous studies have also reported
intermediate growth forms sometimes rendering it difficult to
distinguish even between HC-A (Heliopora sp. group) and HC-B
(H. coerulea group) possibly due to infrequent hybridization and
phenotypic plasticity in the field (Yasuda et al., 2014; Taninaka
et al., 2018). Therefore, not all colonies can be clearly classified
into the Heliopora groups based on field observation alone.

Phenotypic plasticity and continuous morphological variation
among closely related coral species are a common phenomenon
and have hindered accurate morphological species identification
(e.g., Forsman et al., 2009; Marti-Puig et al., 2014; McFadden
et al., 2017). Light intensity and water movement are the
most influential environmental factors responsible for coral
phenotypic plasticity (Todd, 2008), while other physical
environmental factors (e.g., dredging, sediment disturbances,
turbidity, competition) are also correlated with morphological
diversity, leading to continuous morphological variation of
different species under similar environmental conditions (e.g.,
Darling et al., 2012; Erftemeijer et al., 2012; Swierts and Vermeij,
2016). However, it is still unclear what environmental factors
influence gross morphological diversity in Heliopora spp.

Richards et al. (2018) previously reported the key
morphological characteristics to distinguish H. coerulea
from H. hiberniana, including gross morphology, the intensity
of bluish skeletal color, and skeletal microstructure (e.g., highly
elaborated coenchymal echinulations and smaller and more
numerous autopores), indicating skeletal color can be a key
morphological characteristic. In the western Pacific, a few
colonies with whitish skeletons have been found in the Heliopora
sp. group in Japan (H. Taninaka and N. Yasuda pers. obs.).
Contrary to the case in the northwestern Australian region, there
was no genetic difference between the whitish and other bluish
skeleton colonies, indicating skeletal color cannot be a universal
key morphological character to distinguish Heliopora sp. from
the other species.

Based on these findings, it is necessary to clarify the
relationship between morphological diversity including fine
skeletal structure and environmental and/or genetic factors
among Heliopora spp. in more detail in the future.

Subclades Within Each Heliopora Group
Our phylogenetic tree showed substantial phylogenetic structure
and multiple genetically isolated subclades exist within each
Heliopora species group. These subclades partially correspond to
typical growth forms and geographical distributions (Figures 1,
2 and 3A). In the Heliopora sp. group for example, the
geographically distant Singapore subclade (sp.1) first diverged
from Japan-Taiwan clades (sp.2 and 3). Then, the Japan-
Taiwan clades were split into only columnar growth form
subclade (sp.2) found only in Japan and encrusting and
columnar growth forms subclade (sp.3) found in both Japan
and Taiwan. These two subclades were genetically distinct
despite being sympatric. In the field, some ecological differences
can be observed between the two subclades: Heliopora sp.2
tends to be found in shallow inner reef areas with strong

sunlight and relatively weak waves. Heliopora sp.3 tends to
be found in relatively deep darker areas such as outer reef
slope with fast water currents and turbidity (H. Taninaka
pers. obs.). Further ecological and physiological differences
between Heliopora sp.2 and Heliopora sp.3 would clarify
the species status of the two subclades. The Heliopora sp.2
and Heliopora sp.3 subclades could not be distinguished in
the previous studies using traditional genetic markers (e.g.,
mitochondrial DNA, ITS2, microsatellite and microsatellite
flaking region sequences) (Yasuda et al., 2014, 2015; Taninaka
et al., 2019), while this study corroborated the effectiveness of
using genome-wide SNPs to elucidate detailed genetic boundaries
between closely related lineages/species as in the case of other
octocorals (Herrera and Shank, 2016; Quattrini et al., 2019;
Takata et al., 2019).

In the H. hiberniana group, two subclades (hib.1-2) showed
deep genetic divergence corresponding to geographical distance,
namely the northwestern Australian subclade (hib.1) and the
Maldives-Thailand subclade (hib.2). This genetic isolation
could be the result of long-term restriction of gene flow
between the two subclades. The current circulation system
in the Indian Ocean mainly consists of currents that move
from east to west that does not directly connect northern
(Maldives and Thailand) and southern (northwestern
Australia) sides of the mid-east Indian Ocean (Schott and
McCreary, 2001; Schott et al., 2009). Due to such current
patterns, previous studies on other marine organisms with
pelagic larval phase also showed similar genetic isolation
in the Indian Ocean (Benzie et al., 2002; Bay et al., 2004;
Hui et al., 2016). On the other hand, geological research
(Schettino and Turco, 2011; Keith et al., 2013; Obura, 2016),
fossils, and phylogenetic data (Obura, 2012, 2016; Veron
et al., 2015) propose a hypothesis that tectonic changes
occurred during the Paleogene and the Neogene and may
have promoted genetic isolation and speciation events in the
Indian Ocean. Such historical geographic events might have
promoted genetic divergence of Heliopora spp. in the Indian
Ocean, but this requires further testing within a calibrated
phylogenetic framework.

In the H. coerulea group, three subclades (coe.1–3)
corresponding to geographically distinct regions were found,
namely Guam subclade (coe.1), the northwestern Australia
subclade (coe.2), and Japan-Taiwan subclade (coe.3). The most
genetically isolated subclade that first split from the others is the
Guam subclade (coe.1). It is notable that Japan-Taiwan subclade
(coe.3) is genetically more closely related to the northwestern
Australia subclade (coe.2) in the Indian Ocean than to the
geographically closer Guam subclade (coe.1). It is likely that
genetic connectivity has been restricted between Guam and
Japan-Taiwan since the Guam subclade (coe.1) diverged from
the other two subclades early in the history of H. coerulea.
This is unusual because genetic connectivity between Mariana
Islands region including Guam and the Kuroshio Current
region is often strong in most of the marine invertebrate
species with larval dispersal period (e.g., Palumbi et al., 1997;
Williams and Benzie, 1998; Lessios et al., 2001; Pinzón et al.,
2013; Arrigoni et al., 2020; Wepfer et al., 2020; but see exception

Frontiers in Marine Science | www.frontiersin.org 9 August 2021 | Volume 8 | Article 714662

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-714662 August 13, 2021 Time: 11:52 # 10

Taninaka et al. Phylogeography of Genus Heliopora

in Wörheide et al., 2008). Although the reasons for the genetic
break between Guam and Kuroshio Current region in Heliopora
spp. are unclear, it could be caused by limited larval dispersal
capability of Heliopora spp. (Taninaka et al., 2019) and/or local
adaptation of each subclade. On the other hand, northwestern
Australian populations of other marine species are genetically
more similar to west Pacific populations than other Indian
Ocean populations (e.g., Williams and Benzie, 1998; Lessios
et al., 2001; Pinzón et al., 2013; Arrigoni et al., 2020; Wepfer
et al., 2020) but contrary examples also exist where Indian and
Pacific Ocean coral populations are divergent (e.g., Richards
et al., 2016). Williams and Benzie (1998) discussed that this
might be due to Western Australia being recently colonized by
recruits from the Western Pacific lineage after the end of the
last ice age. Recent genome-wide phylogeographic analysis of
reef-building corals have also found such large discrepancies
between geographic and genetic distances (Arrigoni et al., 2020;
Wepfer et al., 2020), which need to be examined in closer detail
in the future.

CONCLUSION

The present study provides a comprehensive picture of
phylogenetic relationships, distribution, and growth form
patterns among closely related Heliopora species that gives new
insights into speciation patterns of Heliopora spp. in the Indo-
West Pacific. Our genome-wide genetic data of Heliopora spp.
revealed three major groups with eight subclades. Heliopora
sp. group was genetically distinct from the other two groups
(H. coerulea group and H. hiberniana group) containing
the samples from type localities of the previously described
species. Genetic diversification in the genus Heliopora could be
attributed to allopatry, allochrony, and local and/or ecological
adaptation. Further studies incorporating more genome-wide
markers for phylogeographic analysis, geohistorical information,
physiological and ecological data would more precisely delineate
the boundaries of Heliopora species.

Our study also demonstrates the effectiveness of the MIG-
seq method for clarifying the species boundaries of octocoral
species that were indistinguishable using traditional genetic
markers such as mtDNA and ITS2. In addition, we highlight
the importance of wide geographic sampling to generate a
more complete picture of the phylogeographic relationships and
speciation patterns among closely related octocoral species and
how they diversified across the Indo-Pacific. It is expected that the
MIG-seq method can be applied to other coral species and non-
model organisms to resolve longstanding questions in marine
evolution.

FIELD STUDY PERMISSION

Domestic sampling except for Amami Oshima was conducted
under each prefectural government permits; Yaku Island
(Kagoshima Prefectural Government permit, No. 2–56),
Okinawa including Okinawa Mainland, Kume Island, Ishigaki

Island, Sekisei Lagoon, and Iriomote Island (Okinawa Prefectural
Government permits, Nos. 18–34, 19–39, 19–60, 21–18, 22–15,
25–44, 26–10, 27–29, 27–81, 28–78, 30–42, and 31–18), and
Amami Oshima was conducted under personal permit by Mr.
Katsuki Oki. Foreign sampling was conducted under each
local government permits; Taiwan (samples collected from
Dabaisha and Gongguan, the Taitung County Government,
No. 1074150258; a 50 m specimen collected in Chaiko, Taitung
County Government, No. 1040000285, and that is registered at
the Zoological collection of the Biodiversity Research Museum
in Academia Sinica AZIC0001313), Guam (SC-19-006 (occ),
University of Guam Marine Laboratory), Singapore (National
Parks Board Permit NP/RP16-156), Australia (samples in
Western Australia were collected under permit number AU-
COM2013-203 and Australian Government approval number
006-RRRW-130723-01), Thailand (the permission for collecting
and sending the specimens is granted by the Department of
Fisheries), Maldives (Permit No. (OTHR)30-D/INDIV/2017/123
released by the Maldivian Ministry of Fisheries and Agriculture).
All the 1st PCR except for those from Thailand were conducted
on site and only 1st PCR products were brought or sent to Japan.
Ethanol-preserved coral fragment samples from Thailand were
imported to Japan in 2011 (CITES number: AC.0510.2/407), and
we used them in this study under an additional permit from the
Department of Marine and Coastal Resources in Thailand.
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Supplementary Figure 1 | A bar plot of Heliopora sp. estimated by STRUCTURE
ver. 2.3.4 assuming the number of cluster K = 3 using 225 SNPs obtained from
the Stacks (r = 0.9 with the option –write_single_snp). Ten independent runs
based on 200,000 burn-in followed by 200,000 Markov chain Monte Carlo
(MCMC) replications were conducted using admixture models assuming
correlated allele frequencies among 84 samples with uniform prior. The x-axis
indicates each individual for Heliopora sp. that were classified into three subclades
(sp.1–sp.3) in the phylogenetic tree (Figure 1). Different colors of the y-axis
indicate the probability of assignment to different clusters. Red allows indicate
possible hybrid individuals.

Supplementary Table 1 | Summary of sample information in this study: name of
sampling country “Country,” name of sampling region “Region,” name of sampling
site “Location,” longitude and latitude “Coordinates,” number of collected
samples “Ns” and analyzed samples “Na,” ratio of assigned possible clones within
each population “Rc,” name of Heliopora species group “Spp. group” and
subclade “Subclade,” observed growth forms within each subclade “Major form
(minor form),” and sampling years with published references “Year
(References).”
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