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The partial pressure of CO2 (pCO2) in the sea and the air-sea CO2 flux in plume
waters are subject to interactions among biological production, horizontal advection,
and upwelling under wind events. In this study, time series of pCO2 and other
biogeochemical parameters in the dynamic Changjiang plume were presented to
illuminate the controlling factors of pCO2 and the air-sea CO2 flux after a strong south
wind event (July 23–24, maximum of 11.2 ms−1). The surface pCO2 decreased by
310 µatm (to 184 µatm) from July 24 to 26. Low-pCO2 waters (<200 µatm) were
observed in the following 2 days. Corresponding chlorophyll a and dissolved oxygen
(DO) increase, and a significant relationship between DO and npCO2 indicated that
biological uptake drove the pCO2 decrease. The salinity of undersaturated-CO2 waters
decreased by 3.57 (from 25.03 to 21.46) within 2 days (July 27–28), suggesting the
offshore advection of plume waters in which CO2 had been biologically reduced. Four
days after the wind event, the upwelling of high-CO2 waters was observed, which
increased the pCO2 by 428 µatm (up to 584 µatm) within 6 days. Eight days after
the onset of upwelling, the surface pCO2 started to decrease (from 661 to 346 µatm
within 3 days), which was probably associated with biological production. Regarding the
air-sea CO2 flux, the carbon sink of the plume was enhanced as the low-pCO2 plume
waters were pushed offshore under the south winds. In its initial stage, the subsequent
upwelling made the surface waters act as a carbon source to the atmosphere. However,
the surface waters became a carbon sink again after a week of upwelling. Such short-
term air-sea carbon fluxes driven by wind have likely occurred in other dynamic coastal
waters and have probably induced significant uncertainties in flux estimations.
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INTRODUCTION

The carbon cycles in shelf seas are important components of
global carbon cycles. With 7% of the global ocean surface area,
shelf seas take up to 0.05–0.4 Pg C a−1 (Borges et al., 2005; Cai
et al., 2006; Chen et al., 2013; Dai et al., 2013; Laruelle et al., 2014),
accounting for more than 10% of the global ocean carbon sink.
The carbon sink is typically strong in river-dominated margins
where large river plumes, such as the Changjiang plume (Zhai
and Dai, 2009; Tseng et al., 2014; Guo et al., 2015), Pearl River
plume (Zhai et al., 2005; Guo et al., 2009), and Amazon River
plume (Ternon et al., 2000), induce significant biological uptake
of carbon (Dai et al., 2013; Cao et al., 2020). Biological CO2
uptake and the air-sea CO2 flux in large river plumes have large
spatial and temporal variations (Chen C.-T. A. et al., 2008; Guo
et al., 2015) due to the influences of plume dynamics (Huang
et al., 2013; Tseng et al., 2014), physical mixing, and the advection
of water masses (Li et al., 2019), nutrient supply, temperature,
etc. Wind forcing is one of the main factors impacting plume
dynamics and biogeochemical cycles, as it has been revealed in
field observations (Yin et al., 1997; Huang et al., 2013) and model
studies (Fong and Geyer, 2001; Xuan et al., 2012; Lachkar and
Gruber, 2013). However, the responses of CO2 in plume waters
to wind are largely unknown.

Alongshore wind drives offshore transport via Ekman
transport of surface waters, leading to the upwelling of subsurface
waters. Such well-known physical processes transport carbon and
nutrients horizontally and vertically. The wind-driven upwelling
of acidified and hypoxic bottom waters in the Chesapeake Bay
contributes to large spatial variations in the surface partial
pressure of carbon dioxide (pCO2), pH, and aragonite saturation
state (Li et al., 2020). In the eastern boundary of the Pacific Ocean,
equatorward winds drive surface Ekman transport and the
upwelling of nutrient-laden subsurface waters into the euphotic
zone (Lachkar and Gruber, 2013). Such a nutrient supply
stimulates phytoplankton blooms, which partially reduce CO2
in upwelling waters. In the Mississippi River plume, upwelling-
favorable winds transport the low-pCO2 surface water offshore,
enhancing the carbon sink (Huang et al., 2013).

Similar to the Mississippi River plume, the Changjiang plume
is a strong carbon sink in summer due to intense biological
production. The biological uptake of CO2 and the air-sea CO2
flux in the Changjiang plume have large temporal variations
associated with episodic wind events (Li et al., 2018, 2019; Wu
et al., 2020). Typhoon winds cause Changjiang plume waters to
become a strong carbon source through the upward transport
of high-CO2 bottom waters (Li et al., 2019) or cause the waters
to become carbon sinks by in situ biological production or the
advection of undersaturated-CO2 waters (Zhang et al., 2018; Wu
et al., 2020). Unlike typhoons, southerly or southwesterly winds
prevail in summer in the East China Sea and are associated with
offshore advection and even the detachment of Changjiang plume
waters (Lie et al., 2003; Xuan et al., 2012). Such plume dynamics
affect the surface biological activity (Wei et al., 2017; Zhang et al.,
2018) and likely also impact the air-sea carbon flux.

The offshore transport of buoyant plumes typically favors
upwelling. In the outer Changjiang Estuary, upwelling is also

modulated by the bottom topography and tidal mixing (Zhao,
1993; Lü et al., 2006; Hu and Wang, 2016). Cold surface waters
with high surface pCO2 have been identified along the Zhejiang
coast (Chou et al., 2009a) due to the upwelling of high-CO2
bottom waters. In contrast, the nutrients supplied by upwelling
lead to a complex response of phytoplankton growth, which
takes up CO2. To our knowledge, few studies have reported how
upwelling-favorable winds influence the pCO2 of the Changjiang
plume due to their transient nature.

In this study, we presented time-series buoy data in
the Changjiang plume. High-temporal-resolution variations
in temperature, salinity, pCO2, dissolved oxygen (DO), and
chlorophyll a (Chl a) after a wind event were analyzed to
illuminate the response of pCO2 to upwelling-favorable winds.
The transient responses of the air-sea CO2 flux to winds during
the advection period, upwelling period, and post-upwelling
period of the plume were also discussed.

MATERIALS AND METHODS

Buoy Deployment and Sample
Measurements
The variations of sea surface temperature (SST), salinity, pCO2,
DO, Chl a, and 2-m winds were obtained using a moored
buoy (July 20–August 11, 2015). The buoy was deployed at a
Changjiang plume site (water depth ∼45 m, 122.8◦E, 30.6◦N,
Figure 1), which is located at the track of typhoon “Chan-
Hom” (July 11, 2015). The details of the buoy observations were
explained by Li et al. (2018). In brief, a mounted SAMI-CO2

FIGURE 1 | Advanced Scatterometer winds over the East China Sea on July
24. The black pin denotes the buoy location. The colors represent the wind
speed.
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sensor (Sunburst Sensors, LLC) was used to measure sea surface
pCO2. This sensor has been previously used to measure pCO2 at
many locations worldwide (DeGrandpre et al., 1998; Körtzinger
et al., 2008; Moore et al., 2011; Moralespineda et al., 2014; Li et al.,
2019). The performances of the instrument were evaluated in
a laboratory before deployment. Salinity, temperature, DO, and
Chl a were measured with Water Quality Monitor meters (WET
Labs, currently belonging to Sea-Bird Scientific). In addition,
the bottom water temperature was also measured using an RBR
Maestro data logger (RBR Ltd.) mounted on a trawl-resistant
bottom mount (Ni et al., 2016). The wind speeds were recorded
with a Young sensor attached to the top of the buoy (∼2 m above
the sea surface). We also collected wind direction data from the
NCEP/NCAR reanalysis 10-m wind dataset (124◦E, 31.3◦N). All
sensors collected data every 15 min, except for the pCO2 sensor,
which collected data at 30-min intervals.

A Multi-Water Sampler (Hydro-Bios) was used to collect
discrete water samples and measure salinity, temperature profiles
on July 15, July 17, August 30, and September 1–2, 2015. The DO
concentrations in the samples were determined using the Winkler
titration method, and the discrete DO data were used to calibrate
our buoy DO data. The Chl a concentrations in the samples were
measured with a 10-AU Field Fluorometer (Turner Designs) after
extraction with 90% of acetone.

Satellite-Retrieved SSTs and Winds
We collected remotely sensed SST data in the Changjiang Estuary
from the Remote Sensing Systems1. This system comprises
microwave optimally interpolated daily SST data products
that combine the through-cloud capability of microwave data
with the high spatial resolution and near-coastal capability of
infrared SST data.

The wind data (Figure 1) were obtained from the Advanced
Scatterometer wind products, which are processed by National
Oceanic and Atmospheric Administration and National
Environmental Satellite, Data, and Information Service2. The
scatterometer instrument aboard the European Organization
for the Exploitation of Meteorological Satellites Metop satellites
uses radar to measure backscatter to determine the speed and
direction of winds over the surface of the oceans.

Data Processing
The dissolved inorganic carbon (DIC) data at the buoy were
calculated from the total alkalinity values, in situ temperature,
salinity, and pCO2 using the program CO2SYS (Pierrot et al.,
2006) with the equilibrium constants of Mehrbach et al. (1973)
as refined by Dickson and Millero (1987). The total alkalinity
values were calculated using the buoy-recorded salinity data and
the regression results of the total alkalinity and salinity data
recorded during a cruise conducted from July 9 to 20, 2015 in
the Changjiang estuary (Xiong et al., 2019).

The thermodynamic effect on pCO2 was eliminated by
normalizing it to a constant temperature, namely normalized
pCO2 (npCO2) (Takahashi et al., 1993): npCO2 = pCO2 × exp

1http://www.remss.com/
2https://oceanwatch.pifsc.noaa.gov

[0.0423 × (25.04 − SST)]. In the expression, 25.04 is the average
SST during our record. The air-sea CO2 fluxes were estimated
using Fgas = k × s ×1pCO2, where k is the gas transfer velocity,
s is the carbon dioxide solubility (Weiss, 1974), and 1pCO2 is
the difference between the sea surface pCO2 and air pCO2, which
is assumed to be a constant of 396 µatm (calculated from the
monthly air pCO2 in July 2015 at Korea’s Tae-ahn Peninsula site3.
The gas transfer velocity (cm h−1) was calculated according to
Wanninkhof [2014].

RESULTS

Surface Salinity, Temperature, pCO2, DO,
and Chl a Variations
The wind speeds were generally less than 8 m s−1 in our record,
except on July 23 and 24, when strong south winds prevailed
with a maximum wind speed of 11.2 m s−1 (Figures 1, 2E). Nine
days before the presented buoy data (July 11), typhoon “Chan-
Hom” passed the buoy, likely setting the baseline water property
values. The SST and salinity fluctuated sharply within 23 days
(July 20–August 11, Figures 2A,B). In this study, we divided the
record into three periods according to the variations in salinity
and temperature.

From July 20 to 26, the daily surface salinity values were
relatively stable (25.03–26.32), while a steady surface Chl a
increase and a pCO2 decrease (494–184 µatm) were observed
from July 24 to 26. During these 3 days, the surface oxygen
was also supersaturated with respect to the atmosphere (7.75–
10.32 mg L−1). A sharp salinity decrease was observed from July
26 to 28, during which the daily salinity decreased by 3.57 (from
25.03 to 21.46). The surface CO2 was undersaturated with respect
to the atmosphere. The DO in the waters was supersaturated
during the period of decreasing salinity. We assigned July 20–
28 as period I, which witness strong south wind (Figure 2E).

Period II (July 28–August 3) was characterized by a
continuous increase in salinity (21.46–29.72) and a decrease
in temperature (26.91–23.46). Meanwhile, DO decreased from
9.85 to 6.59 mg L−1. In addition, pCO2 increased sharply from
below 156 to 584 µatm. The surface Chl a decreased sharply
during period II.

During period III (August 3–11), the temperature increased
from 23.46 to 26.68 (August 9) and then decreased to 25.39
on August 11. The salinity decreased and then increased within
9 days. By comparison, the change in salinity in period III was
much smaller than those during periods I and II. The surface
pCO2 continuously increased at the start of period III (from 156
to 584 µatm). However, it decreased sharply from August 5 to 9
(from 661 to 346 µatm). We also observed increases in Chl a and
DO during this period.

Air-Sea CO2 Flux
The air-sea CO2 fluxes in the surface waters around our buoy
showed significant short-term variations (Figure 2F). The surface
waters served as weak CO2 sources to the atmosphere at the

3ftp://aftp.cmdl.noaa.gov

Frontiers in Marine Science | www.frontiersin.org 3 September 2021 | Volume 8 | Article 709783

http://www.remss.com/
https://oceanwatch.pifsc.noaa.gov
ftp://aftp.cmdl.noaa.gov
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-709783 September 13, 2021 Time: 17:54 # 4

Li et al. River Plume CO2 After Wind

FIGURE 2 | Salinity (A), temperature (B), pCO2 and DO (C), Chl a (D), wind (E) and air-sea CO2 flux (F) variations during 20 July–11 August in the Changjiang
plume waters. The gray dashed line in (C) is the atmospheric CO2, while the gray line is the saturated oxygen in surface waters. In (F), the gray dashed line shows
the position where the air-sea CO2 flux is zero. The two vertical dashed lines indicate the dates used to divide our time series data into three periods.

beginning of period I. The CO2 source was enhanced from July
22 to 24 (maximum of +23.9 mmol m−2 day−1), accompanied
by a strong south wind. Starting on July 26, the surface waters
became a strong CO2 sink (−13.09 mmol m−2 day−1).

During period II, the surface waters around our buoy
gradually turned from a CO2 sink to a CO2 source
(+24.1 mmol m−2 day−1). However, the waters changed
from a CO2 source to a CO2 sink again during period III
(−8.45 mmol m−2 day−1).

DISCUSSION

Advection of Plume Waters Influenced by
the Biological Uptake of CO2
A sharp increase in oxygen and a significant decrease in pCO2
occurred on July 24–26 (from 494 to 184 µatm), at which time
the maximum surface Chl a concentration was three times than
that measured on July 23 (Figure 2D). The salinity varied by

only 0.75, which was relatively minor in the dynamic coastal
environment. Thus, it seemed that the advection of plume waters
was not the driver of such significant biogeochemical responses
around the buoy. The increasing Chl a concentration suggested
that biological activity probably caused the coupled variations in
pCO2 and DO. Surface heating and low tides favor stratification,
which is suitable for phytoplankton blooms. It is hard to know
if the high biological production was directly associated with the
strong south wind event (July 23) that may have made the plume
thinner (Fong and Geyer, 2001). The high pCO2 measured at
the beginning of period I was probably related to the influence
of the typhoon that occurred 9 days before period I (July 11)
(Li et al., 2019).

The surface pCO2 did not decrease gradually, as shown in
the high temporal-resolution record: it decreased by 360 µatm
within 16 h (Figure 3B). Such a sharp decrease did not necessarily
indicate that CO2 uptake occurred within such a short period,
as it is an Euler observation. Generally, the biological uptake
of DIC should be the sum of biological production uptake
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within the transit time of plume, which is approximately 1 week
for the Changjiang plume (Zhang et al., 2020). However, a
considerable portion of CO2 should have recently been consumed
for the following reasons: first, the salinity was relatively constant
within the 16 h (25.11–25.73, Figure 3A). Horizontal mixing
should homogenize Chl a and pCO2, as observed for salinity if
the biological production occurred a week earlier. Second, the
supersaturated oxygen indicated that the biological signals, or at
least part of the signals, were probably created more recently,
as the air-sea oxygen exchange equilibrates the surface water
oxygen within approximately 1 week (Zeebe and Wolf-Gladrow,
2001). If biological production occurred a week earlier, the
air-sea exchange should have largely modified the npCO2–DO
relationship (Zhai and Dai, 2009), which was not supported by
our results (Figure 4B).

If the total alkalinity (calculated from the total alkalinity–
salinity relationship) and pCO2 were used to calculate the buoy
DIC (details are shown in the “Materials and Methods” section)
(Pierrot et al., 2006; Xiong et al., 2019), the DIC decrease from
July 25 to 27 was 207 µmol kg−1. Similar magnitudes of DIC
drawdown have been reported in the Changjiang plume and
Mississippi River plume (Guo et al., 2012; Wang et al., 2017).
If we use 7 days as the plume residence time (Wang et al.,
2014; Zhang et al., 2020), the net community production would
be 346 mg m−3 day−1. It is difficult to compare our results

with previously reported results, as we did not measure DIC
uptake data within the whole euphotic zone. In this study,
we simply assumed no DIC uptake at the bottom of the
euphotic zone. If a euphotic zone of 5 m was adopted (Ning,
1988), the net community production would be estimated as
(346 mg m−3 day−1

+0)/2∗5 m = 865 mg m−2 day−1, which is
well within the reported net community production and exported
particulate organic carbon flux in the Changjiang plume waters
(0.4–1.8 g m−2 day−1) (Gong et al., 2003; Hung et al., 2013b;
Wang et al., 2014, 2017). Such intense phytoplankton blooms
could have a significant influence on bottom hypoxia, which is
frequently observed outer of the Changjiang Estuary (Zhu et al.,
2011; Wang et al., 2017). Moreover, we likely underestimated the
biological production rate, as CO2 uptake could happen within
fewer days than the residence time. Such an underestimation was
possible, as the hypoxic water volume in the Changjiang Estuary
is larger than that in the Gulf of Mexico (Rabalais et al., 2003;
Wang et al., 2017; Zhou et al., 2017), and in the Mississippi River
plume, the net community production rate can be even larger
than 7 g m−2 day−1 (Guo et al., 2012).

On July 27 and 28, we observed low-salinity waters (daily
salinity = 21.46, Figure 3A) that were probably driven by the
eastward expansion of the low-salinity Changjiang plume waters.
The mixing of the low-salinity Changjiang plume waters and
cold subsurface waters was verified by the salinity–temperature

FIGURE 3 | High-temporal-resolution salinity and temperature (A,D,G), pCO2 and DO (B,E,H), Chl a and tidal height (C,F,I) data during the three studied periods.
The gray bars in (C,I) denote the sharp pCO2 decrease. All vertical dashed lines denote the Chl a peaks.
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FIGURE 4 | Relationships among buoy-measured salinity and temperature (A), oxygen saturation and npCO2 (B), Chl a and pCO2 (C), salinity and Chl a (D).

relationship (Figure 4A). Such an extension was also verified
by remotely sensed SST images, in which the plume water
temperature was found to be higher than that of the ambient
water (Figure 5). The extension of plume waters and even
the detachment of the Changjiang plume from the main body
have been frequently observed (Chen C. et al., 2008; Moon
et al., 2010) and are probably driven by strong winds and
tide mixing (Moon et al., 2010; Wu et al., 2011; Xuan et al.,
2012). During period I, we observed strong south winds (>11 m
s−1, Figure 2E), which agreed with previous observations
(Xuan et al., 2012).

The advection signal appeared 2 days after the end of the
strong south winds (strong winds prevailed from July 23 to
24), while the plume extension seemed to start on July 24, as
inferred from the satellite-derived results (Figures 5a–e). This
delay was likely due to the plume largely extending northeast
(Figures 5c–e), while our buoy was located east of the warm
plume waters. On July 27 and 28, the salinity decreased by ∼5
within 12 h and increased by∼3 within the next 12 h (Figure 3A),
indicating that the plume core with a strong horizontal salinity
gradient was probably located close to our buoy. That is, our
buoy was located at the periphery of the plume. Our time-
series and remote sensing results suggested strong temporal and
spatial variations in the wind-induced plume dynamics. Wind-
driven plume advection was also observed in the Mississippi

River plume (Huang et al., 2013) and was found to enhance
the carbon sink.

During the advection of plume waters, we observed a pulse
of maximum Chl a (Figure 3C) that corresponded to extremely
low salinity (salinity minimum of 17.07, Figure 3A). In addition,
pCO2 was lower than 200 µatm during this period. Low-salinity
waters in inner estuaries typically have supersaturated pCO2
(>600 µatm) (Zhai et al., 2007). In addition, the temperature
increase observed during period I should accompany elevated
pCO2. The significant relationship between npCO2 and DO
observed during period I (Figure 4B) demonstrated that the
pCO2 decrease was probably dominated by biological production
(Li et al., 2018).

In the Changjiang estuary, blooms are typically found in
waters within a salinity range of 25–30 due to their high
nutrient concentrations and suitable light conditions (Ning,
1988; Tseng et al., 2013; Wang et al., 2014). High Chl a
concentrations at salinities of 17–22 are not frequently reported
due to the high turbidity of these waters (Figures 3C, 4C)
(suspended matter typically >200 mg L−1), as turbidity limits
phytoplankton growth (Cloern, 1999). It is likely that the
advection of the plume carried the low-salinity waters (minimum
of 17.07) out of the maximum-turbidity zone (Shen et al., 2008).
Thus, the biological production of the plume water was less
limited by light.
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FIGURE 5 | Remotely-sensed sea surface temperatures during July 20 to August 11, 2015: 07/20 (a), 07/22 (b), 07/24 (c), 07/26 (d), 07/28 (e), 07/30 (f), 08/01
(g), 08/03 (h), 08/05 (i), 08/07 (j), 08/09 (k), and 08/11 (l). The white lines denote the location of the thermal front on July 28. The buoy location is shown by stars.

An extreme Chl a peak occurred from July 25 to 28
(Figures 2D, 3C). Undersaturated CO2 conditions lasted for
4 days, revealing the influence of an intense phytoplankton
bloom. As high-Chl a plume waters were transported eastward
under south winds, the low-pCO2 signals could occupy a larger
area. The cross-shelf transport of high-Chl a waters by frontal
processes has been identified in the East China Sea (Yuan et al.,
2005). In the Gulf of Mexico, the cross-shelf transport of low-
salinity and low-pCO2 waters under the influence of winds has
also been reported previously (Huang et al., 2013). In this study,
we showed that the advection of biological signals occurred
within a few days, which makes it hard to capture these signals
by traditional ship-based observations.

Although Chl a fluctuated considerably, pCO2 remained
low (Figure 3B). It is reasonable that the biological CO2
signal lasted for a month due to the slow air-sea CO2
exchange (Zeebe and Wolf-Gladrow, 2001), while Chl a has
diel variations. Moreover, the surface pCO2 and Chl a have
a non-linear relationship (Figure 4D), which results from the
non-linear pCO2–DIC relationship and from Chl a–carbon ratio
variations (Chang et al., 2003). The results also demonstrated
that we should be cautious when using Chl a concentrations

to retrieve biological-induced CO2 uptake (Bai et al., 2015;
Le et al., 2019).

Contrasting CO2 During and After
Upwelling
Four days after the wind event (July 29), the surface temperature
decreased continuously (Figure 2B), verifying the upwelling
of bottom waters. Upwelling was also revealed in the satellite
results (Figure 5g). The upwelling signal overtook the horizontal
advection signal, as inferred from the variations in salinity and
temperature. It is reasonable to infer that the subsurface water
upwelled to compensate for the offshore transport of surface
waters. In addition, tidal mixing could also contribute to the
observed upwelling, as discussed by Lü et al. (2006). Wu et al.
(2011) also showed through simulations that subsurface waters
under plumes upwell to the surface during spring tides. The
daily salinity and temperature increased and decreased by 7.76◦C
(21.46–29.22◦C) and 3.42◦C (26.91–23.49◦C) within 5 days,
respectively (Figure 3D). The salinity profile of the water column
around the buoy on July 17 showed waters with a salinity of
29.22 located at a depth of 22.5 m (Figure 6), which was adopted
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as the depth of the upwelled water. Thus, the upwelling speed
was calculated as 22.5 m per 5 days = 4.5 m day−1, which is
comparable with that reported in the upwelling area of northeast
Taiwan (5.4 m day−1) (Liu et al., 1992). The cold water patches
(defined as areas with SSTs < 26◦C) had double cores with a
spatial scale of approximately 45,000 km2 (Figure 5i), which
is of similar magnitude to that measured in the southern East
China Sea (32,000 km2) (Hung et al., 2013a). As the subsurface
waters upwelled, the high-temperature plume waters seemed to
separate into two parts (Figures 5f–h), similar to the reported
plume-detachment process (Xuan et al., 2012). The decreasing
temperature in our buoy record ended on August 3. The cold
core outside the Changjiang estuary lasted for at least a week after
August 3, as revealed in the satellite results (Figures 5g–k).

We observed a continuous increase in pCO2 during upwelling
(increased by 428 µatm, Figure 2C). Supersaturated and
undersaturated CO2 have both been reported in other upwelling
areas (Borges et al., 2005; Cai et al., 2006). It is typically
accepted that the upwelling of nutrient-rich subsurface waters
favors biological production, increasing Chl a and lowering pCO2
(Fassbender et al., 2011). However, the Chl a concentration
decreased rapidly at the onset of upwelling in this study
(Figure 3E), probably because the upward transport of bottom
waters diluted the surface Chl a. During 4 days of upwelling, an
episodic Chl a peak was observed; this peak was always associated
with a low-salinity spike (Figure 3F). The cold waters, however,
did not have high Chl a signals. This result is reasonable, as
the spring tides in period II did not favor the accumulation of
Chl a. Additionally, phytoplankton growth requires time (their
growth rates range from 0.3 to 3 day−1) (Laws, 2013). The waters
below the thermocline in the Changjiang Estuary are hypoxic and
rich in CO2 in summer (Chou et al., 2009b). The upwelling of
hypoxic and high-CO2 waters overtook the biological utilization

of CO2 (Li et al., 2019), inducing extremely high pCO2 in surface
waters during the initial period of upwelling. The extremely high
pCO2 (∼600 µatm) observed in spring tides indicates that tidal
mixing could be an important factor involved in carrying the
high-CO2 waters below the thermocline to the surface (August
2–3, Figure 2C).

Eight days after the onset of upwelling, a pCO2 decrease of
353 µatm (from 635 to 282 µatm, Figure 3H) was observed
within 8 h, accompanied by high Chl a. However, the salinity
only changed by 1.59 within 8 h (Figures 3G,I). Additionally,
the observed Chl a peaks were not necessarily related to
low-salinity spikes, suggesting that they were probably not
caused by the advection of the water mass. In situ CO2
uptake by phytoplankton could be the reason for such a sharp
pCO2 decrease. Phytoplankton blooms occurred approximately
1 week after the onset of upwelling. Time delays have also
been reported for blooms after typhoon events (Li et al.,
2019). Phosphate supplies induced by upwelling are crucial for
biological production in the Changjiang plume waters (Tseng
et al., 2013), as these waters typically lack phosphate after strong
biological production (Harrison et al., 1990; Wang et al., 2014).
While the major nutrient supplying occurs during upwelling,
the delay of blooms could possibly be attributed to hydrological
factors, as the relaxation of upwelling and the neap tide favor the
accumulation of Chl a.

Dynamic Air-Sea CO2 Flux of Plume
Waters Under South Winds
The turbid waters in the inner shelf served as a carbon source
to the atmosphere (Zhai et al., 2007; Figure 7), while the role of
the mid-salinity plume waters as either a carbon sink or source
was temporally variable under the south winds (Figures 2F, 6).

FIGURE 6 | Vertical salinity, temperature, and water density profiles around the buoy on July 17, 2015.
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FIGURE 7 | Schematic of carbon flux variations in the Changjiang plume under south winds at plume water advection (a), upwelling (b), and post-upwelling (c)
stages. The arrows on the right side of the buoy show the air-sea CO2 fluxes in our results (blue arrow denotes carbon sink, while red arrow denotes carbon source).
The horizontal and tilt dash arrows in panel (a) denote horizontal extension of plume waters and upwelling after the wind event, respectively. Upwelling of subsurface
waters in panel (b) is marked by dark blue.

The surface waters turned from a carbon source to a carbon
sink during the advection period (Figure 7a), accompanied by
extremely high Chl a and supersaturated oxygen (Figures 2C,D).
Previous study has validated the role of Changjiang plume waters
as a significant carbon sink in summer (Zhai and Dai, 2009; Tseng
et al., 2014). In this study, the carbon sink was estimated to be
approximately−12 mmol m−2 day−1 (Figure 2F), which agreed
with the values reported in previous study (Guo et al., 2015).
As plume waters were transported offshore during upwelling-
favorable wind, the carbon sink area likely expanded (Figure 7a),
enhancing the carbon sink of the coastal waters. A similar
mechanism has been revealed in the Mississippi River plume
(Huang et al., 2013). In the Changjiang plume waters, the
carbon sink area was probably larger than that reported for the
Mississippi River plume.

Upwelling is frequently observed in the coastal waters of
Zhejiang and the outer Changjiang Estuary (Lü et al., 2006;
Hu and Wang, 2016). In our study, upwelling occurred 4 days
after the wind event. Our observations showed that wind-driven
upwelling first made the area a carbon source (Figures 2F, 7b),
which lasted for 5 days in our record. A previous study also
suggested that the upwelling center along the Zhejiang coast had
high surface DIC and supersaturated CO2 (Chou et al., 2009a).
Twelve days after the wind event, the waters around the buoy
turned into a strong carbon sink with high Chl a (Figure 7c).
There are intense debates about whether upwelling areas should
be carbon sources or carbon sinks. As inferred from our results,
it could be strongly dependent on the timing of observations
(Figures 7a–c). The overall effects of upwelling on the air-sea
CO2 flux rely on nutrients and the CO2 concentrations of source
waters during upwelling and should be evaluated on larger spatial
and temporal scales.

The offshore advection of water parcels and cold upwelling
water have been frequently observed in the outer Changjiang
estuary and along the Zhejiang coast in summer (Zhao, 1993;
Yuan et al., 2005; Lü et al., 2006; Chen C. et al., 2008; Moon
et al., 2010). The interactions of biogeochemical and physical
processes occur on multiple time scales of days to a week under
the influence of winds. Thus, the surface carbon systems and the
air-sea CO2 flux of coastal waters could be extremely dynamic,
as inferred from our time-series study. A combination of
mooring observations, transect surveys, numerical simulations,

and satellite observations is needed to fully understand the
response of carbon dynamics to wind events.
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