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The deep ocean ecosystem hosts high biodiversity and plays a critical role for humans
through the ecosystem services it provides, such as fisheries and climate regulation.
However, high longevity, late reproduction, and low fecundity of many organisms
living in the deep ocean make them particularly vulnerable to fishing and climate
change. A better understanding of how exploitation and changing environmental
conditions affect life-history parameters (e.g., growth) of commercially important fish
species is crucial for their long-term sustainable management. To this end, we used
otolith increment widths and a mixed-effects modeling approach to develop a 42-
year growth chronology (1975–2016) of the commercially important deep-sea fish
species blackspot seabream (Pagellus bogaraveo) among the three island groups of the
Azores archipelago (Northeast Atlantic). Growth was related to intrinsic (age and age-
at-capture) and extrinsic factors (capture location, temperature-at-depth, North Atlantic
Oscillation (NAO), Eastern Atlantic Pattern (EAP), and proxy for exploitation (landings)).
Over the four decades analyzed, annual growth patterns varied among the three island
groups. Overall, temperature-at-depth was the best predictor of growth, with warmer
water associated with slower growth, likely reflecting physiological conditions and
food availability. Average population growth response to temperature was separated
into among-individual variation and within-individual variation. The significant among-
individual growth response to temperature was likely related to different individual-
specific past experiences. Our results suggested that rising ocean temperature may
have important repercussions on growth, and consequently on blackspot seabream
fishery production. Identifying drivers of blackspot seabream growth variation can
improve our understanding of past and present condition of the populations toward
the sustainable management of the fishery.

Keywords: environmental change, mixed-effects modeling, otolith, blackspot seabream, reaction norms,
sclerochronology
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INTRODUCTION

The deep ocean, below 200 m depth, hosts ecosystems of high
biodiversity and plays a critical role for humans through the
services it provides, such as fisheries (Van den Hove and Moreau,
2007; Thurber et al., 2014). Currently, seafood from the deep
ocean is estimated to fall by as much as half in the next
100 years, mainly due to resource exploitation and impacts of
climate change (Sweetman et al., 2017). Global environmental
change and exploitation can have major consequences on marine
ecosystems, including demographic and evolutionary changes
in exploited populations, distribution range shifts, altered
phenology, and marine productivity (e.g., Edwards et al., 2004;
Cheung et al., 2010; Perry et al., 2014; Audzijonyte et al., 2016; Tu
et al., 2018). The effects of these changes on ecosystems depend
on species sensitivities, ecological functions and processes, and
spatial scales that in turn make it difficult to detect and
identify the species’ biological responses (Brown et al., 2010;
Poloczanska et al., 2016).

For a better understanding of the fundamental mechanisms
responsible for biological responses to environmental change,
long-term biological data (continuous information, collected
and archived over time) with the appropriate spatial-temporal
resolution are needed. Such data can provide valuable and
robust information on marine ecosystem changes and allow
exploring species growth responses to environmental changes
and exploitation, concerning their habitat, life history, and
potential of adaptation (Thresher et al., 2007; Shelton et al.,
2013; Coulson et al., 2014; Martino et al., 2019). Unfortunately,
especially for deep-sea species, long-term data sets are scarce,
however, samples containing valuable long-term information
on growth variation are readily available from fish otoliths
(Campana and Thorrold, 2001). These structures contain growth
information, that allows the development of chronologies based
on the variation in their growth increment widths and thus
are a useful tool for understanding the effects of different
extrinsic drivers on growth (Morrongiello et al., 2012, 2019;
Matta et al., 2018). Since environmental variables generally
play a key role in driving growth variation and population
dynamics in aquatic organisms (Morrongiello et al., 2012),
this biochronological approach also allows the prediction of
species’ responses to future climate change (Rountrey et al., 2014;
Barrow et al., 2018).

Otolith increment-based growth chronologies have been
successfully developed using linear mixed-effects models
that allow analyzing intrinsic effects, such as age and age-at-
capture, simultaneously with potential extrinsic sources of
variation, including environmental drivers (e.g., temperature,
SST, ENSO) (Weisberg et al., 2010; Helser et al., 2012;
Rountrey et al., 2014; Morrongiello and Thresher, 2015).
Furthermore, mixed-effect models allow the decomposition
of population-level variation into its within- and among-
individual components, and the inclusion of individual
reaction norms allows exploring phenotypic plasticity
that can provide valuable information about the adaptive
potential of populations to deal with future environmental
and exploitation changes (van de Pol and Wright, 2009;

Morrongiello and Thresher, 2015; Fox et al., 2019). A better
understanding of population resilience, adaptive potential,
and individual phenotypic plasticity is key for deep-sea fish
species as they are known to be vulnerable to changing
environment and exploitation due to their high longevity,
late reproduction, and low fecundity (Cheung, 2007;
Thresher et al., 2007).

In this context, this work investigates long-term growth
patterns of a deep-sea fish in the Azores archipelago (Northeast
Atlantic), the blackspot seabream (Pagellus bogaraveo), a
commercially highly valuable species with a complex life
history (Pinho and Menezes, 2006; Higgins et al., 2015).
Blackspot seabream is a protandrous hermaphrodite (Krug,
1990) that presents ontogenetic migrations, moving from
island coastal waters to deeper island slopes or offshore
seamounts (Menezes et al., 2006; Afonso et al., 2012) and
exhibiting complex individual spatial behavior (Afonso et al.,
2012, 2014). The complex life history characteristics of this
species (i.e., protandrous hermaphroditism and late maturity
of females) make it highly sensitive to overfishing and
climatic changes (Lorance, 2011; Gutiérrez-Estrada et al., 2017;
Sanz-Fernández and Gutiérrez-Estrada, 2021).

Using archived otoliths of adult blackspot seabream collected
in the three island groups of the Azores archipelago, this study
aimed to evaluate how growth is affected by intrinsic (age-related
variables) and extrinsic factors (environmental and fisheries-
related variables) and to detect possible growth differences
between island groups. The extrinsic factors driving growth
variation were further investigated to estimate their importance
in individual growth responses.

MATERIALS AND METHODS

Area and Study Species
Azores archipelago has been selected as study area (Figure 1
and Table 1), which is part of the Macaronesian biogeographical
region, located in the Northeast Atlantic Ocean (Friedlander
et al., 2017). The Azores marine ecosystem has been defined as
oceanic (Pinho and Menezes, 2009) characterized by an abundant
abyssal area, narrow or absent coastal platform, pronounced
slopes, and the existence of banks and seamounts (Menezes
et al., 2013). The selected species, P. bogaraveo (Brünnich,
1768; blackspot seabream), is a deep-water sparid commonly
found at depths of 100–600 m, both around coastal areas
of the islands and offshore seamounts (Menezes et al., 2006;
Pinho et al., 2014). Small individuals (<13 cm furcal length
(FL)) live preferentially in coastal areas and shallow waters
(nursery areas), pre-adults (<30 cm FL) in intermediate zones
and larger individuals live at island slopes or offshore banks
and deeper waters (Stockley et al., 2005; Pinho et al., 2014;
Higgins et al., 2015).

This species is a protandric hermaphrodite with primary
females (females at birth, not changing sex during the life
cycle), and males who can change sex during their life cycle,
before maturity (c. 5 and 8 years of age, at around 28.2 and
33.9 cm FL, for males and females, respectively (Krug, 1998)). The
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FIGURE 1 | Sampling locations map of Pagellus bogaraveo in the Azores. Boxes in each sampling location indicate areas for which temperature-at-depth was
obtained. Brown areas represent the depth range where the species generally occurs.

maximum documented age and length are 15 years and 65 cm FL,
respectively (Krug, 1989; Menezes et al., 2001).

Fish and Otolith Sampling
The otoliths of P. bogaraveo used in this study, archived at
the Department of Oceanography and Fisheries (DOP) of the
University of the Azores, located in Horta, Faial island, were
collected during the annual monitoring surveys of demersal
and deep-water fish abundance -ARQDAÇO surveys (e.g., Melo
et al., 2003, 2004; Rosa et al., 2017), conducted between 1995
and 2017, aboard the R/V Arquipélago. These surveys follow
a stratified random sampling and use long-line gear, similar to
those used by the local demersal fishing fleet, to sample island
slopes and seamounts in the Azores (for methodological details
see Menezes et al., 2006). Data on fishing effort and catches by
species, and samples (length, sex, gonadal maturation stage,
otoliths) are regularly collected.

TABLE 1 | Summary of Pagellus bogaraveo samples used in the study.

Island group N fish N increments Furcal length
range (cm)

Fish age range
(year)

East 90 1170 30–52 6–21

Central 196 2547 30–53 6–21

West 240 3699 30–51 7–28

Total 526 7416

N fish = number of individuals, N increments = number of otolith
increments measured.

For this study, adult female individuals sampled at island
slopes were used. Selected individuals were aggregated by
island groups (Eastern - São Miguel and Santa Maria islands;
Central – Faial, Pico, and São Jorge islands; Western - Flores
and Corvo islands) (Figure 1). Whenever possible, depending
on sample availability, a similar number of individuals per
capture year covering similar range of furcal length was selected
(Supplementary Table 1).

Otolith Reading and Annual Growth
Estimation/Increment Measurement
A total of 526 sagittal otolith pairs from fish ranging from 30 to
53 cm FL were selected (Supplementary Table 1). Otoliths were
immersed in ethanol 72%, preferentially the left otolith was used,
and immediately viewed through a Leica MZ16FA stereoscope
to guarantee high quality increment visualization, and pictures
were taken using a Leica MC190HD camera under reflected
light against a dark background, and magnification between 7.11
and 24×. Annual growth increments or annuli were defined as
consisting of one opaque and one translucent growth zone (Matta
et al., 2018). Annuli were counted and measured using ImageJ
software (version 1.52) with ObjectJ plugin (version 1.04) along
an axis from the nucleus to the post-rostrum edge (Tanner et al.,
2020). Increment measurements were marked at the border of
each fully formed opaque growth zone. All otoliths were read
twice by the same reader and only estimates with equal readings
were included for further analysis.

The birth date of this species was assumed to be the 1st
of January (Krug, 1989; Chilari et al., 2006). Due to the
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uncertainty that the first year of growth corresponds to a full
year, measurements of the first increment were not included in
the analysis (Morrongiello and Thresher, 2015; Tanner et al.,
2020). Additionally, only increments up to age 20 were included
in the data analysis to standardize the maximum age among
island groups. The use of otolith increments as a proxy of
fish growth relies on the premise of an allometric relationship
between otolith and somatic growth. For each island group, this
assumption was tested and confirmed in a subset of individuals
(N = 75 individuals/location; Eastern: adjusted R2 = 0.692,
slope = 7.21; Central: adjusted R2 = 0.681, slope = 6.38;
Western: adjusted R2 = 0.639, slope = 5.94, all p < 0.0001)
(Supplementary Figure 1).

Data Analysis
Inter-annual variation in the width of otolith growth increments
was used as a proxy of somatic growth of blackspot seabream,
and linear mixed-effects models were used to partition variance
in otolith growth increment widths among intrinsic (age-related)
and extrinsic (environmental-related and fishery-related) sources
of growth variation using a statistical framework based on
Morrongiello and Thresher (2015). Fixed effects (e.g., Age, Age
at capture, Year, Temperature, and Abundance) describe the
entire population and random effects (e.g., FishID, Cohort,
and Area) are associated with randomly selected experimental
units within the population (Morrongiello and Thresher, 2015;
Lee and Punt, 2018). This approach explicitly quantifies
age-related growth patterns and allows the exploration of
environmental responses, thus making it the best approach
for analyzing these hierarchical time series (otolith growth
data). Increments were log-transformed to meet assumptions
of normality and homoscedasticity, and both intrinsic and
extrinsic predictor variables were mean-centered to facilitate
model convergence and interpretation of interaction terms
(Morrongiello et al., 2014).

Intrinsic Effects on Growth
A series of linear mixed-effect models with increased complexity,
which included fixed intrinsic covariates and a series of
random effects structures, were developed, and compared to
determine the best baseline model describing fish otolith growth
(Supplementary Table 2). First, the best random-effects model
with a complete fixed-effect structure was determined for the
data set. The random effect structures applied included random
intercepts for individual fish (“FishID”), year of otolith increment
formation (“Year”), and birth year (“Cohort”), to allow for
correlations among growth increments within individual fish,
calendar year and year class. Random “Age” slopes were also
investigated for these covariates thus allowing individuals to
have age-related growth trajectories. The capture location of the
specimen (“IslandGroup”) was always included in combination
with “Year” and “Cohort,” allowing for island group-specific
year or cohort growth responses. The best random-effects
model was then used to select the appropriate fixed-effect
structure. Optimized fixed effects included the intrinsic (i.e.,
internal to the individual) terms “Age” and “Age at capture”
(Supplementary Table 3) in interaction with the island group

(Supplementary Table 2) which accounted for age-specific
effects on growth that can vary between capture locations
and location-specific differences in potential sampling bias or
growth selectivity associated to certain phenotypes (Morrongiello
and Thresher, 2015). Model selection was based on the
comparison of the Akaike Information Criterion corrected for
small sample sizes (AICc) (Burnham and Anderson, 2002).
Variance in otolith growth explained by the combined fixed
and random effects were calculated by the conditional R2
metric (Nakagawa and Schielzeth, 2013). Model parameters were
estimated using restricted maximum likelihood (REML). For
fixed effects optimization, models were fitted using maximum
likelihood and the best model was subsequently refitted using
REML to provide unbiased estimates (Zuur et al., 2009).
The selected model with the best structure of intrinsic
fixed effects was then extended in a stepwise procedure to
determine if the addition of extrinsic fixed factors could further
improve the model fit.

Extrinsic Variables Effects on Growth
Blackspot seabream growth variation was related to a series
of extrinsic variables (i.e., environmental and exploitation) that
potentially explain inter-annual variation in otolith growth
(Supplementary Table 3). Monthly data of water temperature-
at-depth in the approximate areas of fish sampling were
obtained from Simple Ocean Data Assimilation (SODA3)
reanalysis, version 3.4.2 (Carton et al., 2018). Based on the
species’ preferential depth distribution (100–600 m depth)
(Menezes et al., 2006), depth levels between 98 and 618 m
were selected. Both climatic indices, North Atlantic Oscillation
(NAO) and Eastern Atlantic Pattern (EAP) were obtained
from the NOAA Climate Prediction Center1 since these
large-scale phenomena can affect the local climate and flow
of regional sea currents in the Azores and consequently
the species dynamics (e.g., spatial distribution, reproduction,
behavior, and feeding) (Pinho et al., 2011). Moreover, and
specifically for P. bogaraveo, a lower abundance in the period
2010–2011 was associated with the negative phase of NAO
during this period (Pinho et al., 2011). To explore potential
fishery-dependent influences on growth variation, fish landings
(tonnes) were used as a proxy for exploitation. Official
data on landings were obtained from the public company
managing Azores fish auction houses (Lotaçor S.A.). Data on
temperature, NAO, EAP, and fishery proxy were available over
the entire period of the chronologies (1975–2016) and so
these four extrinsic variables were included in the optimized
intrinsic model, using seasonal averages, and their influence
was evaluated. Pairwise correlations among extrinsic variables
were calculated (Pearson coefficient) and only variables with
correlations <0.5 were simultaneously included as fixed effects
into the models.

Average Thermal Reaction Norms
Within-subject centering was used to determine if the average
population growth-temperature relationship and variation were
driven by within-individual (representing evolutionary-fixed

1http://www.cpc.ncep.noaa.gov
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phenotypically plastic responses) or among-individual effects
(representing individual differences in temperature response)
(van de Pol and Wright, 2009; Morrongiello and Thresher,
2015; Martino et al., 2019; Morrongiello et al., 2019). This
approach provides an estimate of the average growth phenotypic
plasticity present within an individual (within-individual) and
an estimate of how growth systematically varies across average
lifetime conditions (among-individual) (Martino et al., 2019).
For this purpose, two new variables were calculated, the
average temperature experienced by each individual over its
lifetime and the deviation of annual temperatures from this
mean. The original temperature variable was replaced with
the two new variables and resulting models were compared
with the optimal extrinsic model using AICc (Supplementary
Table 4). Differences in within-individual and among-individual
effects were derived by replacing the within-individual term
with the original temperature effect. The selected model also
included a random within-individual reaction norm slope on
FishID, representing the individual-specific differences in within-
individual temperature slopes (Morrongiello and Thresher, 2015;
Supplementary Table 4).

All analyses were conducted in R 3.6.1 (R Core Team,
2018) using the packages lme4 (Bates et al., 2014) for the
linear mixed models.

RESULTS

Blackspot seabream otolith growth chronologies spanned
42 years, from 1975 to 2016 (Supplementary Figure 2 and
Supplementary Table 1). The individuals used in this study
were aged between 6 and 28 years, and on average, the age at
capture was 14.1 years (Supplementary Table 1). For a similar
length range, the Western island group presented the oldest
individuals (Table 1).

Intrinsic Effects
The optimal intrinsic random effect model contained a random
intercept for FishID and IslandGroup:Year, and a random Age
slope for FishID. For the fixed effects, the inclusion of Age
and Age-at-capture as fixed effect terms was supported, both
with IslandGroup interaction (Table 2). The otolith-derived
growth chronologies for all island groups showed considerable
inter-annual variation, with below and above average years
of growth. The inter-annual variation pattern varied between
locations, without a clear trend in any of the locations
(Figure 2). Average growth in all locations declined with age
(Figure 3A). Slight differences in age-related growth patterns
of P. bogaraveo were observed among the three locations.
Individuals from the Western island group showed the highest
growth rate at the youngest age, whilst the growth rate at
an older age in these individuals was lower than in the
remaining groups (Figure 3A). For the Eastern group, a negative
relationship between annual growth and Age-at-capture was
identified, with individuals captured at younger age presenting
higher growth rates than individuals captured at an older
age (Figure 3B). On the other hand, no relationship between

growth and Age-at-capture was found for the other islands’
groups (Figure 3B).

Extrinsic Variables Effects
Seasonal means of temperature-at-depth, NAO, EAP, and annual
landings were added to the optimized intrinsic model. All
these environmental variables were included simultaneously in
the model, except for seasonal temperature estimates which
were included separately due to the high correlation among
means. Average winter temperature-at-depth was the only
variable included in the final extrinsic model (Table 2). Overall,
winter temperature had a negative effect on blackspot seabream
growth (Figure 3C). Average winter temperature-at-depth was
higher in the Western island group compared to the Central
and Eastern groups (Supplementary Figure 3), however, these
differences did not affect the overall response of growth in the
different island groups.

Within Versus Among Individual Growth Variation
Average population growth response to winter temperature
was separated into among-individual variation (representing
facultative environmental responses) and within-individual
variation (representing evolutionary-fixed, phenotypically
plastic responses). We found significant among-individual
growth response to temperature while the within-individual
variation was weakly negative (Figure 4). The inclusion of
within-individual temperature random slopes improved the
model. Still, the effect was minimal, with high variation in
individual response.

DISCUSSION

Otolith chronologies from this study reconstructed fish growth
over 40 years based on individuals ranging from 6 to
28 years of age. We documented differences in inter-annual
growth variation of blackspot seabream populations among
the Azores island groups. These differences in growth patterns
may be partly related to regional differences in habitat,
oceanographic conditions, and exploitation patterns, which
are known to induce fluctuations in populations dynamics
(e.g., Cheal et al., 2007; Powney et al., 2010; Frank et al.,
2016). Environmental seabed characteristics in the Azores
archipelago show a clear dissimilarity between the Western
island and the other two island groups (Amorim et al.,
2017), likely related to the topographic discontinuity caused
by the Mid-Atlantic Ridge and the associated oceanographic
transition zone. This discontinuity may act as an ecological
barrier potentially isolating western island fish populations
relative to the central-eastern groups’ populations (e.g., Fontes
et al., 2009) and may contribute to the distinct blackspot
seabream growth patterns observed. On the other hand, regional-
scale fishing pressure has varied among island groups over
the last decades, with the Eastern island group subject to
greater fishing pressure during the 1980s (Diogo et al., 2015),
potentially adding further to the inter-island group growth
variation documented.
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TABLE 2 | Final Pagellus bogaraveo otolith growth model, with selected extrinsic fixed effects in bold.

Intrinsic model Extrinsic model

Random effects Variance SD Correlation Variance SD Correlation

FishID 0.0237 0.1541 0.0236 0.1537

Age| FishID 0.0257 0.1602 0.86 0.0257 0.1602 0.86

IslandGroup:Year 0.0004 0.0209 0.0004 0.0215

Residuals 0.0495 0.2225 0.0495 0.2224

Fixed effects Estimate (95% CI) Estimate (95% CI)

Intercept −1.3991 (−1.427, −1.372) −1.4051 (−1.433, −1.377)

Age −0.8539 (−0.882, −0.826) −0.8511 (−0.880, −0.823)

IslandGroup_east 0.0078 (−0.039, 0.055) 0.0033 (−0.044, 0.051)

IslandGroup_west −0.0514 (−0.087, −0.016) −0.0385 (−0.077, −0.001)

Age-at-capture −0.0011 (−0.007, 0.005) −0.0017 (−0.008, 0.004)

Age:IslandGroup_east −0.0067 (−0.058, 0.044) −0.0083 (−0.059, 0.043)

Age:IslandGroup_west −0.0718 (−0.109, −0.034) −0.0731 (−0.111, −0.035)

Age-at-capture:IslandGroup_east −0.0104 (−0.020, −0.001) −0.0100 (−0.019, −0.001)

Age-at-capture:IslandGroup_west 0.0026 (−0.005, 0.010) 0.0028 (−0.005, 0.010)

Temp_winter − − −0.0236 (−0.047, −0.0004)

Reaction Norm

Estimate (95% CI)

Within-individual “Temp_winter” effect −0.0164 (−0.042, 0.009)

Among-individual “Temp_winter” effect −0.0867 (−0.162, −0.012)

Variance components and estimates of random and fixed effects of the optimal intrinsic and extrinsic models, and reaction norms, describing otolith growth in the three
sampling locations.
Definitions of random and fixed effects are available in Supplementary Table 3.
Among-individual = coefficient for individuals’ average lifetime “Temp_winter” experienced; quantifies systematic among- individual differences in temperature response.
Within-individual = coefficient for individual-specific annual deviations from Among-individual; quantifies the average within-individual phenotypic plasticity in
thermal reaction norms.
SD = standard deviation, CI = Confidence interval, Temp_winter = average temperature of winter (January–March) at 98–618 m depth.

FIGURE 2 | Pagellus bogaraveo predicted variations in annual otolith growth collected in Western (blue), Central (red), and Eastern (green) island groups.

Age was the best predictor of growth, with growth decreasing
with age. Otolith growth was considered a proxy for somatic
growth, a widely accepted assumption (Matta et al., 2018;
Martino et al., 2019; Tanner et al., 2019, 2020). This relationship
and the age-at-length relationship have previously been validated
for blackspot seabream (Krug, 1989, 1998; Chilari et al., 2006;

Higgins et al., 2015). In our study, this relationship is less robust
in older specimens, which contributed with the oldest individuals
to this study. Length-at-age and maximum age determined in
this study differed from those previously documented for the
region (Krug, 1989; Menezes et al., 2001). These differences may
be attributed to the fact that the previous works were elaborated
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FIGURE 3 | Annual mean otolith increments from Western (blue), Central
(red), and Eastern (green) island groups by (A) age and (B) Age-at-capture;
and (C) overall effect of average winter temperature (January–March) at depth
(98–618 m) on Pagellus bogaraveo otolith growth. Vertical lines in (A) and
shaded areas in (B,C) denote ±95% CI.

more than 20 years ago using different techniques and resolutions
which likely led to distinct age determinations.

Regarding the Age-at-capture and annual growth relationship,
significant differences were evident among the capture locations
(island groups). Unequivocally in the Eastern group, a negative
relationship between annual growth and Age-at-capture was

FIGURE 4 | Winter temperature-related population-level variation, compared
with within-individual (representing evolutionary-fixed phenotypically plastic
responses), and among-individual (representing facultative environmental
responses) variations.

identified, differentiating this group from the others. Individuals
captured at a younger age presented higher growth rates than
individuals captured at an older age. There are several possible
explanations for the negative relationship between Age-at-
capture and growth, such as life history trade-offs between growth
rate, sexual maturity, and longevity; or higher vulnerability of
fast growers to fishery activities (see e.g., Morrongiello and
Thresher, 2015). For blackspot seabream from the Eastern
island group, a fisheries-related mechanism appears to be the
most plausible explanation since this group was subject to the
highest exploitation rates in the archipelago resulting in local
depletion of fish stocks (Diogo et al., 2015). Fast growers may
be more vulnerable as they recruit to the fisheries earlier, or
even showing a bolder behavior and consequently making them
more vulnerable to fishing (Morrongiello and Thresher, 2015).
Also, in fish populations under high fishing pressure, smaller
fish tend to mature earlier, as a response to long-term, size-
selective harvesting that removes the larger and faster-growing
fish (Browman et al., 2000; Ernande et al., 2004; Olsen et al., 2009;
Martino et al., 2019). Krug (1998) observed that female blackspot
seabream matured at earlier ages and smaller size over a 10-
year period which may have been a first indication of the effects
of fishing pressure, environmental change, or an interaction of
these factors on this species’ growth in the Azores. The presence
of slow-growing individuals and the occurrence of the oldest
individuals for the same length range in the Western island group
may be the result of differential fishing pressure among island
groups (Diogo et al., 2015). The relationship between growth
and fishing pressure was formally explored in our model using
as a proxy for exploitation, landings of blackspot seabream, the
only exploitation-related variable available for the entire range of
the chronology. However, this variable was not significant and
consequently not included in the final model, which may be an
indication of the lack of suitability of this proxy.

We identified temperature-at-depth during winter as the best
predictor of growth across all locations, with higher values
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influencing the annual growth negatively. Water temperature
may affect fish growth directly by influencing metabolism
within the species-specific thermal optimum or indirectly by
modulating other environmental variables such as dissolved
oxygen concentration or food availability (Dutta, 1994; Pörtner
and Farrell, 2008; Massie et al., 2020). Warmer winters in deep
waters may lead to decreased dissolved oxygen concentration
and higher metabolic rates, which require more energy (food)
and oxygen (Pauly and Cheung, 2018). Physiological capacity
disturbance, related to temperature and oxygen variations, can
alter not only the growth but also affect other vital functions such
as maturation or reproduction (Pörtner and Knust, 2007; Pauly,
2021). In the Azores archipelago, the reproduction of blackspot
seabream occurs during the winter months (Krug, 1998; Estácio
et al., 2001), coinciding with the temperature-at-depth used
in our model, that negatively influenced somatic growth. The
negative effect of warmer water on fish growth is expected in
the context of Gill-oxygen limitation theory that states that
lower relative oxygen supply induces sexual maturation and
promotes a slowing of growth (Pauly, 2019a,b, 2021). Following
this theory, blackspot seabream may invest more energy in
reproduction and spawning, depriving the somatic growth,
during winter periods with warmer water temperatures and
potentially reduced oxygen availability, leading to the observed
negative effect on growth. Temperature can also influence food
availability which has been shown to play a considerable role
in fish growth rates (Jones, 1986; Dutta, 1994; Anderson and
Sabado, 1995; Cominassi et al., 2020). In the Azores archipelago,
seasonal maximums of sea surface temperature (SST) have
been shown to coincide with seasonal lows of chlorophyll
(Caldeira and Reis, 2017), and winter temperature-at-depth
during the study period were positively correlated with winter
SST (r(df = 109) = 0.38, p < 0.001). Thus, warmer winters may
result in lower primary productivity with potential effects on
higher levels in the food chain. It has been previously recognized
that the energy transfer rate from phytoplankton to mesopelagic
fishes in oligotrophic regions (such as the Azores) is high, linking
fishes’ biomass and primary production (Irigoien et al., 2014).
Since mesopelagic fish (myctophids) and invertebrates are the
main components in the diet of blackspot seabream (Morato
et al., 2001) warmer winter resulting in lower primary production
may lead to less food availability and energy intake, impacting
growth negatively.

In addition to environmental and oceanographic factors, the
genotype and physiological condition of the individual may
also regulate growth (Dutta, 1994), and can promote different
growth rates at the individual level. Exploring among-individual
variation and individual thermal responses is particularly
interesting in species with complex life histories, such as
P. bogaraveo (Higgins et al., 2015), since these components
differ in their evolutionary and ecological implications and
thus may allow a better understanding of the species’ ability
to respond to global change (Brommer et al., 2008). In this
study, we found a negative among-individual variation in
thermal response. Among-individual variation may result from
genetic differences and individual-specific past experiences or
a combination of both (Morrongiello and Thresher, 2015;

Martino et al., 2019). For blackspot seabream, possible individual
past experiences giving rise to among-individual variations
in thermal response may be related to complex individual
spatial feeding behavior, that includes vertical and horizontal
migrations (Afonso et al., 2012, 2014). As a consequence of
genetic differences, it has been proposed that slower-growing
individuals will be favored through long-term adaptation to
higher temperatures (Martino et al., 2019). For blackspot
seabream, such a genetic adaptation may also be possible
although among-individual thermal responses were consistent
for the three island groups. Furthermore, genetic differentiation
in blackspot seabream in the Azores archipelago is low
although a restriction of gene flow between the Western island
group and the rest of the archipelago has been suggested
(Stockley et al., 2005).

Our results showed differing growth patterns among Azorean
island groups, with an overall negative temperature-at-depth
effect on blackspot seabream growth which likely acted as an
indirect factor affecting physiological condition, reproduction,
and food availability. Also, the partitioning of the thermal
population-level response into among-individual and within-
individual variation is likely related to different individual-
specific past experiences of blackspot seabream. Identifying
drivers of blackspot seabream growth variation can promote
an improved understanding of the present condition of the
populations which represents essential information for the
sustainable management of the fishery considering the future
environmental change. In fact, the observed negative impact
of warmer water on the growth of blackspot seabream may
have important implications in the future as ocean temperature
is forecasted to increase (Lyman et al., 2010) with potential
repercussions for blackspot seabream fishery production. Thus,
vulnerable species, such as blackspot seabream, may require
more careful considerations in terms of management, and a
better understanding of the factors involved in key life-history
events. The long-term annually resolved growth information
that can be derived from otoliths present significant potential
to be used for this species from different locations, studying
intra-regional differences in growth or even for other slow-
growing species to obtain precise information on responses
to biological and environmental effects. Considering the
importance of age determination in fisheries assessment, long-
term chronologies, such as developed in this study, can provide
relevant contributions for the sustainable management of deep-
sea resources.
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