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Benthic quadrat surveys using 2-D images are one of the most common methods of
quantifying the composition of coral reef communities, but they and other methods fail
to assess changes in species composition as a 3-dimensional system, arguably one
of the most important attributes in foundational systems. Structure-from-motion (SfM)
algorithms that utilize images collected from various viewpoints to form an accurate
3-D model have become more common among ecologists in recent years. However,
there exist few efficient methods that can classify portions of the 3-D model to specific
ecological functional groups. This lack of granularity makes it more difficult to identify
the class category responsible for changes in the structure of coral reef communities.
We present a novel method that can efficiently provide semantic labels of functional
groups to 3-D reconstructed models created from commonly used SfM software (i.e.,
Agisoft Metashape) using fully convolutional networks (FCNs). Unlike other methods,
ours involves creating dense labels for each of the images used in the 3-D reconstruction
and then reusing the projection matrices created during the SfM process to project
semantic labels onto either the point cloud or mesh to create fully classified versions.
When quantitatively validating the classification results we found that this method is
capable of accurately projecting semantic labels from image-space to model-space with
scores as high as 91% pixel accuracy. Furthermore, because each image only needs to
be provided with a single set of dense labels this method scales linearly making it useful
for large areas or high resolution-models. Although SfM has become widely adopted
by ecologists, deep learning presents a steep learning curve for many. To ensure
repeatability and ease-of-use, we provide a comprehensive workflow with detailed
instructions and open-sourced the programming code to assist others in replicating
our methodology. Our method will allow researchers to assess precise changes in 3-D
community composition of reef habitats in an entirely novel way, providing more insight
into changes in ecological paradigms, such as those that occur during coral-algae shifts.

Keywords: semantic segmentation, structure-from-motion (SfM) photogrammetry, deep learning, structural
complexity, coral reefs
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INTRODUCTION

Coral reefs provide a number of valuable ecosystem services,
supporting more than 25% of the global marine biodiversity
(Reaka-Kudla and Wilson, 1997). Globally, coral reefs provide
an estimated $30 B/year in various goods and services that
include tourism, coastal protection and fisheries (Cesar et al.,
2003). Ocean acidification, increasing sea-surface temperature
and frequency and severity of storm events, polluted river
runoff from agricultural centers, sedimentation from nearby
construction projects and overfishing are a few of the stressors
that have led to dramatic changes in the composition of
these vital ecosystems (Nyström et al., 2000; Burke, 2012;
De’ath et al., 2012).

To rapidly assess the response of coral reefs to changing
environmental conditions, a number of methods are used. One
of the most common is benthic habitat surveys where researchers
collect underwater images of a coral reef using randomly placed
quadrats (Jokiel et al., 2015). These images are then loaded into an
annotation software tool such as coral point count (CPCe), which
randomly projects a sparse number of points onto each image and
tasks the user with manually labeling the class category on which
each point is superimposed (Kohler and Gill, 2006). Coverage
statistics such as relative abundance, mean, standard deviation,
and standard error for each annotated species can then be
estimated for each image. Such point-based annotation software
and analysis tools are standard methods of calculating metrics
allowing habitat changes to be tracked across space and time.
However, they are expensive and time-consuming as the user
must manually annotate every sparse label present in each image.
Recently, convolutional neural networks (CNNs) have been
adopted to automate the annotation process, drastically reducing
the amount of time and effort required by the user (Beijbom
et al., 2012; Mahmood et al., 2016; Modasshir et al., 2018; Pierce
et al., 2020). The “patch-based” image classification technique
is an effective method for assigning labels to different taxa
automatically. However, like the manual method this technique
can only provide sparse labels. Hence, typically less than one
percent of all an image’s pixels are actually provided with a label,
potentially resulting in misleading coverage statistics. Ideally,
coverage statistics would be calculated using dense labels (i.e.,
pixel-wise labels).

Although calculating percent cover within a 2-D quadrat is the
most common method for empirical analysis of changes in coral
reefs, it fails to assess the changes in community composition
as a 3-dimensional system. Coral reefs are structurally complex
and facilitate diverse assemblages of organisms largely due to the
diverse size of shelters that they provide. Although coral reefs
are highly intricate, advances in computer vision have made it
possible to model the structure of a reef through structure-from-
motion (SfM) algorithms, which utilize the images collected from
various viewpoints to form an accurate 3-D reconstruction. Due
to the relative ease and the accuracy of the models produced,
SfM has opened new opportunities for exploring how the physical
structure of a reef changes across space and time at unmatched
levels of precision (Harborne et al., 2011; Burns et al., 2016;
Young et al., 2018).

One drawback of SfM is that it lacks an inherent mechanism
for denoting which portions of the reconstructed model belong to
a particular species. Consequently, 3-D percent cover of species
composition cannot be calculated and any metric that describes
the structure of a reef can only be resolved at the model scale.
This inability severely hinders the potential to understand any
connections that may exist between changes in habitat structure
and the associated species composition, such as those that occur
during coral-algal phase shifts (McManus and Polsenberg, 2004).

A recent study used CNNs to differentiate between classes
in 3-D models of coral reefs (Hopkinson et al., 2020). Their
technique is similar to a 3-D version of classifying each individual
pixel within an image one-by-one. This is computationally
demanding especially for high resolution models made up of
millions of elements, each of which may be associated with
10+ images. Our study demonstrates a more efficient method
that first creates a corresponding set of dense labels (i.e., pixel-
wise labels) for each image used in the SfM process using a
fully convolutional network (FCN). Second, the dense labels
are used with the camera transformation matrices created
during the SfM process, which maps pixels in image-space to
their respective locations in model-space as a way to project
the semantic labels onto both the point cloud and the mesh
to create fully classified versions. Furthermore, because each
image only needs to be provided with a single corresponding
set of dense labels, this method scales linearly and can be
used to efficiently provide semantic labels to a 3-D model
regardless of its size or resolution. We developed a multi-
step workflow that uses multiple computer vision algorithms
designed to automate most of the necessary sub-tasks. This
workflow is explained in detail, and our programming tools
are open-sourced to assist in emulating our methodology for
future studies that may not have the resources to manually
create dense labels.

MATERIALS AND METHODS

Image Acquisition
Video footage was collected of a coral patch reef located
near Cheeca Rocks (24.9041◦N, 80.6168◦W) in the Florida
Keys National Marine Sanctuary (Figure 1) using a custom
frame equipped with two GoPro Hero 7 Black video cameras
encased in waterproof housings with flat-view ports and mounted
approximately one meter apart (see Supplementary Information
1 for more details on underwater video footage collection). The
video survey was conducted in July 2019 and covered a single
patch reef approximately 5 m× 5 m in area with divers filming at
a depth of 8± 2 m.

3-D Model Reconstruction
The 3-D model in this study was created using the SfM
photogrammetry software [Agisoft Metashape Pro 1.6, previously
Photoscan AgiSoft MetaShape Professional (2020)] following
a similar methodology outlined by Young et al. (2018), with
a few additional steps that were found to enhance model
quality (see Supplementary Information 2,3 for more details).
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FIGURE 1 | Florida Keys (created using ArcMap) and inserted satellite imagery obtained from Google Earth showing Cheeca Rocks.

The patch reef in Figure 2 was reconstructed from 2180 still
images that were extracted from the video footage following
the standard procedure set by Metashape. The final model
was estimated to have a ground resolution of 0.278 mm/pixel
and a reprojection error (i.e., root-mean square error) equal
to 1.6 pixels with estimated accumulative error of 1.4 mm.
For more information on 3-D model reconstruction see
Supplementary Information 2.

Deep Learning and Computer Vision
Workflow
The 2180 still images used to reconstruct the 3-D model were the
same ones used to train the FCN. However, before they could
be used as training data they needed to be provided with the
appropriate annotations. When training a deep learning semantic
segmentation algorithm, every pixel in the image needs to be
provided with a label denoting the class category to which it
belongs (i.e., dense labels); as mentioned previously, this can
be a time-consuming and expensive process. Even when using
commercial image annotation software, creating dense labels
manually can cost the annotator 20+ min per image. Thus, to
reduce the burden this study designed a workflow that provided
every still image in the dataset with dense labels while also
minimizing the amount of work needed to be performed by the
user (Figure 3).

FIGURE 2 | A textured mesh representing the example coral patch—which is
roughly 1.5 m in diameter and 3 m in height—was reconstructed from still
images extracted from video footage using Agisoft Metashape SfM
photogrammetry software. The mesh consisted of 10 million faces and had an
estimated accumulative error of 1.4 mm after providing absolute scale using
the actual dimensions of the coded targets.

Briefly summarized, the workflow started with the user
manually creating sparse labels for each image (i.e., CPCe
annotations) that were then used to train a CNN patch-based
image classifier following a similar methodology outlined by
others (Beijbom et al., 2012; Mahmood et al., 2016; Modasshir
et al., 2018; Pierce et al., 2020). Once the classifier was sufficiently
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FIGURE 3 | A diagram illustrating the workflow used to obtain dense labels for each image. Still images were extracted from the video footage (A) and imported into
Rzhanov’s patch-extraction tool (B) where patches for each class category of interest were extracted (C). These patches and their corresponding labels were used
to train a patch-based image classifier (D) that then provided numerous sparse labels to each image in the dataset (E). Using Fast-MSS (F), the sparse labels were
converted into dense (G) and used as the pixel-wise labels necessary for training a deep learning semantic segmentation algorithm. (H) With a trained FCN, novel
images collected from the same or similar habitats could then be provided with dense labels automatically (I) and without having to perform any of the previous steps
(B–G).

trained, it then served as an automatic annotator and was tasked
with automatically providing all of the images in the dataset
with numerous additional sparse labels. Once >0.01% of the
pixels in an image were labeled, it was used with fast multilevel
semantic segmentation (Fast-MSS), which converted them into
dense labels automatically (Pierce et al., 2020). These dense labels
and their corresponding images formed a dataset that were used
to train a FCN capable of performing pixel-level classifications on
unannotated images, thus eliminating the need to perform any
of the previous steps in future studies when working in similar
benthic habitats.

To quantitatively evaluate the accuracy of the results of
these algorithms, 50 still images were first randomly sampled
with replacement from the dataset and given an additional set
of ground-truth dense labels that were created by hand using
the commercial image annotation software LabelBox (Labelbox,
2020). These ground-truth dense labels served as a testing set to
gauge the performance of the CNN patch-based image classifier,
Fast-MSS, and the FCN.

The metrics used to evaluate accuracy include pixel accuracy
(PA), mean pixel accuracy (mPA), weighted intersection-over-
union (wIoU), and weighted dice coefficient (wDice). Weighted
averages based on the frequency of each class were included
because there existed a large imbalance between class categories,
but no class was considered more important than any other.
PA was computed by globally calculating the ratio of correctly
classified pixels to the total number of pixels; this is identical
to the overall classification accuracy and does not take into
consideration class imbalances. The mPA calculates the global
accuracy of each class individually and then averages them

together so that each class contributes to the final score equally,
regardless of class imbalances. PA and mPA were calculated by
Eqs 1 and 2, respectively:

PA =
TP + TN

TP + FP + TN + FP
(1)

mPA =
∑n

i=1 PAi

N
(2)

where TP, TN, FP, and FN represent the True Positive, True
Negative, False Positive and False Negative rates, respectively.
Last are IoU (i.e., Jaccard index) and Dice (i.e., F1-Score,
the harmonic mean between Recall and Precision), which
are similarity coefficients commonly used for quantifying
classification scores of semantic segmentation tasks (Eqs 3 and 5,
respectively).

IoU =
TP

TP + FP + FN
(3)

ωIoU =
∑N

i=1 IoUi ∗ ωi∑N
i=1 ωi

(4)

Dice =
2 ∗ TP

TP + FP + TN + FN
(5)

ωDice =
∑N

i=1 Dicei ∗ ωi∑N
i=1 ωi

(6)

where the weight for each class wi, was calculated as ratio of pixels
per class over the total number of pixels in the test set.
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Although there were multiple steps involved in this workflow,
only the first step required manual effort from the user; the
remaining steps were completed automatically using either the
CNN patch-based image classifier, Fast-MSS, or the FCN. Thus,
this workflow showcased that training data created through
an almost entirely automatic process (as opposed to being
done manually) could still produce a FCN that performs with
acceptable classification scores useful in other applications.

Creating an Image-Patch Dataset
The workflow begins with the creation of a dataset from which a
CNN patch-based image classifier could learn. Unlike a normal
image classifier, a patch-based image classifier is trained on sub-
images commonly referred to as “patches” that are cropped
on individual class categories. A common method for creating
an image-patch dataset is outlined in Beijbom et al. (2012);
Mahmood et al. (2016), Modasshir et al. (2018), where patches
are extracted and centered on top of the existing sparse labels that
were created manually by a user with a point-based annotation
software tool such as CPCe.

However, instead of going through the time-consuming
process of creating CPCe annotations for each image, this study
used a customized annotation software tool that was developed
specifically for the purpose of extracting patches from still images.
The patch-extractor is fast and provides an intuitive interface
that allows the user to easily sample any part of the image,
while archiving the location of extraction and assigned class label.
Given the freedom to extract patches using a mouse or trackpad,
a user can quickly create a highly representative dataset. Using
this tool, roughly 10,000 patches with dimensions of 112 pixels
by 112 pixels were extracted from the still images in the dataset,
averaging approximately 50 patch extractions per minute.

Training a Convolutional Neural Network
Patch-Based Image Classifier to Provide Additional
Sparse Labels
This newly created dataset consisting of patches and their
corresponding labels served as the training data for the CNN
patch-based image classifier; as in Pierce et al. (2020), the classifier
was first trained and then used to provide numerous additional
sparse labels to each still image automatically.

Providing these additional sparse labels involved uniformly
extracting patches with dimensions of 112 pixels × 112 pixels
from an image following a grid formation. In total, approximately
2800 patches were sampled from each image in the dataset,
representing potentially 2800 additional labels per image, or
roughly 0.035% of the total number of pixels. Extracted patches
were then passed to the trained classifier as input. The output
for each patch was a corresponding vector representing the
probability distribution of class categories to which the center-
most pixel of the patch likely belonged. For each patch, the
extracted location, the presumed class label, and the difference
between the two highest probability distributions (i.e., top-1 and
top-2 choices) were recorded.

The difference between the top two probabilities was
considered the relative confidence level of the classifier when
making the prediction. If the difference was small, the classifier

was less confident about its top-1 choice (i.e., the presumed
class label). By setting a confidence threshold value, sparse
labels that the classifier was less certain about could be
ignored. However, determining the ideal threshold involved
trying different values and comparing the classification scores of
the sparse labels predicted for the test images against the labels in
the corresponding pixel indices of the manually created ground-
truth dense labels (i.e., test set). As is discussed in the results
section, the final threshold value that was chosen was a trade-off
between the total number of labels that were accepted and their
classifications scores.

With regards to efficiency, the CNN patch-based image
classifier was able to assign roughly 200 sparse labels to an image
per second, as opposed to the one annotation every 6 s that it cost
users who used CPCe manually (Beijbom et al., 2015).

Converting Sparse Labels to Dense Using
Fast-Multilevel Semantic Segmentation
The next step of the workflow converted the accepted sparse
labels that were assigned to each image into dense using Fast-
MSS (see Pierce et al., 2020 for more details on this method).
As the name implies, this algorithm uses multiple iterations
of an over-segmentation algorithm to partition the image into
homogeneous regions called “super-pixels.” The class category
of existing sparse labels for the image are then propagated to
neighboring pixels located within the same super-pixel, assigning
them labels automatically. This process is repeated for multiple
iterations, and then joins all of the labels together to create
a set of dense labels for the image representing the pixel-
level classifications for each observed functional group (see
Figure 3G).

For this dataset, the first and last number of super-pixels
to partition each image was 5000 and 300, respectively, and
across 30 iterations. Each image was down-sampled by reducing
the height and width by a factor of six after confirming that
a reduction in the input image’s dimensions could decrease
the time required to create the dense labels without negatively
affecting the classification scores (see Table 1). Dense labels were
then up-sampled using nearest neighbor interpolation so they
matched the image’s original dimensions, a requirement for deep
learning model training.

Training Fully Convolutional Networks on
Fast-Multilevel Semantic Segmentation Dense Labels
Although the dense labels created by Fast-MSS could have been
used to classify the 3-D reconstructed model directly, they
were also used as training data with a deep learning semantic
segmentation algorithm to produce a FCN. The major advantage
of a FCN is its ability to generalize to images collected from
domains that are similar to those on which it was trained.
A researcher could obtain dense labels from an FCN given images
collected from the same or similar habitats that it was previously
trained on without having to perform any of the previous steps
in the workflow (steps B-G). Thus, the objective of this workflow
was not just to obtain a set of dense labels for every still image,
but rather to acquire a deep learning semantic segmentation
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TABLE 1 | The effect of reducing an input image’s dimensions on the output of Fast-MSS.

Reduction Factor Dimensions (pixels) PA mPA wIoU wDice Time (Seconds)

1 2160 × 3840 0.885 0.805 0.819 0.893 260.45

2 1080 × 1920 0.885 0.804 0.819 0.893 64.42

3 720 × 1280 0.885 0.805 0.819 0.893 22.21

4 540 × 960 0.885 0.805 0.819 0.893 13.85

5 432 × 768 0.885 0.805 0.819 0.893 9.98

6 360 × 640 0.885 0.805 0.819 0.893 7.79

PA, pixel accuracy; mPA, mean pixel accuracy; wIoU, weighted intersection-over-union; wDice, weighted dice. For classification metrics 1.0 represents a perfect score.

model that could create dense labels automatically for datasets
collected in the future.

This study experimented with five different FCNs to
understand how the size of the network affected the classification
accuracy. Each FCN used an encoder from the EfficientNet
series (Tan and Le, 2019) and was used to create an additional
set of dense labels for every image in the dataset; these and
the set created by Fast-MSS were validated and compared
against the ground-truth dense labels that were manually created
for the test set.

Class Categories
Of the different organisms, substrate types, and objects present in
the video footage data, seven class categories were formed. Four
of these were biological (“Branching Soft and Hard Coral,” “Fish,”
“Massive Coral,” and “Algae”) and consisted of multiple species,
one encompassed all of the potential substrate types (“Substrate”),
another was used to denote the coded targets (“Target”), and
lastly was the class used to represent the background (“Water,”
Figure 4). The first five class categories served as functional
groups to demonstrate the ability to calculate community
composition in both 2-D images and 3-D models, but alternative
functional groups, genuses, or even species could be chosen for
different purposes.

The majority of the still images in the dataset were made up
of pixels that belonged to massive corals (Orbicella faveolata,
Orbicella annularis, and Porites astreoides), followed by different
types of substrate (sand, rubble). The third most represented
class category was “Algae,” which contained some crustose
coralline algae (CCA) and filamentous turf algae, but primarily
Halimeda spp., which was found in abundance in crevices
between coral colonies. The “Branching Soft and Hard Coral”
class was comprised of various types of branching morphologies
including octocorals (e.g., sea pens, sea fans) and fire coral
(Millepora alcicornis), and the “Fish” class category incorporated
all individuals with no distinction made among species. To
ensure the coded targets would not be associated with one of the
functional groups, a class was created for it. Lastly “Water” served
as the background class meant to represent the pixels in an image
where there was nothing visible as a result of light attenuation
through the water column.

These seven class categories could be found in the still images,
but only “Branching Soft and Hard Coral,”, “Massive Coral,”
“Algae,” “Substrate,” and “Target” were included in the 3-D model
because SfM photogrammetry is only capable of reconstructing

objects that are static within the source images. Thus “Fish” and
“Water” were excluded from the model.

Model Training
The CNN patch-based image classifier that was used to provide
numerous additional sparse labels to each image as described in
the workflow used the EfficientNet-B0 architecture. Instead of
using the typical “ImageNet” weights, the classifier was initialized
with the “Noisy-Student” weights, which were learned using a
semi-supervised training scheme that outperformed the former
(Xie et al., 2020). This encoder was followed by a max pooling
operation, a dropout layer (80%), and finally a single fully
connected layer with seven output nodes (one for each of the
class categories). Patches were resized to 224 pixels × 224 pixels
and fed to the model as training data after heavy augmentation
techniques were applied using the ImgAug (Jung, 2019) library,
and normalized to have pixel values between 0 and 1.

The task is considered a multi-categorical classification,
therefore the network used a softmax activation function
resulting in an output representing the probability distribution of
each potential class category. The batch size was set to 32 as this
was the largest amount possible given the network architecture,
the size of the image patches, and the amount of memory that
could be allocated by the GPU being used. The model was trained
on 10,000 image patches that were randomly split into a training
(90%) and validation (10%) set for 25 epochs; the final model was
evaluated using the test set that consisted of 50 manually created
ground-truth dense labels (see Table 2).

During training the error between the actual and predicted
output was calculated using the categorical-cross entropy loss
function. Parameters throughout the network were adjusted
using the Adam optimizer with an initial learning rate of 10−4.
During training the learning rate was reduced by a factor of
0.5 for every three epochs in which the validation loss failed
to decrease, and the weights from the epoch with the lowest
validation loss were archived.

For the task of semantic segmentation this study experimented
with five different FCNs, all of which used the U-Net
architecture and were equipped with one of the five smallest
encoders within the EfficientNet family (i.e., B0 through B4,
see Supplementary Information 4 for more information). All
models were implemented in Python using the Segmentation
Models library (Yakubovskiy, 2019).

When training the FCNs, the error was calculated using
the soft-Jaccard loss function, which acted as a differentiable
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FIGURE 4 | A still image (2160 pixels × 3840 pixels) extracted from the video footage showcasing the class categories used in this study (left), and the distribution of
each class category based on their pixel count calculated from the 50 ground-truth dense labels within the testing set (right).

TABLE 2 | Classification scores for the CNN patch-based image classifier
compared against ground-truth.

Threshold Accepted PA mPA wIoU wDice

0.0 100% 0.833 0.786 0.739 0.844

0.25 94% 0.855 0.815 0.769 0.864

0.50 89% 0.875 0.835 0.796 0.882

0.75 83% 0.896 0.857 0.827 0.902

0.90 76% 0.914 0.874 0.855 0.919

0.99 61% 0.941 0.902 0.899 0.944

PA, pixel accuracy; mPA, mean pixel accuracy; wIoU, weighted intersection-
over-union; wDice, weighted dice. For classification metrics 1.0 represents
a perfect score.

proxy that attempted to maximize the Intersection-over-Union
metric (Berman et al., 2018). Parameters were updated via
backpropagation using the Adam optimizer with an initial
learning rate of 10−4, which decreased using the same settings
as described before. After 20 epochs, the weights from the epoch
with the lowest validation loss were archived. All deep learning
models were trained on a PC equipped with a NVIDIA GTX 1080
Ti GPU and an Intel i7-8700 CPU, using the Keras deep learning
framework and the Tensorflow numerical computational library;
for more information see Supplementary Information 4.

3-D Model Classification
Following the training process, Fast-MSS and the five FCNs
experimented with were each used to create a different set of
dense labels for each of the 2180 images in the dataset. With
each respective set of dense labels, a separate classified 3-D
model was created, thus allowing the comparison between each

of the five FCN encoders (i.e., EfficientNet B0–B4) and Fast-
MSS. The technique to assign semantic labels to the 3-D model
was straightforward and was done almost entirely in Agisoft
Metashape (see Figure 5).

Once the textured mesh for the 3-D model was created,
the entire project was duplicated and a second textured mesh
was created, but using dense labels as source images instead of
the originals. The process involved first swapping the original
images with their corresponding dense labels using the “Change
Paths” tool. Next, the “Build Texture” tool was used with the
“Source data” parameter set to “Images,” the “Blending” mode
was disabled, and the “Keep UV” parameter was kept active. By
disabling blending we could ensure that the discrete categorical
values representing each class in the dense labels would not be
accidentally averaged or “bleed” along the borders of neighboring
semantic groups in the resulting classified textured mesh. With
the “Keep UV” parameter kept to active, the texture for the
classified 3-D model used the same texture coordinates as those
that were created when reconstructing the original textured
model; this ensured that the predictions from the dense labels
used the same UV mapping from image-space to model-space as
the pixels in the original images. Once completed, the classified
textured mesh was identical to the original in appearance, but
with textures that were mapped from the set of dense labels
that were used as source images instead of the originals (see
Figure 6).

A classified shaded mesh and dense point cloud were then
created using the “Colorize Vertices” and “Colorize Dense Cloud”
tools, respectively. These tools worked similarly in that they
mapped the color components from the pixel indices found
in the source images (in this case, the dense labels) to their
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FIGURE 5 | A diagram showing step-by-step which tools in Agisoft Metashape were used to reconstruct the 3-D model, followed by how semantic labels were
provided to it. Once the source images are swapped with their corresponding dense labels, the classified point cloud, shaded mesh, and textured mesh can be
created independently of one another and is not a sequential process like the reconstruction.

corresponding elements or points within the shaded mesh or
dense cloud. However, the blending mode could not be disabled
in either “Colorize Vertices” or “Colorize Dense Cloud” resulting
in some of the elements or points having color components
with values that were averaged together and were not within
the set of discrete values denoting one of the class categories.
To correct this issue and to obtain discretely classified points
in the dense point cloud, we used the “Classify Points” tool to
first select points based on a range of similar color component
values, and then reclassified them to the correct class category.
However, because version 1.6 of Metashape Pro does not offer
a “Classify Vertices” tool, the color component values for each
vertex of the shaded mesh were corrected in the same way but
done outside of Metashape using a custom Python script (see
Supplementary Information 5).

Validation for the classified model was obtained by comparing
the classified texture atlas (Figure 6) with a manually annotated
texture atlas (not shown) that served as ground-truth. Accuracy
assessments of the original and classified textured mesh were
completed using similarity metrics including PA, mPA, wIoU,
and wDice when compared as 2-D images. The original
and the classified textured mesh were first exported as 2-D
images (i.e., texture atlases) using the “Export Texture” tool,
and then the former was made into a “ground-truth texture
atlas” by manually providing it with semantic labels using

the image annotation software tool LabelBox (Labelbox, 2020).
Similar to annotation of a 2-D image, the pixel indices in the
ground-truth texture atlas were assigned labels denoting the
class category they were thought to belong to by a trained
annotator. However, not all textures could be discerned by
the annotator as some were either too small, or simply did
not resemble any of the class categories when represented
in the texture atlas. In such cases, the annotator assigned
labels only to the pixel indices they were able to identify,
resulting in a ground-truth texture atlas (4096 pixels by
4096 pixels) where ∼88% of the pixels were provided with
semantic labels.

Experiments
This study validated the results of the CNN patch-based image
classifier and its ability to produce sparse labels, the dense labels
that were created by Fast-MSS, the predictions made by the
five FCNs experimented with, and the classification accuracy
of the 3-D classified models. To calculate classification scores,
the sparse labels predicted by the CNN patch-based image
classifier for each image in the test set were compared to
the labels in the corresponding pixel indices of the ground-
truth dense labels that were made manually using LabelBox
(Labelbox, 2020). Similarly, the dense labels created by Fast-
MSS and the FCNs for each image in the test set were

Frontiers in Marine Science | www.frontiersin.org 8 October 2021 | Volume 8 | Article 706674

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-706674 October 25, 2021 Time: 16:8 # 9

Pierce et al. Classifying 3-D Models of Coral Reefs

FIGURE 6 | Comparison between the textured mesh and its corresponding atlas (left) against the classified version of the mesh and its corresponding atlas after
being corrected using the custom post-processing script (right).

also compared to the same ground-truth dense labels. Lastly,
each classified 3-D model was evaluated by comparing the
semantic labels in the exported 2-D image (i.e., classified
texture atlas) of each 3-D model against the labels in the
ground-truth texture atlas that was created manually by a
trained annotator.

RESULTS

First, we present the results of how the CNN patch-based image
classifier’s performance changed as a function of the confidence
threshold value used. The confidence score was used to filter
sparse labels that were more likely to have been misclassified.

Table 2 is the inverse relationship between the confidence
threshold value chosen and the percentage of sparse labels
accepted: as the threshold value increases, the model becomes
more conservative with its predictions (Figure 7). This also
created a direct relationship between the threshold value and
the classification scores, because again, as more of the labels
the model was not confident about were rejected, the overall
classification accuracy of the remaining labels was likely to
increase. Based on these results, 0.50 was chosen as the confidence
threshold value for the remainder of the workflow as it was
deemed to produce results that balanced this trade-off.

Table 3 shows that the dense labels produced by Fast-MSS
had classification scores that were slightly less than those created
by any of the FCNs, except for B2, which produced the lowest

scores among the FCNs (Table 3). The differences in performance
were marginal. With regards to speed, all FCNs performed
substantially faster than Fast-MSS, whose recorded time also
included the time required by the CNN patch-based image
classifier to first predict sparse labels for the input image. Even
when the original input image with dimensions of 736 pixels
by 1280 pixels was reduced by a factor of 6×, the CNN patch-
based image classifier/Fast-MSS combo produced results in 22.6 s,
which is still 10× slower than the slowest FCN.

A key takeaway from Table 3 is that even though the FCNs
were trained on the dense labels produced by Fast-MSS, all but
B2 achieved higher classification scores. This suggests that as a
deep learning algorithm, a FCN has the potential to develop a
better understanding of which features are associated with each
class category by learning from all of the images collectively
throughout the training process.

Last are the results for the classified 3-D model (Table 4),
which shows that the overall classification scores followed the
same general trend that can be seen in Table 3. The classified
texture atlas that used the dense labels produced by Fast-MSS
as the source images had scores for PA, wIoU, and wDice
that were slightly less than those created by any of the FCNs;
the FCNs were equally good with no clear indication that one
outperformed another.

Table 4 shows that the difference in scores between each 3-
D model is not substantial, though the fact that they closely
resemble the scores seen in Table 3 suggests three things. The
first is that Agisoft Metashape is able to map each semantic label
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FIGURE 7 | A line-graph displaying the inverse relationship between the confidence threshold value and the classification scores of the sparse labels accepted. As
the threshold value increases and becomes more conservative along the x-axis, more of the sparse labels the classifier was unsure about were rejected.

TABLE 3 | Classification scores of each method for producing dense labels
compared against ground-truth.

Method PA mPA wIoU wDice Time (seconds)

Fast-MSS 0.885 0.805 0.819 0.893 37.06

EfficientNet-B0 0.895 0.809 0.826 0.899 0.99

EfficientNet-B1 0.900 0.811 0.833 0.903 1.34

EfficientNet-B2 0.870 0.797 0.793 0.878 1.78

EfficientNet-B3 0.897 0.817 0.830 0.901 2.14

EfficientNet-B4 0.897 0.811 0.830 0.901 2.31

PA, pixel accuracy; mPA, mean pixel accuracy; wIoU, weighted intersection-over-
union; wDice, weighted dice. Bold numbers highlight the best performing method
for each metric, with 1.0 representing a perfect score for classification metrics.

TABLE 4 | Classification scores of 3-D models represented as texture atlases
compared against ground-truth.

Method PA mPA wIoU wDice

Fast-MSS 0.896 0.775 0.823 0.899

EfficientNet-B0 0.905 0.762 0.836 0.907

EfficientNet-B1 0.910 0.766 0.843 0.911

EfficientNet-B2 0.908 0.781 0.842 0.910

EfficientNet-B3 0.907 0.781 0.840 0.910

EfficientNet-B4 0.913 0.775 0.850 0.915

PA, pixel accuracy; mPA, mean pixel accuracy; wIoU, weighted intersection-
over-union; wDice, weighted dice coefficient. Bold numbers highlight the best
performing method for each metric with 1.0 representing a perfect score for
classification metrics.

from the dense labels to create a 3-D classified model with a
high level of accuracy. Secondly, the classification scores of the
3-D models appear to be largely dependent on the classification

scores of the dense labels that were used as source images;
this reinforces what was already assumed to be true and also
provides positive validation for this technique for creating 3-
D classified models. Finally, the results suggest that the non-
conventional ground-truth texture atlas that was created is of
similar quality when compared to the more conventional ground-
truth dense labels that were created for the images in the test
set. This provides validation for this method of evaluating the
classification scores of the 3-D model directly, which could prove
useful in future studies.

Though the scores between Tables 3, 4 are similar, there is
a pattern of a 1 to 2-point increase for PA, wIoU, and wDice,
which may be caused by the blending of color components
that occurs during the building of a textured mesh. For each
individual element within the 3-D mesh, there are multiple pixels
found within different source images that all correspond to it,
but from different vantage points. When creating the textured
mesh with the blending mode set to either “mosaic,” each element
is assigned a color based on the weighted average of the color
components from the pixels that it corresponds to (Metashape,
see Supplementary Information 3). Thus, by using “mosaic,” the
blending of source images—in this case, the dense labels—may
serve as a weighted average ensemble that contributes to slightly
higher classification scores (Hopkinson et al., 2020).

These results provide evidence that this method can accurately
assign semantic labels from source images to a 3-D model, and
that resulting classification accuracy of the classified textured
mesh is a function of the reconstruction error of the original
model, as well as the classification scores of the method used
to produce the dense labels (i.e., Fast-MSS and the FCNs).
Although the classified textured mesh is not typically used in
spatial analyses, this study showed that it can serve as a useful
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FIGURE 8 | A side-by-side comparison between the textured mesh (left), the classified textured mesh with 40% transparency (center), and the classified shaded
mesh (right). The classified textured mesh was used as a method for validating the classification results of the classified shaded mesh and dense point cloud (not
shown), which can be used in spatial analyses.

proxy for validating the accuracy of the classified shaded mesh
and dense point cloud, which often are. Since the elements that
make up the textured mesh store both the texture coordinates
and the color components, it stands to reason that all three model
types share similar classification scores (Figure 8).

DISCUSSION

Coral reefs are complex 3-dimensional structures that promote
the assemblage of diverse groups of organisms by creating
spaces for the establishment of sessile sponges, ascidians,
hydroids and bryozoans, and by providing shelter for prey
seeking refuge from predation. Although 2-D images collected
through benthic quadrat surveys are routinely used to evaluate
community composition, this form of representation fails
to capture the changes that occur to a coral reef when
considering the 3-dimensional structure, arguably one of its most
important attributes.

Generally, the 3-D structure of a reef is studied through the
use of metrics such as rugosity and fractal dimensions to quantify
specific aspects of the architecture (Young et al., 2018). These
metrics are then correlated with important ecosystem functions
such as species richness, abundance and assemblage. Rugosity—
the oldest and most prevalent metric used in these types of
studies—is obtained by using a technique called the “tape-and-
chain” method, which requires divers to physically lay out a chain
to measure the surface of a coral colony or an entire reef in situ
(Risk, 1972). SfM algorithms are designed for non-technical users
and many ecologists have begun favoring photogrammetry over
more traditional techniques. By doing so researchers are able to
obtain a highly precise (<2 mm error) digital representation of
the physical habitat from which a number of spatial analyses can
be performed (Ferrari et al., 2016; Young et al., 2018).

Due to the wide reaching applications of SfM within
this domain, we developed a mostly automated workflow for
classifying 3-D photogrammetric models. This workflow will
provide a more efficient method for monitoring changes in
structural complexity and community composition in both
marine and terrestrial environments. Unlike the method
described in Hopkinson et al. (2020) that performs image
classification, our method performs semantic segmentation.
The critical distinction being that instead of performing image

classification multiple times for each individual element of
the model one-by-one, our method only needs to classify or
provide each image used in the reconstruction process with
a corresponding set of dense labels once. Then, using the re-
projection matrices created during the photo alignment phase
these dense labels can be accurately projected onto the point
cloud and mesh using the same mechanism (i.e., UV coordinates)
that provided the original model with its color component
values. This results in the accuracy of the 3-D classified model
being largely dependent on both the accuracy dense labels (i.e.,
Fast-MSS, FCNs) and the quality of the 3-D model itself (see
Tables 3, 4). It also means that this method scales linearly and
can be used to provide semantic labels to a 3-D model regardless
of its size or resolution.

However, to obtain labels for a 3-D model each image used
in the reconstruction process must first be provided with a
corresponding set of dense labels. This can of course be done
manually by using an image annotation tool (e.g., LabelBox
Labelbox, 2020) or using an AI-assisted labeling tool such as
TAGLab, though depending on the number of images used to
create the 3-D model this could require a significant amount
of time, and thus might not always be feasible for a study. In
our workflow we described how to obtain dense labels for an
image automatically by using the associated sparse labels with
Fast-MSS. Due to the ubiquitousness of CPCe annotations within
the field of benthic ecology, their inclusion in the workflow
makes our method more accessible and easier to emulate in other
studies. However, we do acknowledge that the benthic quadrat
survey images that CPCe annotations are typically made for
are not usually the same images used with SfM algorithms to
reconstruct a 3-D model. In the scenarios where sparse labels have
not already been created for the images we recommend using
an annotation tool such as the patch-extractor tool or CoralNet
(Beijbom et al., 2015) to create them, both of which are much
faster and less taxing on the user compared to CPCe. Regardless
of the method chosen, once sparse labels have been created they
can be converted into dense labels automatically using Fast-MSS
and used to either train a deep learning semantic segmentation
algorithm, or classify the 3-D model directly (both of which were
shown to be capable of achieving high levels of accuracy, see
Table 4).

Our method can be used to efficiently and accurately segment
the 3-D structure into specific class categories (e.g., species,
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genuses, functional groups). Hence, this study moves beyond
2-dimensional analyses and begins to quantify 3-D coverage
statistics allowing for greater insight into the complex spatial
relationships between groups within a reef community. This
ability to classify the individual elements of a 3-D model also
allows for metrics of structural complexity to be resolved from
the model-scale down to the functional or even species-scale. This
could have a significant impact on the understanding of species-
specific effects of coral restoration on biodiversity or ecosystem
functions. Coral reef communities are undergoing rapid changes
in species compositions including shifts from hard to soft corals
(Inoue et al., 2013), or corals to macro-algae (McManus and
Polsenberg, 2004). There is also a growing effort to restore reefs
by outplanting corals that have dissimilar morphologies, which
may differentially contribute to reef complexity and architecture.
Consequently, it will be important to have an efficient, reliable
and repeatable method that quantifies the amount of structural
complexity that each individual functional group contributes to
the overall reef complexity.

The method outlined here was applied to a tropical coral
reef, though it is agnostic to the domain and would be
suitable for many other ecosystems including deep sea coral
communities, oyster reefs, intertidal zones, and even some
terrestrial environments. As discussed previously, the ability to
apply this method—regardless of the domain—is dependent on
the quality of the 3-D reconstructed model itself, and the accuracy
of the dense labels produced, whether they were made manually,
by Fast-MSS, or a deep learning model. If both are independently
accurate, the predictions projected from image-space to model-
space should be proportionally accurate. However, if the dense
labels associated with each image used in the reconstruction
are of low accuracy, the labels for the 3-D classified model
will also be of low accuracy regardless of the quality of the 3-
D reconstructed model. Alternatively, if the quality of the 3-D
reconstructed model is poor due to misalignment, occlusions, a
noisy point cloud, etc., spatial statistics calculated from the 3-
D classified model may not be accurate even when the dense
labels are. Data collection and the reconstruction of 3D models
for other habitats will depend on topographic features (e.g.,
vertical relief), currents and/or surge (in marine environments)
as both will affect the number of images needed to acquire an
accurate model. To ensure quality results, 3-D reconstructed
models should be created from mostly static scenes using a
high-resolution camera, and with ground control points (i.e.,
coded targets) strategically placed around areas of interest; for
more information on performing SfM in underwater scenes in
particular, we refer interested readers to the Supplementary
Information section and (Ferrari et al., 2016; Young et al., 2018;
Bayley and Mogg, 2020; Hopkinson et al., 2020).

This study represents a step toward fully automated
assessments and monitoring systems for coral reefs. It is hoped
that the techniques outlined here can provide some assistance
in understanding how the changes that are occurring are
affecting benthic habitats, and serve as a stepping stone for more
advanced techniques to build off of in the near future. To ensure
repeatability and ease-of-use, we have open-sourced our code
and provided instructions for its use, which are located in our
Github repository.
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