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The Antarctic krill (Euphausia superba) fishery is the largest fishery in the Southern
Ocean, and it has been operating for over 45 years. In the past decade, the spatial
distribution of the krill fishery has focused on the Bransfield Strait off the Antarctic
Peninsula (subarea 48.1). However, the high fishing effort and climate change have
placed great pressure on krill resources in this region, and conservation concerns have
been raised. Because aging krill is difficult and uncertain, we developed an integrated
size-structured model to estimate the fishing mortality, recruitment and spawning
biomass of krill. The results indicated that in 1992–2011, the average spawning biomass
of krill ranged from 1.14 × 106 to 1.45 × 106 tons, the estimated biomass of the
maximum sustainable yield (BMSY) ranged from 3.96 × 105 to 4.90 × 105 tons and
the estimated average recruitment ranged from 2.3 × 1012 to 5.03 × 1012 individuals
in the research area. We explored the effect of different data weighting schemes for the
length data on the assessment output. However, our estimates also have uncertainties.
In addition, an attempt was made to analyze the correlation between model-estimated
recruitment and mature biomass with climate change. Future stock assessments of
krill resources should be comprehensive and multimethod, and the management of
krill resources should be based on science that considers the demand of fishing
communities and ecosystem protection.

Keywords: Antarctic krill, integrated size-structured model, stock assessment, Antarctic Peninsula, data
weighting, climate change

INTRODUCTION

The American naturalist James Dwight Dana gave an initial description of the Antarctic krill
(Euphausia superba) in 1850. Antarctic krill are marine crustaceans with a circumpolar distribution
(Hofmann and Hüsrevoğlu, 2003; Siegel, 2005; Atkinson et al., 2009); they often congregate in
different forms (path, shoal, swarm, and school) on the edges of continental shelves, near sea ice and
around islands and exhibit diurnal vertical movement behavior (Hardy, 1936). Generally, krill are
considered to live for 5–7 years, the spawning population is 2–3 years old, and the adult body length
is 40–65 mm (Ikeda, 1985). However, due to the biological characteristics of molting and shortening
body length when krill face adverse environments, determining their longevity is an unsolved and
difficult scientific problem. Antarctic krill is one of the largest single-species resources in the world,
with a very large biomass of 300–500 million tons (Nicol and Foster, 2003; Kawaguchi and Nicol,
2007; Nicol et al., 2012). Antarctic krill play a very important role in the Southern Ocean ecosystem,
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mainly because it is the main prey of many marine predators
(penguins, seals, whales and fish), and it is also an important
herbivore of autotrophic and heterotrophic plankton
undertaking high and low trophic levels in the food chain
(Howard, 1989; Voronina, 1998). The overall change in Antarctic
krill resources will directly affect the resource status of other
marine organisms in the Southern Ocean and play a key role in
biogeochemical cycles such as carbon exports and the iron cycle.
In addition, the Antarctic krill fishery is one of the key fisheries in
the Southern Ocean, has high economic value and is of concern
to many countries.

Antarctic krill has been fished commercially in the Southern
Ocean since the 1970s, and the Antarctic krill fishery has
consistently been the largest fishery, by tonnage, in the region
(Budzinksi et al., 1985; Nicol and Foster, 2003). In 1990s, due
to the problems of changing krill fishing technologies and the
development of the main fishing countries, the catch of krill
gradually decreased. With the development of krill fisheries in
new countries, the catch of krill has increased in recent years.

As 70% of the Antarctic krill resources are concentrated in the
southwest Atlantic region of the Southern Ocean, the northwest
Antarctic Peninsula is an important fishing ground and an
important active area for krill fishing. In recent decades, the krill
fishery has experienced a series of spatiotemporal changes. In
the 1990s and early 21st century, the krill fishery near Elephant
Island and the South Shetland Islands began to expand to the
south of the center of the Bransfield Strait, and a fishing hot
spot was established (Kawaguchi et al., 2009). During 2009–2014,
65–90% of the seasonal fishing came from this fishing hot spot.
Other studies show that the catches in subarea 48.1 are now
more concentrated in space and time than ever before (Trathan
et al., 2018; Kawaguchi and Nicol, 2020; Meyer et al., 2020).
The demand for krill will likely increase, driven by at least two
industries (marine products and nutraceutical products).

The southwest Atlantic is not only the area where the Antarctic
krill fishery is concentrated but also the key ecological area of the
krill population, especially in the northern Antarctic Peninsula
and Bransfield Strait (subarea 48.1 is included in this area),
which is the main spawning area, breeding area and wintering
area of krill (Spiridonov, 1995; Siegel et al., 2004, 2013; Piñones
and Fedorov, 2016; Perry et al., 2019). Therefore, based on the
information from the fishery and ecology, it can be seen that
the Bransfield Strait region in the northern part of the Antarctic
Peninsula is an important area (it can be considered a “key area”)
where Antarctic krill fishery resources overlap with important
processes in its life cycle.

At present, the key area described above is one of the sea areas
significantly affected by global climate change. Due to the rapid
change in global climate and the reduction in sea ice coverage,
the fishing time for Antarctic krill in the key area has been
prolonged, and the fishing season has changed. Previous research
also points out that the average body length of Antarctic krill in
the southwest Atlantic Ocean has increased, which indicates that
the recruitment of Antarctic krill in the key area tends to decrease
(Loeb et al., 1997, 2009; Atkinson et al., 2004, 2019; Trivelpiece
et al., 2011; Flores et al., 2012; Saba et al., 2014; Loeb and Santora,
2015; Cox et al., 2019; Hill et al., 2019). With the increase in

fishing spatial aggregation and the gradual change in fishing time
distribution, as well as the importance of Antarctic krill resources
in the Southern Ocean ecosystem, it is very important to manage
and protect Antarctic krill resources in the key area.

For the current fishery, the Commission for the Conservation
of Antarctic Marine Living Resources (CCAMLR) adopts a
fishing quota to manage Antarctic krill resources, and the total
catch of Antarctic krill is limited to 620,000 tons per year, and
this preventive limit is based on a simulation method using the
general yield model (Karlsen et al., 2006). However, with the
emergence of new technologies, krill fishing in new member
countries and environmental changes, the management system
of the Antarctic krill fishery will face new challenges.

The long-term aim of CCAMLR has been the development
of a feedback management procedure for the krill fishery that
includes adaptive management in which management measures
are regularly adjusted based on ecosystem monitoring indices.
Implementing this sort of management requires developing an
integrated stock assessment (Nicol and de La Mare, 1993; Fabra
and Gascon, 2008). At present, for Antarctic krill resources,
the main stock assessment method is acoustic. However, the
disadvantage of the acoustic assessment method is that there
is uncertainty in the parameter setting in the process of
analyzing acoustic data, and the acquisition of acoustic data
also costs considerable labor and financial resources. The
acoustic assessment method can assess only the overall level of
resources, and the assessment result cannot consider the life
stage of the krill population. Stock assessment methodologies are
rapidly developing, but some of these methods are difficult to
implement for krill given their biological characteristics. Krill,
like many invertebrates, are difficult to age, so age-structured
assessments can be difficult to fit to available data sources. One of
CCAMLR’s key aims is the development of integrated assessment
methodologies that incorporate many different data sources in
the assessment (e.g., acoustic surveys and trawl surveys). Kinzey
et al. (2015) developed an integrated, age-structured model that
incorporated acoustic survey data to estimate the stock status of
krill, and key parameters were analyzed. This model from Kinzey
et al. (2015) provided a good foundation for the stock assessment
of Antarctic krill based on the integrated method. An integrated
assessment combines all available data into a single modeling
framework, thereby providing more comprehensive estimates of
model parameters as well as biological reference points (Maunder
and Punt, 2013; Punt et al., 2013). The integrated assessment
method can not only effectively use data but also confirm the
development direction of krill stock assessment in the future.

Therefore, this study establishes an integrated, size-structured
model based on krill fishery and scientific survey data to evaluate
the Antarctic krill resource status in the key area and explore
the body length composition, recruitment and mature biomass
(spawning biomass). A preliminary analysis of the relationship
between estimated recruitment, mature biomass and climate
variability in the Southern Ocean is also presented. Our goal is
to demonstrate how systematically collected data from different
sources could be used in an integrated framework and to build an
integrated model suitable for krill resources. It is also developed
to balance the use of different data sources by means of data
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weighting, so that the integrated model can have a better prospect
of convergence in the future. This research can further develop
krill stock assessments to provide advice for the management
of this fishery.

MATERIALS AND METHODS

Research Area
The study area includes the western side of the South Shetland
Islands, the Bransfield Strait, and the water between Elephant
Island and the Joinville Islands at the northern tip of the Antarctic
Peninsula (Figure 1).

From an ecological point of view, the study area includes
the main spawning area, breeding area and wintering area
of Antarctic krill in the southwest Atlantic Ocean; from the
perspective of the krill fishery, the study area contains an
important fishing ground for Antarctic krill, subarea 48.1.
Especially in recent years, the catch of Antarctic krill in
subarea 48.1 has been more concentrated in time and space
than ever before.

Data Collection
Survey and Fishery Data
The independent survey data (including survey abundance and
length composition data) used in this assessment were collected

by the United States Antarctic Living Marine Resources (AMLR)
Program of the National Marine Fisheries Service, Southwest
Fisheries Science Center (AMLR1). The surveys occurred in the
austral summer from 1992 to 2011, the sample data were collected
by zooplankton net.

The fishery-dependent data (including length composition
data and catch biomass) come from CCAMLR’s public data.2

Catch biomass data are available from 1992 to 2011, but
length composition data are available for only 2001–2002 and
2004–2011. Data details is in Table 1.

Climate Index
It has been noted in previous studies that SAM and ENSO affect
sea ice and duration around the Antarctic Peninsula and may
have an impact on the Antarctic krill recruitment (Loeb et al.,
2009; Loeb and Santora, 2015). Therefore, two climate indices,
SAM and ENSO, were chosen for this study. SAM describes the
north-south motion of the westerly winds around Antarctica, and
ESNO deals with the temperature variations in the eastern and
central Pacific Ocean that affect the wind and storm patterns
around Antarctica.

Two measures of ENSO were used in this research, the Nino
3.4 Index, a measure of sea-surface temperature anomalies in

1https://swfsc.noaa.gov/AERD-Data/
2https://www.ccamlr.org/en/data/ccamlr-data

FIGURE 1 | Research area.
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TABLE 1 | Data composition for model assessment.

Data composition Time ranges Attribute

Catch biomass 1992–2011 year Fishery data (yield per year)

Length composition
in fishery

2001–2002 year,
2004–2011 year

Fishery data; length range from 11
to 61 mm; sample size was more
than 30,000

Abundance in
survey

1992–2011 year AMLR survey data

Length composition
in survey

1992–2011 year AMLR survey data; samples were
collected by zooplankton net;
length range from 11 to 61 mm;
sample size more than 50,000

the equatorial Pacific, and the Southern Oscillation Index (SOI),
a measure of large-scale air pressure fluctuations that coincide
with EI NINO and La Nina events. We obtained SAM data from
the British Antarctic Survey’s Ice and Climate Division,3 and
obtained the El Niño 3.4 sea-surface temperature and SOI from
the NOAA Climate Prediction Center.4

Antarctic Krill Distribution and History
The distribution of krill is circumpolar, and South Georgia, Bird
Island, South Orkney Island, Elephant Island, the Bransfield
Strait and the Ross Sea have higher biomass than other areas
of Antarctica (Hofmann and Hüsrevoğlu, 2003; Siegel, 2005;
Atkinson et al., 2009). Krill often congregate in different forms
(path, shoal, swarm, and school) on the edge of the continental
shelf, near sea ice and around islands and exhibit diurnal vertical
movement behavior (Watkins et al., 2000). Krill have obvious
vertical movement behavior in the day and night, inhabiting deep
water at depths of 200–500 m in the daytime and rising to the
surface or upper 0–200 m at night. In the development stage, krill
are concentrated in deep water, and they rise to the surface with
development. Generally, krill are considered to live for 5–7 years,
and the spawning population is 2–3 years old (Ikeda, 1985). At
present, researchers usually consider Antarctic krill under 1 year
old as a recruitment of Antarctic krill, and krill with body lengths
over 35 mm are considered adults, which grow rapidly in summer
(Reiss, 2016).

Integrated Size-Structured Stock
Assessment Model
Assessment methods should be selected to produce the types
of outputs needed for management purposes and to utilize the
available data to the maximum extent possible.

For Antarctic krill, aging is difficult. However, size-structured
methods are now preferred because they can make full use of
size-composition data, are able to integrate multiple sources of
data, and produce the types of outputs that are needed for
management purposes. An advantage of size-based models over
age-based models is that all processes can be size-based, and these
processes can modify the (unmodeled) size-at-age distribution
(Punt et al., 2013).

3http://www.nerc-bas.ac.uk/icd/gjma/sam.html
4https://www.cpc.ncep.noaa.gov/data/indices/

We developed an integrated size-structured assessment
method, similar to Walters and Post (1993). Our assessment
modeled a single population, did not discriminate between sexes,
and operated at a yearly time step. Krill were tracked by size and
classified into 5 mm length bins. The model included four key
parts (Eq. 1):

Ni+1 = NiHiXi + Ri+1 (1)

where Ni is a column vector of length H (number of size
classes) containing the numbers-at-length at the start of the
time step I; Xi is the size transition matrix for time-step
I; Hi is the survival at size during time step I; and Ri+1
is a column vector of the recruitment to each size-class
during time step i. The initial numbers of krill in the length
bins (N1) are estimated as a parameter vector. In total, 61
parameters were estimated in this assessment. The assessment
model was coded in AD Model Builder (Fournier et al.,
2012) and estimates quantities that are important for fishery
management, such as mature biomass, recruitment, fishing
mortality, and selectivity. Maximum likelihood methods were
used to estimate all parameters.

The above size-structured, integrated model, which tracked
Antarctic krill by body length in surveys and fisheries, catch in
fisheries, abundance in surveys, and maturity state, was coded
in AD Model Builder (Fournier et al., 2012) to estimate the
trends of recruitment, spawning biomass, fishing mortality and
selectivity from 1992 to 2011. The model equations are provided
in the Appendix. The estimated and fixed parameters setting are
provided in Tables A1, A2, respectively.

Exploring the Drivers of Recruitment
Dynamics
In this study, we use the Beverton-Holt (Beverton and Holt,
1957) model (Eq. 2) and Ricker spawner-recruit model (Ricker,
1954) (Eq. 3) to fit the estimates of krill spawning biomass
and recruitment and compare them to the null model with the
small sample size corrected Akaike information criterion (AICc)
(Eq. 4) (Akaike, 1974; Burnham and Anderson, 2002).

B-H model: Rt =
Pt

αPt + β
(2)

Ricker model: Rt = αPte−βpt (3)

AICc = 2k− 2LogLike+
2k(k+ 1)

n− k− 1
(4)

where Rt is the estimated recruitment at time t; Pt is the estimated
spawning biomass at time t; α and β are estimated parameters; k
is the number of parameters estimated in the model; and n is the
number of data points.

Quantifying Uncertainty and Data
Weighting
Likelihood profiles were calculated for key parameters (e.g.,
natural mortality and mean recruitment). Calculation of
appropriate sample sizes was difficult because no data describing
how the samples were collected were available (Pennington et al.,
2002).
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Many length frequency sample data were taken from surveys
(sample size was more than 30,000) and fisheries (sample size was
more than 5,000), length data range from 11 to 61 mm. There
were no available data on how the sample data were collected at
the time of assessment, so estimating the effective sample size was
not possible. In this study, the length frequency data were down
weighted from the sample size to 20 (initial smoothness weighting
was 20). The coefficients of variation (CVs) from catches are not
known but should be relatively small and were set to 0.01. The
weights of the multiplier for the effective sample size for size data
are 0.25, 0.5, and 1.

Impacts of Climate Change on Estimated
Resources
To further investigate the impact of climate change on Antarctic
krill resources and to pave the way for how environmental
factors can be better incorporated into assessment models in
the future, this study used correlation analysis to examine the
relationship between relevant climate factors and the model-
assessed Antarctic krill recruitment and mature biomass in
time series.

Sequential t-test analyses of regime shifts (STARS) are used
to examine changes in climate indices and assessed resources
over time series. In order to eliminate the influence of the

autocorrelation of the leap nodes in the time series, the
original time series were preprocessed using the “pre-whitening”
method of the STARS method (Rodionov, 2006). The results
of the STARS analysis are affected by the cut-off length and
the Huber weighting coefficient. The cut-off length used in
this study was 3, and the Huber weighting coefficient was
1, with a significance level of 0.1, based on the time range
selection and trial settings analyzed. STARS was programmed
using the Visual Basic for Application (VBA) function in
EXCEL.5

RESULTS

Model Fits
Model estimation ends when a convergent Hessian matrix
is obtained, and all data sources are fit by the maximum
likelihood estimates from the assessment method. The trajectory
of predicted survey numbers was relatively consistent among
the three weighting scenarios (Figure 2). In general, the years
in which large survey abundances were observed were poorly
fit, mainly in 2002–2003, 2008, and 2010 year. Fits to catch
biomass were relatively good under all scenarios (Figure 3).

5http://www.Beringclimate.noaa.gov/regimes/index.html

FIGURE 2 | Model fits (three solid line, red line present weights in 0.25, green line present weight in 0.5, blue line present weight in 1) to observed survey number
(black dots) with 95% confidence intervals (black lines).
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FIGURE 3 | Model fits (three solid line, red line present weights in 0.25, green line present weight in 0.5, blue line present weight in 1) to observed catch biomass
(black dots) with the 95% confidence intervals (black line). The assumed CVs for the catch data are very small, so it is difficult to see the error bars and the fits to the
data are quite close.

Overall, the survey length composition data were better fit than
the catch length composition data (compare Figure 4A to 4B).
Some years with notably poor fits in the catch composition data
were 2005, 2007, 2008, and 2011 (Figure 4B). In 2005 and 2011,
the predicted catch length composition displayed a peak in large
size classes that was not observed. In 2007 and 2008, the predicted
catch length composition displayed a peak in small size classes
that was not observed in the data. Differences in fits among
weighting scenarios were minor for both survey and catch length
composition data.

Assessment
Recruitment, fishing mortality, natural mortality, mature
biomass, biomass of the maximum sustainable yield (BMSY)
and selectivity of survey and fishing were estimated by the
integrated model under three kinds of data weightings. Under
the three weighting scenarios, the results show that estimates
of recruitment have same trend of change, and the highest and
lowest values were located in 1994 and 1997 year, respectively
(Figure 5), the assessment results for each year are shown
in Table 2; estimates of fishing mortality range from 0.0036
to 0.2380, with an average fishing mortality of 0.05 year−1,
and the values are very close under the three weighting
scenarios (Figure 6); estimated mature biomass also have
same trend of change, and the highest and lowest values were
located in 1998 and 2001 year, respectively (Figure 7), the
assessment details for each year are shown in Table 3. The
estimated results of natural mortality, biomass of the maximum

sustainable yield (BMSY) and selectivity of survey and fishing
are detailed in Table 4. The change of the survey and fishing
selectivity estimated by the model are shown in Figure 8. In
addition, the estimation result of the increment per year at
length and size transition matrix by the model are shown in
Figure 9.

The Relationship Between Spawning
Biomass and Recruitment
We used the Beverton-Holt and Ricker models to fit the
relationship between spawning biomass and estimated
recruitment, and the results indicated that there was no
significant correlation between spawning biomass and estimated
recruitment (Figure 10).

Relationship of Estimated Recruitment,
Spawning Biomass and Climate Change
The distance level, cumulative sum, and interannual variation
of estimated Antarctic krill recruitment and spawning biomass
are shown in Figures 11A,B. Based on the results of the
STARS analysis, the jumping change in estimated recruitment
occurred in 1995/96 and 1999/2000 year, and the jumping change
in estimated mature biomass occurred in 1993/94, 1998/99,
2003/04, and 2009/10 year. The distance, cumulative sum, and
interannual variation of SAM, SOI, and SST Nino 3.4 are shown
in Figures 11C–E. The interannual leapfrog in SAM occurred
in 1997/98 year, the interannual leapfrog in SOI occurred in
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FIGURE 4 | Observed length frequency length (black solid line) and predicted length frequency (dotted red line present weights in 0.25, dotted green line present
weight in 0.5, dotted blue line present weight in 1); (A) survey length frequency; (B) catch length frequency.
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FIGURE 5 | Recruitment in 1992–2011 years (red line present weights in 0.25, green line present weight in 0.5, blue line present weight in 1).

1998/99 year, and the interannual leapfrog in SST occurred
in 1998/99 year.

In general, there is a certain lag in the effect of climate change
on marine organisms. Therefore, comparing the estimated
Antarctic krill recruitment, mature biomass and the leap in the
same time series with the three climate factors, we can find that
the climate changes have influence on the estimated Antarctic
krill recruitment and mature biomass to some extent, but the
pattern of the influence is not very obvious.

DISCUSSION

Diversity of Antarctic Krill Stock
Assessment
Stock Assessment
In this study, we used a new method to assess krill resources
in subarea 48.1 near the Antarctic Peninsula and obtained
important information about the recruitment, spawning biomass,
fishing mortality and natural mortality of krill. The recruitment,
spawning biomass and fishing mortality of krill were estimated to
have greatly changed during 1992–2011. Under the three kinds
of data weightings, there were some differences in the estimated
recruitment of krill, but the trends were consistent The average
levels of the estimated recruitment were 2.33× 1012, 3.36× 1012,
and 5.16 × 1012, the highest estimated values were 3.58 × 1012,
5.76 × 1012, and 9.49 × 1012 in 1994, and the lowest estimated
values were 1.47 × 1012, 1.81 × 1012, and 2.36 × 1012 in 1998.
In addition, the estimated recruitment of krill presents a cyclical
variation, with an average period of 3–4 years, this variation in
the cycle of change is related to the physical environment of the
polar ecosystem (Kinzey et al., 2019), but also to the behavior
of its predators (Fraser et al., 1992; Fraser and Trivelpiece, 1995;
Reid et al., 1999, 2002).

Kinzey et al. (2015) estimated the recruitment of krill based
on an integrated age structured model using the same survey

data and acoustic survey data in the same area. The results
showed that the recruitment of krill ranged from 3.85 × 106 to
0.58 × 108, which was lower than the estimated recruitment of
krill in our assessment model. For krill resources, recruitment
estimation is difficult, and it is normal that the estimated results
of different assessment models are different. In the observation
time range of this study and other related studies, there was a
phenomenon in which the recruitment of krill was very low in

TABLE 2 | Recruitment in three different data weightings.

Data weighting 0.25 Data weighting 0.5 Data weighting 1

Year Recruitment Recruitment Recruitment

1992 2.16 2.64 3.45

1993 2.78 3.71 5.06

1994 **3.58 **5.76 **9.49

1995 2.88 4.45 7.16

1996 1.87 2.53 3.66

1997 *1.41 *1.73 *2.3

1998 1.47 1.81 2.36

1999 2.32 3.34 5.08

2000 3.38 5.31 8.62

2001 3.1 4.68 7.39

2002 2.71 4.01 6.32

2003 2.31 3.31 5.16

2004 1.96 2.67 3.84

2005 2.38 3.48 5.53

2006 2.42 3.34 4.97

2007 1.94 2.55 3.53

2008 1.95 2.93 4.83

2009 1.99 3.06 5.06

2010 1.96 2.95 4.65

2011 1.96 2.95 4.65

*The lowest value, **The maximum value.
Unit: 1012 individuals.
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FIGURE 6 | Fishing mortality in 1992–2011 years (red line present weights in 0.25, green line present weight in 0.5, blue line present weight in 1).

FIGURE 7 | Spawning biomass and BMSY in 1992–2011 years (red line present weights in 0.25, green line present weight in 0.5, blue line present weight in 1).

1 year and very high in the following year (Siegel, 1988). For krill
resources, this rapid change might not be completely attributed to
the biological properties of the krill population (mainly including
growth and reproduction) and the level of spawning biomass;
instead, it could be influenced more by environmental changes.
The greatest challenge to further understand the population
dynamics of krill recruitment variability is to separate the effects
of oceanography and the environment forcing on krill abundance
from factors affecting the population dynamics of the species that
has a circumpolar distribution, and yet shows little evidence of
genetic stock structure (Bortolotto et al., 2011). In addition, from
the perspective of the ecological status of Antarctic krill in the
Southern Ocean, in the future, an in-depth study of the changes
in trophic levels (food web positions) of Antarctic krill in the
ecosystem over a certain time scale, using the law of conservation
of energy as a guideline, could provide information for exploring

the mechanisms of changes in its recruitment and its changes
in time and space.

Compared with the estimated recruitment of krill, the
estimated mature biomass had relatively small differences under
the three kinds of data weightings, and the trends over time
were consistent. The estimated average mature biomass was
1.15 × 106, 1.28 × 106, and 1.46 × 106 tons, the highest
value appeared in 1992, and the lowest value appeared in 2001.
Compared with the assessment results from Kinzey et al. (2015),
the differences in the estimated mature biomass were not very
significant. However, similar to the estimated recruitment of
krill, the estimated mature biomass varied greatly within the
observation time frame of this study. Comparing the estimated
mature biomass with the corresponding catch, there is no obvious
relationship between them. Judging from the characteristics of
krill resources, the variability of krill resources is mainly due to
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TABLE 3 | Spawning biomass in three different data weightings.

Data weighting 0.25 Data weighting 0.5 Data weighting 1

Year Spawning biomass Spawning biomass Spawning biomass

1992 **1801900 **2042900 **2310400

1993 1568900 1771600 1980600

1994 1360700 1492200 1615400

1995 1268100 1370300 1470200

1996 1255100 1403100 1584300

1997 1246000 1426000 1657200

1998 1161500 1314100 1508200

1999 1029900 1124600 1244500

2000 885960 936050 1004600

2001 *859350 *922660 *1020900

2002 980280 1110600 1304100

2003 1089900 1271100 1528300

2004 1168000 1362600 1634100

2005 1182800 1357000 1600800

2006 1088100 1227100 1423500

2007 1069500 1193400 1377700

2008 1077400 1185200 1351100

2009 1030700 1114900 1249300

2010 895970 980110 1126000

2011 898260 1000700 1177600

*The lowest value, **The maximum value.
Unit: ton.

TABLE 4 | Difference in parameter of the model estimating under three
data weightings.

Estimated
parameters

Variable
name

Data
weighting

0.25

Data
weighting

0.55

Data
weighting 1

Natural Mortality M 0.47 0.53 0.6

Fishing
Selectivity (50%)

L50, fishery 32.50 mm 33.28 mm 34.16 mm

Fishing
Selectivity (95%)

L95, fishery 39.66 mm 40.76 mm 42.00 mm

Survey
Selectivity (50%)

L50, survey 38.46 mm 40.12 mm 41.92 mm

Survey
Selectivity (95%)

L95, survey 53.51 mm 55.26 mm 57.05 mm

BMSY F35% 3.97 × 105 4.36 × 105 4.96 × 105

changes in krill distribution rather than changes in abundance
and biomass. Changes in the structure of the krill population
have also be observed in related studies. Therefore, the density
dependence of krill resources and the transport mechanism of
krill populations in the Southern Ocean are issues that need to
been understood in depth. The research results of these issues can
further provide help for stock assessments of krill.

Different from the estimated recruitment and the mature
biomass, the estimated fishing mortality showed almost no
difference under the three data weightings, and the estimated
average fishing mortality was 0.05. In general, the level of catch
corresponds to the level of fishing mortality. However, when

comparing the fishing mortality estimated by the model with the
corresponding yield of krill, there was no obvious correlation
between the level of krill catch and the level of fishing mortality
within the observation range. In years with high krill catch, the
corresponding fishing mortality was not very high. The cause
of this phenomenon is mainly due to the predation of krill by
marine mammals such as whales and seals, which is much higher
than the fishing mortality of krill. Therefore, the different kinds of
data weightings that were used for the model estimation had little
effect on the estimated fishing mortality. In addition, in recent
years, there has been less discussion about the risks that fisheries
bring to krill resources (Meyer et al., 2020; Watters et al., 2020).
This lack of attention also reflects the view that the current fishing
level cannot have an appreciable impact on krill resources, and
the catch was only a small part of the total biomass of krill.

The natural mortality and 50 and 95% fishery and survey
selectivity have certain differences under the three data
weightings. Natural mortality is a relatively important parameter;
it is estimated by this study to be between 0.47 and 0.60 under
the three weightings. The natural mortality range estimated by
this study is smaller than the range of natural mortality estimated
according to the catch curve method (Siegel, 1986, 1989), Pauly
empirical formula method (Basson, 1994), von Bertalanffy (VB)
equation method (Basson and Beddington, 1989; Basson, 1994),
and B-H method (Siegel, 1987; Knox, 2006), and it is close to the
natural mortality estimated by the length cumulative frequency
method (Siegel, 1986, 1991) and the predator curve method
(Siegel, 1992). Natural mortality is very difficult to accurately
estimate for a mobile resource such as marine living resources,
and natural mortality is not a constant value; it will change
with the different life history stages of the organism and the
environment in which it is located (Virtue et al., 1996). Different
estimation methods and different parameter settings during
estimation will affect the estimation results.

Climate Change Implication for Krill Dynamics
In the analysis of the leapfrog of Antarctic krill recruitment,
mature biomass and three climate indices, it can be seen that
the leapfrog of Antarctic krill recruitment and mature biomass
are correlated with the leapfrog of three climate indices, which
is consistent with the results of other studies, that is, climate
change affects the recruitment and abundance of Antarctic krill
to some extent. The correlation results demonstrate the accuracy
of the model results and further confirm the impact of climate
change on Antarctic krill, which paves the way for the future
inclusion of climate factors as parameters in the integrated size-
structured model.

Relationship Between Recruitment and
Mature Biomass
Within the observed population size range, there was no
obvious relationship between recruitment and spawning biomass
estimated by the model. This phenomenon is very common in
the case of using commercial fishing data for stock assessment
(Punt et al., 2013). This is mainly due to the lack of information
on recruitment of krill. In addition, compared with other
resources, krill are small in size and live in polar regions
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FIGURE 8 | Survey selectivity and fishing selectivity in 1992–2011 years (red line present weights in 0.25, green line present weight in 0.5, blue line present
weight in 1).

FIGURE 9 | Length increment per year at length and size transition matrix under three kinds of data weightings (red line present weights in 0.25, green line present
weight in 0.5, blue line present weight in 1).

that are not conducive to long-term surveys. Whether through
scientific surveys or commercial fishing, it is difficult to obtain
group information on krill recruitment. From the perspective of
population biology, the lack of an obvious relationship between
the estimated recruitment and spawning biomass of krill is
mainly due to two reasons. First, it is generally believed that
populations or resource groups with relatively small changes
in their numbers will have a close relationship between their
recruitment and spawning biomass. However, for populations
or resource groups with drastic changes in their numbers, the
relationship between their recruitment and spawning biomass
does not seem to be clearly linked, and to be more precise, the
relationship between the recruitment and spawning biomass is

less direct, and the strong influence brought by some factors
obscures the relationship between the recruitment and spawning
biomass. The results of this study show that within the observed
range, the estimated recruitment and spawning biomass of krill
vary greatly, and the correlation is not obvious. Second, previous
studies have pointed out that the strength of the relationship
between the recruitment of bait species in one year and the
spawning biomass in subsequent years is uncertain. The level of
recruitment can be controlled by factors such as the environment,
ecosystems or some external driving factors, and these factors
have a great influence on bait species. Krill resources are bait
resources and are preyed by whales, penguins, seals and seabirds
in the Southern Ocean. In addition to the above two main factors,
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FIGURE 10 | Fits of spawning biomass-recruitment relationship.

FIGURE 11 | Interannual variability of estimated Antarctic krill recruitment, spawning biomass and three climate indices. (A) Estimated recruitment, (B) Estimated
spawning biomass, (C) SAM, (D) SOI, (E) SST in Nino 3.4. The histogram is the distance level, the yellow line is the cumulative, the red line is the steady-state
transition obtained from the STARS analysis.

the status of krill resource density may also affect the estimation
of the spawning-recruitment relationship, but because there are
too many factors involved, there are few studies that can clearly
prove this point of view.

From the perspective of model estimation, the Ricker and
B-H models that are currently commonly used and used
in this article are completely based on the dependence of
population resource density. In many cases, they may not be
very suitable. A more complete reproduction model should

consider not only the recruitment and spawning biomass but
also the role of environmental factors in the process from
recruitment to spawning biomass. For some species, the impact
of fishing activities must also be considered. For Antarctic krill,
a bait resource with large changes in resources and strong
environmental impacts, these two models cannot effectively
reflect the relationship between recruitment and spawning
biomass, which is relatively normal. In future research, improving
the quality of collected data and selecting important influencing
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factors to bring into the estimation model are two very
important tasks.

Application to Fishery Management
When evaluating any kind of fishery resource, the evaluation
method is selected to make the results of the evaluation
meet the reference data required for production management
as much as possible and to maximize the use of existing
data (Punt et al., 2013). For krill resources, due to the special
geographic location where they live, it is very difficult to obtain
scientific survey data for long-term and continuous scientific
investigations. However, as an important fishery resource in
the Southern Ocean, krill has more catch data. The integrated
size structure model used in this article makes full use of the
scientific survey data and fishery data of krill and balances the
difference in model estimation caused by the effective sample
size of body length data by means of data weighting. The model
does not require the assumption of deterministic growth or the
assumption that the population is stable, and it can express the
uncertainty related to the model output in a variety of ways
(Punt et al., 2013). However, our research may not be feasible or
necessary for future fishery management. Even so, at present, the
estimated result indeed lays the foundation for effective fishery
management in the key area of 48.1 and provides a background
for the biology of krill in the 48.1 area. We developed a new
type of krill assessment method on the basis of previous studies,
and the uncertainty of the estimation is also reflected in the
posterior distribution. Based on the estimated results obtained
in this article, the mature biomass, sustainable fishing mature
biomass, and fishery selectivity assessed by the model can provide
scientific references for future krill management in subarea 48.1.
Comparing the global catch data of krill published by CCAMLR
with the mature biomass of krill estimated by the model, the
global catch is approximately 10–13% of the estimated mature
biomass, and the estimated BMSY is approximately three times
higher than the fishing limit (1.5× 105 tons) set by CCAMLR for
subarea 48.1 (Nicol et al., 2012). Combined with the estimated
fishing mortality, it can be considered that the current krill
resources in subarea 48.1 are not overfished, and this view is
also consistent with the current belief of most scholars; that is,
the output of krill accounts for only a small part of its resources.
From a macro perspective, this result is indeed the case, but the
recruitment and mature biomass estimated in this study show
slight downward trends. In addition, studies have shown that the
recruitment of krill near the Antarctic Peninsula is decreasing,
the average body length of the krill that are caught is larger,
and climate change (mainly reflected by the reduction in sea ice
coverage and time) is becoming increasingly unfavorable for the
formation of krill recruitment (Loeb et al., 1997; Siegel et al.,
1997; Quetin et al., 2007; Wiedenmann et al., 2008, 2009). The
current fishing situation will have a poorly quantified and poorly
controlled impact on local krill resources. Therefore, in the future
management of Antarctic krill resources in the 48.1 zone, fishing
control in smaller units may be a better choice (Constable and
Nicol, 2002; Miller, 2002).

Our research has developed an assessment model for
Antarctic krill, and it has certain advantages. However, the

estimated value of the resource state is generally sensitive to
the data input and the structure of the evaluation model.
From the perspective of data sources, the main problems
in data collection in this study include three points: (1)
the collected length data have systematic differences, and
the information about the effective sample data is not clear,
for example, the survey sample data volume in 2001 was
167, while the survey sample data volume in 2010 was
only 59, and the contribution of these two parts of data
to the model estimation will be different; (2) the fishery
report is not complete, which is mainly reflected in the
unclear information about some covariates of catch data;
(3) some parameters used in the evaluation are poorly selected,
for example, the body length-weight relationship of krill
is calculated based on an empirical formula, and no site-
specific research has been conducted. From the perspective
of model design, the time interval set by the model, bin
size of length data, etc., will affect the output of the model.
In this study, the model we built did not consider the
spatial dimension, so the estimated fishing mortality and
reference point have bias. The results of this study can lay a
foundation for the development of future assessment methods
to manage this resource more scientifically, but there are
also uncertainties. In future krill resource assessments, it is
very important to collect data through scientific and rigorous
experimental design.

Leaving aside Antarctic krill resources, other marine
crustacean resources such as crab, shrimp, and abalone also
form rich and valuable fisheries, and these resources also hamper
the assessment work because they are different from fish (Punt
et al., 2013). When surveying these resources, in addition to their
abundance data, the most available data is their size data, and we
have developed an integrated size structure model in which all
processes are based on size data, and multiple data sources can
be used in combination to maximize the use of data. Although
all processes of the model can be based on size data, they are not
limited to it, and the model can still be applied flexibly through
transformation for biological resources with known length-age
relationships. Therefore, the development of this model not only
complements the methodologies for the assessment of Antarctic
krill resources, but also provides a reference for the assessment of
similar resource groups.
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