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Climate changes interacting with human activities are raising the temperature in global

oceans. To explore physiological responses of in situ phytoplankton assemblages to

increasing temperatures, we conducted a shipboard experiment in tropical regions of

the eastern Indian Ocean, Java Sea, and southern South China Sea. Throughout the

surveyed areas, phytoplankton biomass (Chla) ranged from 0.09 to 0.86 µg L−1 (median,

0.22 µg L−1) in the surface and from 0.30 to 0.99 µg L−1 (median, 0.50 µg L−1) in

maximal chlorophyll layer (DCM), respectively. Picophytoplankton that occupied 27–89%

(79%) and 83–92% (88%) of total Chla in the surface and DCM layers, ranged from 0.32

× 104 to 23.10 × 104 cells mL−1 (3.69 × 104 cells mL−1) and from 7.44 × 104 to

25.70 × 104 cells mL−1 (12.60 × 104 cells mL−1), respectively. Synechococcus took

up 30–97% (78%) of pico-cells compositions in the surface layer, while, in the DCM

layer, Prochlorococcus took up 42–98% (91%). Moreover, the maximal photochemical

quantum yield (FV/FM) of photosystem II (PS II) and the rapid light curve (RLC)-derived

light utilization efficiency (α) were lower in the surface layer than that in the DCM layer,

but the saturation irradiance (EK) was higher. In particular, we found that acutely rising

temperature decreased the FV/FM and α in both the surface and the DCM layers but

increased the absorption cross-section (σPSII) of PSII photochemistry. Our results clearly

indicate that the presently rising temperature adversely affects the photophysiology of

natural phytoplankton assemblages in tropical oceans.
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INTRODUCTION

Marine phytoplankton, a group of single-cell organisms
(Pachiappan et al., 2019), are the major primary producers in
aquatic ecosystems. They contribute to about half of a global
carbon fixation (Field et al., 1998) and are thus considered to play
an important role in mitigating the effects caused by excessive
atmospheric CO2 by photosynthesis (Cavicchioli et al., 2019;
Buesseler et al., 2020). The photosynthesis of phytoplankton
is regulated by numerous environmental variables, such as
solar UV radiation, temperature, and mixing, etc. (Gao et al.,
2019; Jin et al., 2019), among which the temperature is a
particularly important factor (Jin and Agustí, 2018). This is
because the varying temperature can alter enzymes activities
within cells, regulate their physiological metabolisms, and
ultimately affect photosynthesis and growth (Gao et al., 2019).
Rising temperature is often detected to enhance the activities
of photosynthetic-involved enzymes of phytoplankton, like the
Ribulose-1,5-bisphosphate carboxylase-oxygenase (RubisCO),
thus leading to the promotion of photosynthetic oxygen
production and carbon fixation (Li et al., 1984; Young et al.,
2015). Such an increased temperature was also observed to
compensate for the negative effects of other stressors like high
light (Bouterfas et al., 2002) or UV-B radiation (Jin et al., 2019)
upon photosynthesis. Therefore, the phytoplankton growth is
often stimulated by increased temperature, such as for diatoms
Chaetoceros tenuissimus and Synedra sp. (Jin and Agustí, 2018)
or coccolithophore Emiliania huxleyi (Schlüter et al., 2014).

Owing to over-emissions of anthropogenic CO2, global
warming has accelerated since the industrial revolution (IPCC,
2013). In the global climate system, over 90% of the excess heat
gained by the planet has been taken up by the oceans (von
Schuckmann et al., 2020), enabling surface seawater temperature
to rise up to 4◦C by the end of this century (IPCC, 2013;
Tokarska et al., 2020); the ocean-absorbed heat energy has been
reported to penetrate even to 700m (von Schuckmann et al.,
2020). Meanwhile, the frequency and the intensity of marine
heatwaves, the regional extreme warming in surface oceans
(Hobday et al., 2016), have also increased in the global warming
scenario (Oliver et al., 2018). The marine heat wave-induced
increase of temperature has been recorded over 6◦C in the
South Island of the New Zealand during the austral hot summer
of 2017/18, largely lowering the coverage of Durvillaea poha
and varying local algal diversity (Thomsen et al., 2019). Such
a temperature increase has also been detected to reduce nearly
50% of phytoplankton biomass and shift more than 50% of
micro-cells to smaller ones (<5µm) in the Pacific Northwest
(Kosro et al., 2006; Kudela et al., 2006). On the other hand, the
increasing temperature-activated diatoms blooms have also been
observed for, e.g., Chaetoceros coarctatus in the south coast of
the southern Australia during the austral summer 2013 (Roberts
et al., 2019) and Pseudo-nitzschia australis along the western coast
of the North America in April of 2015 (Gentemann et al., 2017;
Trainer et al., 2020), as well as polar diatoms around the Antarctic
region (Montie et al., 2020). To fully understand the underlying
mechanisms, it is necessary to explore how phytoplankton
physiologically responds to the increased temperature.

The Indian Ocean, Java Sea, and the southern South China
Sea are geographically located in the center of the Indo-Pacific
warm pool, the warm surface region of the world (Weller et al.,
2016), wherein surface temperature generally maintains over
28◦C throughout the year (De Deckker, 2016). In the global
warming scenario, these tropical regions, being no exception,
are subjected to the increased temperature (De Deckker, 2016;
Weller et al., 2016), leading to a morphological shrink in cell size
of phytoplankton (Mousing et al., 2014) and reduction in biomass
(Roxy et al., 2016; Zhang et al., 2018). Using an ecological model
study, Roxy et al. (2016) reported that the increased temperature
had reduced over 20% phytoplankton biomass in the Indian
Ocean from 1950 to 2012. With the shipboard experiments,
Zhang et al. (2018) found that the increased temperature declined
roughly 50% of surface biomass in the southern South China
Sea in the summer period of 2017. To date, however, few
studies on photosynthetic behaviors of natural phytoplankton
assemblages in response to ocean warming have been conducted
in these tropical regions. As ambient temperatures in these
regions are high, close to or even over the optimal growth
temperature of phytoplankton (Jin and Agustí, 2018), we,
thus, hypothesized that further elevated temperature would
be detrimental to phytoplankton in these regions. However,
it is not practicable, although of significance, to launch a
large-spatial and long-term incubation experiment to examine
phytoplankton responses to rising temperature. Therefore, we
investigated the photophysiological responses to acutely elevated
temperature of phytoplankton assemblages from the surface
or/and the maximal chlorophyll layer (DCM) of the eastern
IndianOcean, Java Sea, and southern South China Sea (Figure 1).
Our results clarified how the increased temperature affects the
photosynthetic performance of phytoplankton assemblages in the
spatial and depth scales; it would be helpful for understanding the
ecological effects of rising temperature in these tropical oceans.

MATERIALS AND METHODS

A Study Area and Sampling Protocol
During a cruise from September 21 to November 16, 2020,
this experiment was conducted on board of R/V Shiyan 3
in the tropical oceans (i.e., eastern Indian Ocean, southern
South China Sea, and Java Sea, and their connecting passages)
(Figure 1). The seawater samples were collected from two depth
layers: surface (∼1-m depth) being taken with a clean pump
system and that from the DCM layer being taken with an
8- L Niskin bottle mounted on an SBE 911 plus CTD (Sea-
Bird Electronics, Inc., Bellevue, WA, USA). The DCM layer
was determined, using a chlorophyll fluorometer equipped with
CTD. To eliminate the effects of diel rhythm of phytoplankton
photosynthetic activity (Xie et al., 2018), all the seawater samples
were taken in the daytime (9 a.m. to 2 p.m.). During the
cruise, the seawater temperature and salinity were measured with
thermosalinographs (a shipboard CTD) and Sea-Bird CTD.

Experimental Design
To investigate the effects of acutely rising temperature upon the
physiology of natural phytoplankton assemblages, the collected
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FIGURE 1 | Sampling sites in the eastern Indian Ocean, Java Sea, and

southern South China Sea. O, the seawater was taken from the surface alone;
⊕

, the seawater was taken from both the surface and maximal chlorophyll

layers (DCM).

seawater samples from the surface or/and the DCM layers of each
station were used to measure photosynthetic performance, using
a fast repetition rate fluorometer (FRRf, Chelsea Technologies
Group, Ltd., West Molesey, UK) under four or five different
temperatures. To improve the signal-to-noise ratio of chlorophyll
fluorescence of phytoplankton assemblages, 2-L seawater was
concentrated to ∼100ml by gently filtrating with a 0.45-µm
pore-sized nitrocellulose membrane (25mm, Millipore) within
10min after being taken from in situ conditions. Then, the
concentrated sample was quickly injected into a 10-mL chamber
of FRRf that was encircled by a water jacket connected to
a circulating thermostatted bath to maintain temperature and
dark acclimated for 10min, followed by measuring chlorophyll
fluorescence with the FRRf at in situ temperature. After this,
the temperature in a 10-mL chamber was acutely increased
by 3◦C and maintained for 10min, and the fluorescence was
measured again. The fluorescence of phytoplankton from the
surface at each station was sequentially measured under in situ
temperature, +3, +6, and +9◦C, and that from the DCM layer
was measured under in situ temperature, surface, +3, +6, and
+9◦C. After measuring the fluorescence for one step, we mixed
the sample by turning on the mixing button of FRRf to eliminate
the effect of the settlement. According to the RCP 8.5 scenario-
oriented projection (IPCC 2013), surface seawater temperature
would rise by 4◦C at the end of 2100; however, such a temperature
increase could be over 6◦C due to marine heatwaves (Thomsen
et al., 2019). So, we set a maximal increase of 9◦C in this study.

FRRf Measurement
Under each temperature, the FRRf measurement was operated
with a light response protocol, i.e., an initial 60-s dark step,
followed by nine actinic lights that were supplied by a panel of
blue LEDs at a wavelength centered on 450 nm in the FastAct

(Wei et al., 2019b). The actinic light levels varied from 0 to 1,500-
µmol photons m−2 s−1, with each step lasting 60 s, except for
the first step that lasted 120 s with the low light of ∼15-µmol
photons m−2 s−1 to eliminate the effect of light history signals
on the measured variable fluorescence (From et al., 2014). The
fluorescence light curve (FLC) was measured, following Hughes
et al. (2018a,b) by setting FRRf with a single turnover induction
protocol, i.e., a train of 100× 2-µs flashlets of blue light (450 nm)
at an interval of 2.8 µs (Song et al., 2019). The minimal and
maximal fluorescence in the dark (FO, FM) and in light state (F,

F
′

M) and the absorption cross-section of photosystem II (PSII)

photochemistry (σPSII , σ
′

PSII , nm
2) were derived and averaged

from 30 consecutive acquisitions with an interval of 120ms. Each
of the acquisition was fitted with the KPF model (Kolber et al.,
1998), with the help of FastPRO software (Chelsea Technologies
Group). After measuring the FLCs, all the fluorescence values
were adjusted by subtracting the fluorescence of the Whatman
GF/F glass fiber-filtrated seawater to eliminate the influence
of the blank (Cullen and Davis, 2003). We calculated the

photochemical PSII quantum yields (FV/FM,
Fq

F
′

M

) in the dark- and

light-regulated state (Genty et al., 1989) as

FV

FM
=

FM − FO

FM
;

Fq

F
′

M

=
F
′

M − F

F
′

M

After this, we derived the photosynthetic parameters, including
the light utilization efficiency (α) and saturation irradiance (EK,
µmol photons m−2 s−1) from the rapid light curve (RLC) as
follows (Webb et al., 1974; Silsbe and Kromkamp, 2012):

Fq

F
′

M

= α × EK × (1− e
−E
EK )× E−1

where E denotes actinic light intensity (E, µmol photon
m−2 s−1).

Chlorophylla Measurement
To measure the size-fractioned Chlorophylla (Chla)
concentration in the surface and the DCM layers, 1-L seawater
was sequentially filtrated through a 20-µm pore-sized nylon-net
filter (25mm, Millipore), a 3-µm pore-sized polycarbonate filter
(25mm, Millipore), and 0.7-µm pore-sized glass fiber filter
(25mm, Whatman GF/F). And, then, the filters were wrapped
in aluminum foils, instantly stored at −20◦C until laboratorial
analysis. After returning to the laboratory, the refrigerated
filters with phytoplankton cells were extracted overnight in
magnesium carbonate-saturated 90% acetone (v/v) at 4◦C;
after centrifuging for 10min at 3,500 rpm, the extraction was
fluorescently measured with a Turner Designs 10 Fluorometer.
Chla concentration was calculated, following Parsons et al.
(1984). Total Chla concentration was obtained by summing all
three size-fractioned Chla concentration.
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FIGURE 2 | Spatial distributions of three-size-fractioned chlorophyll a concentration (A,B, Chla, µgL−1) and picophytoplankton abundances (C,D, cells m−1) in the

surface (A,C) and DCM layers (B,D) throughout the surveyed areas. Pie-size shows Chla concentration or pico-cells abundance, whereas the colors show different

fractions. micro-, micro-phytoplankton; nano-, nano-phytoplankton; pico-, pico-phytoplankton; Pro, Prochlorococcus; Syn, Synechococcus; and Euk,

pico-eukaryotes.

Picophytoplankton Abundance
Measurement
To measure picophytoplankton abundance, the seawater from
the surface and DCM layers was pre-filtrated through a 20-
µm pore-sized nylon-net filter, dispensed into triplicate 2-
mL cryotubes and fixed with a final concentration of 0.5%
glutaraldehyde (v/v). After shaken to make the samples being
fully mixed, the cryotubes were kept in the dark for 20min, and
then were flash frozen and stored in liquid nitrogen until later
analysis. Cell abundance of Prochlorococcus (Pro), Synechococcus
(Syn), and pico-eukaryotes (Euk) was measured with an Accuri
C6 flow cytometry (Becton-Dickinson, USA), excited with blue
argon (488 nm) and red diode lasers (640 nm). The samples
were run at a medium-flow rate and collected 40 µL for each
measurement with the Accuri C6; and the data were then
collected, saved, and analyzed with CellQUEST software.

Statistical Analysis
All the statistical analysis and figures were conducted, using R
software (R Core Team, 2020), with packages of “ggOceanMaps”
version 1.0.9 (Vihtakari, 2021), “ggplot2” (Wickham, 2016),
“scatterpie” version 0.1.5 (Yu, 2020), and “rstatix” version 0.7.0
(Kassambara, 2021). To test the differences between the surface

and DCM layers or among different geographical areas or
temperature treatments, we firstly determined whether or not the
measured parameters violate the normality and homogeneity of
variance. If inviolate, the t-test or one-way repeated measures
ANOVA was used; otherwise, the Wilcoxon test or the Friedman
test was used. The post hoc tests for one-way repeated measures
ANOVA and the Friedman test were pairwise paired t-test and
the Wilcoxon signed-rank test, respectively. Linear regression
was also applied to test the correlation of photochemical
parameters to temperature. The significance level was set at 0.05.

RESULTS

During the investigated period, surface seawater temperature and
salinity varied from 26.11 to 30.0◦C (median, 29.10◦C) and from
29.58 to 35.59 (median, 34.32) throughout the surveyed areas,
respectively (Supplementary Figure 1). Depth of DCM shoaled
from 100 to 35m from the southern to northern parts of the
eastern Indian Ocean, with the temperature increased from 23.28
to 29.30◦C (median, 27.90◦C); and the DCM depth was 59m
at the S2 station in the South China Sea, with the temperature
of 25.80◦C.
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FIGURE 3 | The violin plot and the boxplot of maximum photochemical quantum yield (A,B, FV/FM) of photosystem II (PSII) and dark-adapted absorption

cross-section of PSII photochemistry (C,D, σPSII, nm
2) against temperature for phytoplankton assemblages in the surface (A,C) and DCM layers (B,D). The blue line

shows the linear regression of FV/FM and σPSII against temperature with shadow, indicating a 95% confidence level, and horizontal bars indicate the standard

deviations (n = 47 or 20). Different letters on top of each violin plot of each panel indicate significant differences between different temperature treatments. (A) χ
2

(3) =

102.1, p < 0.001; (B) F (1.67,26.74) = 120.1, p < 0.001; (C) χ
2
(3) = 103.5, p < 0.001; (D) χ

2
(4) = 30.6, p < 0.001.

Surface phytoplankton biomass (Chla) ranged from 0.09 to
0.86 µg L−1 throughout the surveyed areas, with a median of
0.22 µg L−1 (Figure 2A). Chla concentration was higher in the
northern part of the surveyed areas than that in the southern
part (Wilcoxon test, p < 0.001). Chla in the DCM layer ranged
from 0.29 to 0.99 µg L−1 (median, 0.50 µg L−1) (Figure 2B),
being 1.5 to 6.0 times higher than the surface. Picophytoplankton
cells (0.7–3µm) took up 79% (median) of total Chla (range,
27% to 91%) in the surface layer and nano- and micro-cells
took up 11 and 8%; while, in the DCM layer, pico-cells took up
88% (range, 80 to 92%), and nano- and micro-cells took up 8
and 4%, respectively. Coinciding with Chla, pico-cells density
ranged from 3.20 × 103 to 2.31 × 105 cells mL−1 (median,
3.69 × 104 cells mL−1) in the surface (Figure 2C), being higher
in the northern than the southern parts of the surveyed areas
(Wilcoxon test, p < 0.001); while, in the DCM layer, their density
ranged from 7.44 × 104 to 2.57 × 105 cells mL−1 (median,
1.26 × 105 cells mL−1) (Figure 2D). Finally, picophytoplankton
compositions were dominated by Synechococcus (median, 79%;
range, 22 to 98%) in the surface, but by Prochlorococcus (median,
91%; range, 42 to 98%) in the DCM layer (Figures 2C,D). The
pico-eukaryotes contributed to <10% of pico-cells composition
in both the surface and DCM layers.

To assess the general effect of acutely increased temperature
on photophysiology of phytoplankton over the surveyed regions,
the pooled FV/FM and σPSII were plotted against temperature.

The FV/FM decreased with increased temperature in both the
surface and DCM layers (slope, −0.009, p < 0.001), with
no significant difference between these two layers (p = 0.97)
(Supplementary Figure 2); while the σPSII increased in both
the surface (slope, 0.105, p < 0.001) and DCM layers (slope,
0.041, p = 0.03) (Figure 3). The FV/FM in the surface had a
median value of 0.25 (range, 0.15 to 0.43), lower than that in
the DCM layer (median, 0.29; range, 0.17 to 0.35) (t = 2.28, p
= 0.02) (Figures 4A,B). The slope of FV/FM against temperature,
an indicator of the temperature-caused effect, ranged spatially
from −0.018 to −0.001 (Figures 4C,D), with an insignificant
difference between the surface and DCM layers. The σPSII in
the surface ranged from 3.00 to 7.07 nm2 (median, 4.90 nm2),
lower than that in the DCM layer (range, 4.60 to 8.00; median,
6.04 nm2) (Figures 4E,F). At the same time, the σPSII in both
the surface and the DCM, was higher in the southern than the
northern parts of the surveyed areas (Wilcoxon test, p < 0.05),
and the acutely increasing temperature-caused promotion (i.e.,
the slope) on σPSII was higher in the surface than the DCM layer
(Wilcoxon test, p < 0.01) (Figures 4G,H).

Acutely rising temperature also reduced the rapid light curve
(RLC)-derived light utilization efficiency (α) (slope, −0.014,
p < 0.001) (Figure 5 and Supplementary Figure 2), with no
significant difference between the surface and DCM layers
(t=−0.98, p = 0.33, Figures 6C,D). Both the α (Figures 6A,B)
and EK (Figures 6E,F) showed great variations throughout
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FIGURE 4 | Spatial distributions of maximal PS II quantum yield (A,B, FV/FM) and dark-adapted absorption cross-section (E,F, σPSII, nm
2 ), as well as the rising

temperature-induced effects (slope) on FV/FM (C,D) and σPSII (G,H) of phytoplankton assemblages in the surface (A,C,E,G) and DCM layers (B,D,F,H) throughout the

surveyed areas. Bubble size indicates the corresponding value.
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FIGURE 5 | The violin plot and the boxplot of the rapid light curve (RLC)-derived light utilization efficiency (α) against temperature for phytoplankton assemblages in

the surface (A) and DCM layers (B). The blue line shows the linear regression of the α against temperature with shadow, indicating a 95% confidence level, and

horizontal bars indicate the standard deviations (n = 47 or 20). Different letters on top of each violin plot of each panel indicate significant differences between different

temperature treatments. (A) χ
2
(3) = 94.6, p < 0.001; (B) F (2.32, 37.15) = 72.26, p < 0.001.

the surveyed areas. Moreover, the rising temperature-caused
reduction did not occur in the RLC-derived saturation irradiance
(EK) (Supplementary Figure 3). Finally, the higher α but lower
EK prevailed in the DCM layer as compared with the surface
layer, indicating the low-light acclimation of phytoplankton
assemblages therein.

DISCUSSION

Model studies, together with field investigations, predicted that
global warming would decrease marine primary production
through dampening the nutrients up-transport from deep sea
(Ruardij et al., 1997; Strom and Fredrickson, 2008; Roxy et al.,
2016). In this study, we showed that the acutely increased
temperature reduced the maximum photochemical efficiency
(FV/FM) and light utilization efficiency (α) of PSII of natural
phytoplankton assemblages from both the surface and DCM
layers in tropical oceans, thus providing physiological evidence
for the adverse effect of rising temperature on the primary
productivity. Moreover, we found both the FV/FM and σPSII

showed similar spatial variations throughout the surveyed
regions, and the larger σPSII, the higher α, and the lower EK
presented in the DCM than the surface layer, suggesting the low-
light acclimation of phytoplankton assemblages (Jin et al., 2016;
Xie et al., 2018).

Chla biomass in the surface showed a markedly spatial
variation, as well as pico-cells abundance (Figure 2). Generally,
the growth and primary productivity of phytoplankton are
regulated bymacro- (e.g., nitrogen and phosphate) and/ormicro-
nutrients (e.g., dissolved iron) (Li et al., 2012a; Chinni et al.,

2019; Sherman et al., 2020). In the surveyed areas, the surface
N and the P levels were <1.0 and 0.10µM (data not shown),
with the N:P ratio being lower than 16, indicating a nitrogen
limitation (Li et al., 2012a), especially in the southern Indian
Ocean (Wilcoxon test, p < 0.05), where Chla biomass and pico-
cells abundance were lower. Such a biomass variation could
also be attributed by the spatial changes of trace mental iron
(Chinni et al., 2019; Twining et al., 2019) that is often believed
to regulate phytoplankton growth and has been observed to
covary with Chla (Chinni et al., 2019; Sherman et al., 2020).
On the other hand, the spatial variation in Chla was less in
the DCM layer; it could be explained by the high nutrients
that may be enough to support the growth of phytoplankton.
For phytoplankton compositions, pico- and nano-cells accounted
for more than 90% of total Chla in both the surface and
DCM layers, consistent with previous results (e.g., Li et al.,
2012a,b). Moreover, Synechococcus dominated in the surface
layer but Prochlorococcus dominated in the DCM layer, as found
in this study (Figures 2C,D) or in others (Wei et al., 2019a;
Mitbavkar et al., 2020). Different light harvesting complexes
between Synechococcus and Prochlorococcus (phycobilisomes vs.
divinyl-Chla/b antenna) and different cell sizes (ca. 0.9µm vs.
0.6µm)maymake them adaptively prefer the light environments
in surface and deep waters. Therefore, Prochlorococcus often has a
lower light compensation point as compared with Synechococcus
(Moore et al., 1995) and can more adaptively thrive and
dominate in dim-deep waters. Moreover, the surface temperature
in the surveyed areas was ∼29◦C over the thermal-inhibited
temperature of 25◦C for the growth of Prochlorococcus (Moore
et al., 1995), probably attributing to its less abundance in
the surface layer (Wei et al., 2019a; Mitbavkar et al., 2020).
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FIGURE 6 | Spatial distributions of the rapid light curve (RLC)-derived light utilization efficiency (A,B, α) and saturation irradiance (E,F, EK, µmol photons m−2 s−1), as

well as the rising temperature-caused effects on α (C,D) of phytoplankton assemblages in the surface (A,C,E) and DCM layers (B,D,F) throughout the surveyed

areas. Bubble size indicates the corresponding value.

In addition, weak fluorescence in surface waters often makes
Prochlorococcus hardly distinguishable by flow cytometry (Olson
et al., 1990), which may also attribute to the lower measured
cell counts.

The FV/FM and α, the indicators of photosynthetic status
of phytoplankton, generally decline under unfavorable growth
condition, presumably because of the damage of the PSII
reaction center (Ragni et al., 2008; Suggett et al., 2009;
Trimborn et al., 2015). The temperature in the surveyed areas
usually maintains over 28◦C throughout the year (De Deckker,
2016), which is close to or even over the optimal growth
temperature of phytoplankton (Jin and Agustí, 2018). Reduction
of further elevated temperature in photosynthetic capacity is thus

predictable, although phytoplankton in the surface layer may
have adaptively tolerated high temperature as indicated by the
insignificant effect of initially acute 3◦C increase (Figures 3A,
5A). High temperature often makes cells generating excessive
reactive oxygen species (ROS) (Anning et al., 2001; Deschaseaux
et al., 2019) that is believed to unbalance the light absorption
of photoautotrophs and utilization through inactivating the
activities of photosynthetic enzymes, e.g., RubisCO, leading to
a surplus accumulation of absorbed light energy, and, thus,
the damage of photosynthetic apparatus and decrease of the
FV/FM and α (Anning et al., 2001; Deschaseaux et al., 2019).
Meanwhile, the absorption cross-section of PSII photochemistry
(σPSII) increased with temperature in both the surface and DCM
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layers (Figures 3C,D). According to Suggett et al. (2009), many
phytoplankton species can modulate the σPSII to enable them
to acclimate and adapt to varying light conditions; and the
σPSII can also be regulated by environmental variables, including
temperature (Ni et al., 2017), cell size (Moore et al., 2005; Suggett
et al., 2009), as well as nutrient status (Suggett et al., 2009).
The increase of σPSII with rising temperature can be explained
by the “lake model” that assumes the energy absorbed by light-
harvesting systems can transfer between photosynthetic units
(Paillotin et al., 1983). If one functional PSII reaction center
is inactivated or/and damaged due to, e.g., high temperature,
its light-harvesting systems transfer the absorbed energy to
neighboring active PS II, thus enlarging the σPSII. Although the
long-term evolution may also enlarge the σPSII to improve the
light-absorbing ability to maintain photosynthesis (Suggett et al.,
2009; Strzepek et al., 2012; Trimborn et al., 2015), it is not the case
for minute-time-scaled measurements in this study. Moreover,
the effects of increasing temperature on the σPSII, unlike on the
FV/FM or α, were greater in the surface than the DCM layer.
This could be attributed to different dominating species who
have differential pigments compositions, because the pigments
content, type, and arrangement inside the thylakoid membrane
usually determine the size of the light-harvesting complex of PS II
among phytoplankton groups (Suggett et al., 2009; Hughes et al.,
2018b). Major pigments of Synechococcus to constitute the light-
harvesting complexes are phycobilisomes (Sliwińska-Wilczewska
et al., 2020), while that of Prochlorococcus are divinyl derivatives
Chla/b (Ralf and Repeta, 1992); such a pigment difference may
vary their light-harvesting abilities, thus leading to the differential
photosynthetic responses to the acutely increased temperature
between the surface and DCM layers. Larger σPSII prevailed in
the southern part of the surveyed areas where phytoplanktonmay
have adaptively improved its light-harvesting abilities to sustain
growth (Zhu et al., 2017; Sherman et al., 2020), because of the low
nutrient status therein (data not shown). The larger σPSII has also
been suggested to be attributed to light-adapted genotypic feature
due to niche partition (Jin et al., 2016), evidenced by the higher
σPSII values of phytoplankton assemblages from deep waters.

In summary, we found that higher saturation irradiance
(EK), together with lower Chla biomass, prevailed in the
Synechococcus-dominated surface layer of the surveyed areas but
being opposite in the Prochlorococcus-dominated DCM layer;
and lower FV/FM and α occurred in the former than the latter
layers. Furthermore, we found the acutely rising temperature
decreased the photosynthetic capacity (i.e., FV/FM and α) of

natural phytoplankton assemblages from the surface and DCM
layers of the eastern Indian Ocean, Java Sea, and southern South
China Sea. Our results complement others (Roxy et al., 2016)
to demonstrate that the ongoing global warming may adversely
affect primary productivity in tropical oceans.
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