

²¹⁰Po/²¹⁰Pb Disequilibria and Its Estimate of Particulate Organic Carbon Export Around Prydz Bay, Antarctica

Huina Hu^{1,2}, Xiao Liu¹, Chunyan Ren¹, Renming Jia¹, Yusheng Qiu¹, Minfang Zheng¹ and Min Chen^{1*}

¹ College of Ocean and Earth Sciences, Xiamen University, Xiamen, China, ² South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou, China

OPEN ACCESS

Edited by:

Laodong Guo, University of Wisconsin–Milwaukee, United States

Reviewed by:

Ravi Bhushan, Physical Research Laboratory, India Peng Lin, Texas A&M University at Galveston, United States

> *Correspondence: Min Chen mchen@xmu.edu.cn

Specialty section:

This article was submitted to Marine Biogeochemistry, a section of the journal Frontiers in Marine Science

Received: 27 April 2021 Accepted: 22 June 2021 Published: 15 July 2021

Citation:

Hu H, Liu X, Ren C, Jia R, Qiu Y, Zheng M and Chen M (2021) ²¹⁰Po/²¹⁰Pb Disequilibria and Its Estimate of Particulate Organic Carbon Export Around Prydz Bay, Antarctica. Front. Mar. Sci. 8:701014. doi: 10.3389/fmars.2021.701014 Due to the remoteness and difficulty of sampling, the ²¹⁰Po and ²¹⁰Pb data are scarce in the Southern Ocean. Here, the activity concentrations of ²¹⁰Po and ²¹⁰Pb around Prydz Bay in austral summer were determined to understand their spatial variation and evaluate the dynamics of particle organic matter (POM). The activity concentrations of dissolved 210 Po (D 210 Po) and 210 Pb (D 210 Pb) range from 0.47 to 3.20 Bg·m⁻³ and from 1.15 to 2.97 Bq·m⁻³, respectively, with the lower values in the shelf. The particulate ²¹⁰Po (P²¹⁰Po) and ²¹⁰Pb (P²¹⁰Pb) are lower in the open ocean and increase to the coastal waters, among which the circumpolar deep water (CDW) is the lowest. The activity concentration of total ²¹⁰Pb (T²¹⁰Pb) ranges from 1.26 Bg·m⁻³ to 3.16 Bg·m⁻³, with a higher value in CDW, which is ascribed to radiogenic production from ²²⁶Ra and subsequent lateral transport. Occasionally a high value of T²¹⁰Po occurs in deep water (>3.00 Bq·m⁻³), which may be caused by the remineralization of POM. The disequilibria between T²¹⁰Po and T²¹⁰Pb appears throughout the water column at most stations. The average T^{210} Po/ T^{210} Pb)_{A.R.} in the euphotic zone is 0.66, reflecting the effect of strong particle scavenging. There is a good positive correlation between the solid-liquid ratio of ²¹⁰Po and POC, while ²¹⁰Pb does not, indicating that particulate organic matter regulates the biogeochemical cycle of ²¹⁰Po around Prydz Bay. Based on the ²¹⁰Po/²¹⁰Pb disequilibria, the export flux of POC in the water column is estimated to be 0.8–31.9 mmol $m^{-2} d^{-1}$, with the higher values in the shelf.

Keywords: ²¹⁰Po, ²¹⁰Pb, POC export flux, Prydz Bay, biogeochemical behavior

INTRODUCTION

²¹⁰Po ($T_{1/2}$ = 138.4 days) and ²¹⁰Pb ($T_{1/2}$ = 22.3 years) are radionuclides in ²³⁸U decay chain. Naturally occurring ²¹⁰Po is a β^- -decay product of ²¹⁰Pb via short-lived ²¹⁰Bi ($T_{1/2}$ = 5.0 days), and ²¹⁰Pb is produced throughout ²²⁶Ra decay via several short-lived isotopes (²²²Rn, ²¹⁸Po, ²¹⁴Pb, etc.). ²¹⁰Po mainly comes from *in-situ* decay of ²¹⁰Pb in seawater, and ²¹⁰Pb has three sources: atmospheric deposition, terrestrial runoff, and *in situ* production via ²²⁶Ra decay (Bacon et al., 1976; Moore and Smith, 1986; Nozaki et al., 1997; Wei et al., 2011; Kaste and Baskaran, 2012).

Unlike ²¹⁰Pb mainly being adsorbed to particle surfaces, ²¹⁰Po is additionally assimilated by phytoplankton (Nozaki et al., 1976; Cochran, 1992; Verdeny et al., 2009). The behavior difference results in a depletion of ²¹⁰Po as compared to ²¹⁰Pb in water column, which provides a tool for quantifying the adsorption rate by particles, and export flux on a seasonal-to-decadal timescale (Fisher et al., 1983; Cherrier et al., 1995; Stewart et al., 2005; Rigaud et al., 2014; Tang et al., 2019).

The Southern Ocean divides the polar parts from the warm tropical ocean, including the southern part of the Pacific, Atlantic, and Indian Oceans. Although it represents only 10% of the ocean surface area, it accounts for approximately 25% of the oceanic uptake of atmospheric CO₂ (Takahashi et al., 2002; Arrigo et al., 2008). The Prydz Bay, located in the Indian sector of the Southern Ocean, is the third largest bay in the Antarctica, following the Weddell Sea and the Ross Sea. Previous studies on ²¹⁰Po and ²¹⁰Pb in the Southern Ocean mainly focused on the Antarctic Circumpolar Current (ACC) (Shimmield et al., 1995; Friedrich and Rutgers van der Loeff, 2002), there is still very little research on Prydz Bay. ²¹⁰Po/²¹⁰Pb and ²³⁴Th/²³⁸U disequilibria have been used to estimate POC export flux in the Southern Ocean, but the results obtained by the two methods are sometimes different. The POC export fluxes estimated by ²¹⁰Po/²¹⁰Pb disequilibria were significantly lower than those by ²³⁴Th/²³⁸U disequilibria in the Bellingshausen Sea (Shimmield et al., 1995). In contrast, the POC export fluxes estimated by the two methods were similar in the ACC (Rutgers van der Loeff et al., 1997). Therefore, comparing the two methods not only helps to deepen the understanding of their applicability, but also helps to more accurately understand the temporal and spatial variability of the POC export flux.

Here, we report the activity concentrations of 210 Po and 210 Pb around Prydz Bay, including dissolved 210 Po (D 210 Po), particulate 210 Po (P 210 Po), dissolved 210 Pb (D 210 Pb), and particulate 210 Pb (P 210 Pb). The main objectives include: (1) revealing the distribution of 210 Po and 210 Pb around Prydz Bay; (2) assessing the factors affecting the disequilibria between 210 Po and 210 Pb; and (3) quantifying the export flux of POC via 210 Po/ 210 Pb disequilibria, and compared with the result by 234 Th/ 238 U disequilibria.

MATERIALS AND METHODS

Sampling

Seawater sample was collected using a Teflon-coated Niskin bottle assembled on a Sea-Bird SBE-911 rosette system (Sea-Bird Electronics Inc., United States) from January 31 to February 3, 2013 onboard R/V *XUELONG*. A total of 104 water samples (about 5 L each) was collected at different depths at six stations on the transect P7, covering the continental shelf (water depth from 200 to 400 m), continental slope (water depth of about 1,000 m), and the open ocean (water depth of about 3,500 m) (**Figure 1**). The water sample was filtered through a 0.4 μ m polycarbonate membrane to separate the dissolved and particulate phases. The filtrate was acidified to pH <2 with approximately 20 mL concentrated HCl immediately. The

particulate matter was frozen and stored at -20° C for further processing in the onshore laboratory.

Measurements

Temperature and conductivity were measured by SBE-911 CTD, the accuracy of which was 0.001° C and 0.0003 S/m, respectively. The water sample used for nutrient determination was filtered through a 0.45 μ m cellulose acetate membrane and stored in a 100 mL acid-cleaned HDPE bottle by adding saturated HgCl₂ solution. The nitrate (NO₃-N), phosphate (PO₄-P), and silicate (SiO₃-Si) was determined by the zinc-cadmium reduction method, molybdenum-blue method, and molybdate-blue method, respectively (Grasshoff et al., 1983).

The particulate matter in the water sample (5–10 L) was filtered on a pre-combusted 47 mm GF/F membrane (450°C, 4 h) for POC measurement. After the sample was dried at 60°C, it was stored frozen at -20° C. In the laboratory, the filter was fumigated with concentrated HCl for 48 h to remove inorganic carbonate. The sub-sample was encapsulated in a tin boat, and sent to the elemental analyzer (NC2500, Carlo Erba) for POC determination. The detection limit of POC is 0.1 μ molC, and the precision is 0.2% (Ren, 2015).

The dissolved sample was enriched with ²¹⁰Po by coprecipitating with Fe(OH)₃, and purified by spontaneous deposition on a silver disk (4 h at 85°C). The mixed acid of HNO₃, HClO₄, and HCl was used to digest the particulate sample, and the subsequent procedure was the same as that of the dissolved sample. The radioactivity of ²¹⁰Po was counted by an alpha spectrometer (Octête[®] Plus, EG&G) in Xiamen University. After the first self-deposition of ²¹⁰Po, the sample solution was left for more than 9 months, and the second spontaneous deposition of ²¹⁰Po was performed to determine the radioactivity of ²¹⁰Po produced by the decay of ²¹⁰Pb (Yang, 2005).

The radioactivity of ²¹⁰Po in the sample was calculated by correcting the ²¹⁰Po activity measured from the first selfdeposition to the sampling time point. The calculation formula is as follows:

$$A_2^0 = \frac{A_2^1 - A_2^2 e^{\lambda_1 t_1} (e^{-\lambda_1 t_0} - e^{-\lambda_2 t_0}) / (e^{-\lambda_1 t_2} - e^{-\lambda_2 t_2}) R_1}{e^{-\lambda_2 t_0} R_2} - B$$

where A_2^0 is the activity concentration of ²¹⁰Po at the time of sampling (Bq·m⁻³); A_2^1 is the activity concentration of ²¹⁰Po at the time of first self-deposition (Bq·m⁻³); t_0 represents the time interval from sampling to the first self-deposition; R_2 represents the chemical recovery of ²¹⁰Po, as determined by the ²⁰⁹Po tracer; *B* denotes the blank in the analysis process.

In the calculation of ²¹⁰Pb activity, considering that ²¹⁰Pb has a long half-life (22.3 years) and the time interval from sampling to co-precipitation is short, the effects of ²¹⁰Pb decay and ingrowth from sampling to co-precipitation could be ignored. Therefore, the ²¹⁰Pb activity was corrected back to the time point of coprecipitation. The calculation formula is as follows:

$$A_1^0 = \frac{A_2^2(\lambda_2 - \lambda_1)}{\lambda_2 e^{-\lambda_1 t_1} (e^{-\lambda_1 t_2} - e^{-\lambda_2 t_2})R_1} - B$$

where A_1^0 is the activity of²¹⁰Pb at the time point of co-precipitation (that is, the activity of ²¹⁰Pb in the sample, Bq·m⁻³); A_2^2 is the ²¹⁰Po activity measured from the second selfdeposition sample (Bq·m⁻³); λ_1 and λ_2 are the decay constants of ²¹⁰Pb (0.031 a⁻¹) and ²¹⁰Po (1.828 a⁻¹), respectively; t_1 and t_2 represent the time interval from co-precipitation to the first self-deposition and the time interval from the first to second selfdeposition, respectively; R_1 represents the chemical recovery of ²¹⁰Pb, which was determined by the stable Pb content measured by an atomic absorption spectroscopy; *B* represents the blank in the analysis process.

The error of ²¹⁰Po and ²¹⁰Pb activity reported here is $\pm 1\sigma$ counting uncertainty.

Estimation of POC Export Flux

Friedrich and Rutgers van der Loeff (2002) found that ²¹⁰Po activity has a stronger correlation with POC and biogenic silica in the Southern Ocean, indicating that ²¹⁰Po/²¹⁰Pb disequilibria is a reliable method for estimating the export flux of POC in the Southern Ocean. Similar to the ²³⁴Th approach (Buesseler et al., 1992, 2006; Stewart et al., 2007), the export flux of POC is calculated by multiplying the export flux of P²¹⁰Po (i.e., the removal flux of ²¹⁰Po) by the POC/P²¹⁰Po ratio at the export interface (Shimmield et al., 1995). This is an empirical approach. It is not necessary to assume that POC and P²¹⁰Po have the same residence time. The calculation equation is as follows:

$$F_{POC} = F_{P^{210}Po} \cdot \frac{POC}{P^{210}Po}$$

where F_{POC} and $F_{P^{210}Po}$ represent the export flux of POC and $P^{210}Po$, respectively; $\frac{POC}{P^{210}Po}$ is the ratio of POC to $P^{210}Po$ at the export interface.

The $F_{p^{210}P_0}$ was calculated by a classical steady-state irreversible scavenging model after ignoring the atmospheric deposition flux of²¹⁰Po (Bacon et al., 1976; Friedrich and Rutgers van der Loeff, 2002; Masqué et al., 2002; Yang et al., 2006).

Here, the integration depth interval of $P^{210}Po$ export is delineated according to the physical properties of water masses, namely, from 0 to 25 m (the mixed layer), from 50 to 200 m (the thermocline water), from 300 to 1,000 m (the CDW), and from 2,000 m to the bottom (the AABW), respectively. As the water depth of the continent shelf is relative shallow, it is divided into surface (from 0 to 25 m), subsurface (from 50 to 100 m), and deep layer (from 200 m to the bottom).

RESULTS

Hydrological Characteristics

The temperature in the upper water increased to the north outside Prydz Bay (**Figure 2A**). The summer surface water in the top 50 m layer has a salinity of about 33.8 and a maximum temperature of 0.8° C. Below the surface water, extremely low temperature and higher salinity appear, which are characteristics of the Winter Water (WW, $T < -1.5^{\circ}$ C, 34.2 < S < 34.56). The formation of the WW is due to the weak mixing in the upper waters in summer, which causes the water to retain the

winter characteristics for a long time (Pu et al., 2002a). The water with a depth of 500–2,000 m shows the characteristics of high temperature and high salinity of Circumpolar Deep Water (CDW) ($T > 1.0^{\circ}$ C, 34.5 < S < 34.75, **Figures 2A,B**). It is widely distributed in a large area around the continental shelf and is also one of the main water masses of Antarctic Circumpolar Current (ACC) (Pu et al., 2002b). Below the CDW (>2,000 m), the water mass with the highest salinity and the low temperature is called Antarctic Bottom Water (AABW), and its average temperature and salinity are $-0.153 \pm 0.022^{\circ}$ C and 34.651 ± 0.001 , respectively.

Nutrients

Nitrate gradually increases from the shelf to the open ocean, while nitrite shows an increasing trend from north to south. Although the concentration of nitrate in surface water is low, it is still detectable. The concentration of nitrate in the bottom water increases, which may be due to the nitrification of ammonia released from the sediments (**Figure 2C**). The concentration of phosphate in the upper ocean is low, but it remains abundant at depths deeper than the mixed layer (**Figure 2D**). The vertical change of silicate in the shelf (Stns. P7-15, P7-14, and P7-11) is not obvious, but the profiles in the slope and the open ocean are different, in which the silicate increases as the depth increases. The highest silicate concentration appears near the bottom, which is attributed to the dissolution of biogenic silica

in the sediments and subsequent transport to the overlying water (Figure 2E).

POC

The POC concentration varies from 0.35 to 5.37 μ mol/dm³, with an average of 1.51 μ mol/dm³. The POC concentration in surface water falls in a range of 1.77–5.37 μ mol/dm³, with an average of 3.83 μ mol/dm³. In the upper 100 m water column, POC decreases significantly as the depth increases, which is resulted from the photosynthesis of phytoplankton and the degradation of organic matter. In addition, the POC concentration in the shelf is higher than those in the slope and the open ocean, reflecting the spatial variation of primary productivity. Note that the POC concentration in near-bottom water tends to increase, especially at stations P7-05, P7-07, and P7-09, which may reflect the effect of sediment resuspension (**Figure 2F**).

²¹⁰Po and ²¹⁰Pb

The activity concentrations of ^{210}Po and ^{210}Pb are shown in Table 1, and the sectional distribution along ${\sim}78.0~^\circ\text{E}$ is shown in Figure 3.

The activity concentration of D²¹⁰Po ranges from 0.47 to 3.20 Bq·m⁻³, with an average of 1.44 ± 0.15 Bq·m⁻³. The D²¹⁰Po in the shelf water (avg. 1.04 ± 0.11 Bq·m⁻³) is lower than those in the slope (avg. 1.51 ± 0.15 Bq·m⁻³) and open ocean (avg. 2.08 ± 0.20 Bq·m⁻³). Compared with other water

TABLE 1 | The activity concentration of dissolved and particulate ²¹⁰Po and ²¹⁰Pb, and the activity ratio of T²¹⁰Po/T²¹⁰Pb.

Depth (m)	D ²¹⁰ Po	P ²¹⁰ Po	T ²¹⁰ Po	D ²¹⁰ Pb	P ²¹⁰ Pb	T ²¹⁰ Pb	T ²¹⁰ Po/T ²¹⁰ Pb) _{A.R.}
			(Bq-	m ⁻³)			
P7-05 (78.030	°E, 64.494 °S, 3,547	7 m)					
0	1.02 ± 0.11	0.29 ± 0.06	1.31 ± 0.13	2.12 ± 0.19	0.29 ± 0.04	2.40 ± 0.19	0.55 ± 0.07
25	1.24 ± 0.15	0.23 ± 0.05	1.47 ± 0.16	2.48 ± 0.22	0.20 ± 0.03	2.68 ± 0.22	0.55 ± 0.07
50	1.91 ± 0.14	0.29 ± 0.06	2.20 ± 0.15	2.62 ± 0.23	0.19 ± 0.02	2.82 ± 0.23	0.78 ± 0.08
75	2.15 ± 0.14	0.09 ± 0.03	2.24 ± 0.14	2.61 ± 0.25	0.15 ± 0.02	2.76 ± 0.25	0.81 ± 0.09
100	1.10 ± 0.14	0.16 ± 0.03	1.26 ± 0.14	2.70 ± 0.20	0.08 ± 0.01	2.78 ± 0.20	0.45 ± 0.06
200	2.38 ± 0.25	0.10 ± 0.03	2.48 ± 0.26	2.97 ± 0.25	0.19 ± 0.03	3.16 ± 0.25	0.78 ± 0.10
300	2.83 ± 0.28	0.18 ± 0.04	3.00 ± 0.29	2.88 ± 0.24	0.12 ± 0.02	2.99 ± 0.24	1.00 ± 0.12
500	3.20 ± 0.30	0.14 ± 0.03	3.34 ± 0.31	2.55 ± 0.21	0.10 ± 0.01	2.65 ± 0.21	1.26 ± 0.15
1,000	2.19 ± 0.23	0.16 ± 0.03	2.35 ± 0.24	2.46 ± 0.18	0.09 ± 0.01	2.55 ± 0.18	0.92 ± 0.11
2,000	2.64 ± 0.25	0.14 ± 0.03	2.78 ± 0.25	2.82 ± 0.21	0.11 ± 0.01	2.92 ± 0.21	0.95 ± 0.11
3.493	2.24 ± 0.23	0.16 ± 0.03	2.40 ± 0.23	2.17 ± 0.16	0.15 ± 0.02	2.32 ± 0.17	1.03 ± 0.12
P7-07 (77.919	°E. 65.497 °S. 3250	m)					
0	1.05 ± 0.13	0.36 ± 0.05	1.41 ± 0.14	2.08 ± 0.16	0.23 ± 0.03	2.31 ± 0.16	0.61 ± 0.08
25	1.18 ± 0.15	0.24 ± 0.06	1.43 ± 0.16	2.32 ± 0.18	0.48 ± 0.06	2.80 ± 0.19	0.51 ± 0.07
50	1.28 ± 0.15	0.31 ± 0.05	1.58 ± 0.15	2.19 ± 0.17	0.18 ± 0.02	2.37 ± 0.17	0.67 ± 0.08
75	0.98 ± 0.09	0.23 ± 0.04	1.21 ± 0.10	1.78 ± 0.16	0.11 ± 0.01	1.89 ± 0.16	0.64 ± 0.08
100	1.54 ± 0.18	0.13 ± 0.03	1.67 ± 0.18	2.52 ± 0.24	0.10 ± 0.01	2.62 ± 0.24	0.64 ± 0.09
200	1.21 ± 0.14	0.13 ± 0.03	1.34 ± 0.14	2.02 ± 0.18	0.13 ± 0.01	2.15 ± 0.18	0.62 ± 0.08
300	1.62 ± 0.19	0.17 ± 0.03	1.79 ± 0.19	2.35 ± 0.18	0.12 ± 0.01	246 ± 0.18	0.73 ± 0.09
500	2.47 ± 0.27	0.20 ± 0.04	2.68 ± 0.27	2.47 ± 0.22	0.13 ± 0.02	2.60 ± 0.23	1.03 ± 0.14
1.000	2.62 ± 0.20	0.17 ± 0.05	2.79 ± 0.21	2.67 ± 0.24	0.35 ± 0.04	3.02 ± 0.24	0.92 ± 0.10
2 000	2.62 ± 0.20 2.65 ± 0.24	0.66 ± 0.09	3.31 ± 0.26	2.32 ± 0.20	0.16 ± 0.02	2.49 ± 0.20	1.33 ± 0.15
3 200	0.73 ± 0.10	0.00 ± 0.00	0.98 ± 0.11	1.89 ± 0.18	0.10 ± 0.02 0.21 ± 0.03	2.09 ± 0.18	0.47 ± 0.07
P7-09 (78.029	°E. 66.511 °S. 1.628	3 m)	0.00 ± 0.11	1.00 ± 0.10	0.21 ± 0.00	2.00 ± 0.10	0.11 ± 0.01
0	1.21 ± 0.14	0.18 ± 0.06	1.39 ± 0.15	2.11 ± 0.16	0.37 ± 0.04	2.48 ± 0.16	0.56 ± 0.07
25	1.14 ± 0.13	0.18 ± 0.06	1.33 ± 0.15	1.89 ± 0.17	0.37 ± 0.04	2.26 ± 0.18	0.59 ± 0.08
50	0.95 ± 0.12	0.17 ± 0.05	1.12 ± 0.13	2.01 ± 0.16	0.15 ± 0.04	2.16 ± 0.17	0.52 ± 0.07
75	1.05 ± 0.10	0.09 ± 0.03	1.14 ± 0.10	1.96 ± 0.15	0.14 ± 0.02	2.10 ± 0.15	0.55 ± 0.06
100	120 ± 0.10	0.03 ± 0.02	1.23 ± 0.10	1.86 ± 0.15	0.14 ± 0.02	2.00 ± 0.15	0.62 ± 0.07
200	1.20 ± 0.10 1.56 ± 0.13	0.12 ± 0.02	1.69 ± 0.13	1.82 ± 0.15	0.08 ± 0.01	1.90 ± 0.15	0.89 ± 0.10
300	1.23 ± 0.13	0.11 ± 0.02	1.35 ± 0.14	1.82 ± 0.15	0.13 ± 0.02	1.96 ± 0.15	0.69 ± 0.09
500	1.55 ± 0.13	0.15 ± 0.04	1.70 ± 0.14	1.77 ± 0.15	0.22 ± 0.03	1.99 ± 0.15	0.86 ± 0.10
1 000	2.98 ± 0.22	0.15 ± 0.04	3.13 ± 0.22	2.56 ± 0.18	0.16 ± 0.02	2.72 ± 0.18	1.15 ± 0.11
P7-11 (78.019	°E. 66.813 °S. 334 r	n)	0110 1 0122	2100 1 0110	0110 ± 0102		1110 ± 0111
0	1.10 ± 0.12	0.51 + 0.11	1.62 ± 0.16	1.50 ± 0.12	0.59 ± 0.06	2.09 ± 0.13	0.77 ± 0.09
25	1.26 ± 0.15	0.27 ± 0.06	1.52 ± 0.16	2.02 ± 0.17	0.15 ± 0.02	2.17 ± 0.17	0.70 ± 0.09
50	1.20 ± 0.10 1.14 ± 0.11	0.30 ± 0.06	1.44 ± 0.12	2.02 ± 0.17 2.06 ± 0.17	0.18 ± 0.02	2.24 ± 0.17	0.64 ± 0.07
75	1.18 ± 0.11	0.12 ± 0.02	1.29 ± 0.11	2.00 ± 0.17 2.04 ± 0.17	0.09 ± 0.01	2.12 ± 0.11 2.12 ± 0.18	0.61 ± 0.07
100	1.40 ± 0.12	0.12 ± 0.02 0.12 ± 0.03	1.52 ± 0.13	2.31 ± 0.19	0.07 ± 0.01	2.38 ± 0.19	0.64 ± 0.07
200	1.68 ± 0.15	0.16 ± 0.03	1.85 ± 0.15	1.60 ± 0.13	0.09 ± 0.01	1.68 ± 0.13	$1 10 \pm 0.12$
P7-14 (77.187	°E. 67.436 °S. 312 r	n)	1100 ± 0110	1100 ± 0110	0100 ± 0101	1100 ± 0110	1110 ± 0112
0	1.06 ± 0.12	0.21 + 0.04	1.26 ± 0.12	1.77 ± 0.15	0.18 ± 0.02	1.95 ± 0.15	0.65 ± 0.08
25	1.00 ± 0.12 1.11 ± 0.14	0.29 ± 0.07	1.39 ± 0.15	1.74 ± 0.15	0.24 ± 0.03	1.00 ± 0.10 1.97 ± 0.15	0.71 ± 0.10
50	0.84 ± 0.09	0.13 ± 0.03	0.96 ± 0.10	1.64 ± 0.13	0.08 ± 0.00	1.72 ± 0.13	0.56 ± 0.07
75	0.86 ± 0.00	0.08 ± 0.03	0.94 ± 0.10	1.70 ± 0.10	0.10 ± 0.01	1.80 ± 0.10	0.52 ± 0.07
100	0.90 ± 0.10	0.04 ± 0.02	0.94 ± 0.11	1.81 ± 0.14	0.08 ± 0.01	1.89 ± 0.14	0.50 ± 0.01
200	0.73 ± 0.08	0.09 ± 0.02	0.81 + 0.00	1.01 ± 0.14 1.40 ± 0.11	0.08 ± 0.01	1.50 ± 0.14 1.57 ± 0.11	0.50 ± 0.00
303	0.47 + 0.08	0.03 ± 0.03	0.49 + 0.09	1 26 + 0.09	0.12 ± 0.07	1.38 ± 0.10	0.36 ± 0.07
P7-15 (76 517	°F 67 984 °S 436 r	0.00 ± 0.00	0.70 ± 0.00	1.20 ± 0.03	0.12 ± 0.02	1.00 ± 0.10	0.00 ± 0.01
0	1 11 + 0 11	0.47 + 0.07	1.58 ± 0.13	1 29 + 0 10	0.26 ± 0.03	1.56 ± 0.10	1.01 ± 0.11
25	1.43 ± 0.14	0.43 ± 0.07	1.85 ± 0.15	1.23 ± 0.10 1.43 ± 0.11	0.20 ± 0.00	1.55 ± 0.10	1.01 ± 0.11
20	1.40 王 0.14	0.40 ± 0.07	1.00 ± 0.10	1.40 王 0.11	0.11 ± 0.01	1.00 ± 0.11	1.20 ± 0.15

(Continued)

TABLE 1 | Continued

Depth (m)	D ²¹⁰ Po	P ²¹⁰ Po	T ²¹⁰ Po	D ²¹⁰ Pb	P ²¹⁰ Pb	T ²¹⁰ Pb	T ²¹⁰ Po/T ²¹⁰ Pb) _{A.R.}
			(Bq⋅m ⁻³)				
50	0.77 ± 0.09	0.07 ± 0.03	0.83 ± 0.10	2.16 ± 0.17	0.07 ± 0.01	2.23 ± 0.17	0.37 ± 0.05
75	1.08 ± 0.12	0.08 ± 0.03	1.16 ± 0.12	1.70 ± 0.12	0.07 ± 0.01	1.77 ± 0.12	0.66 ± 0.08
100	0.62 ± 0.08	0.03 ± 0.03	0.66 ± 0.08	1.76 ± 0.12	0.07 ± 0.01	1.83 ± 0.13	0.36 ± 0.05
200	1.02 ± 0.09	0.05 ± 0.03	1.07 ± 0.10	1.43 ± 0.10	0.10 ± 0.01	1.53 ± 0.11	0.70 ± 0.08
300	1.26 ± 0.10	0.08 ± 0.03	1.34 ± 0.11	1.15 ± 0.11	0.11 ± 0.01	1.26 ± 0.11	1.06 ± 0.13
425	0.87 ± 0.09	0.09 ± 0.03	0.96 ± 0.09	1.39 ± 0.10	0.11 ± 0.01	1.51 ± 0.10	0.64 ± 0.08

masses, the D²¹⁰Po in CDW is higher (p < 0.0001, one-way ANOVA, **Figure 3A**). The activity concentration of P²¹⁰Po varies in a wide range from 0.03 to 0.66 Bq·m⁻³, with an average of 0.18 \pm 0.04 Bq·m⁻³. The vertical variation of P²¹⁰Po in the shelf decreases as the depth increases. The activity concentration of P²¹⁰Po in the slope is mostly stable at about 0.13 Bq·m⁻³, but an abnormally high value appears at a depth of 2,000 m at station P7-07. The activity concentration of P²¹⁰Po in surface water (upper 50 m) of the open ocean is higher than that in the shelf and slope, with an average of 0.27 \pm 0.06 Bq·m⁻³ (**Figure 3B**). The activity concentration of T²¹⁰Po is mainly contributed by D²¹⁰Po, and its value is between 0.49 and 3.34 Bq·m⁻³ (avg. 1.63 \pm 0.15 Bq·m⁻³). The T²¹⁰Po in the surface and the bottom layer is lower than that in the CDW. In general, the T²¹⁰Po shows a decreasing trend from open ocean (avg. 2.26 \pm 0.21 Bq·m⁻³) to the slope (avg.

 $1.71\pm0.16~{\rm Bq\cdot m^{-3}})$ and the shelf (avg. $1.21\pm0.12~{\rm Bq\cdot m^{-3}})$ (Figure 3C). This spatial variation is attributed to the high biological productivity and the active sediment resuspension in the shelf, resulting in the rapid scavenging of particle-reactive radionuclides (Chen et al., 2012). The vertical change of $T^{210}Po$ in the shelf is small, which indicates that the particle scavenging is strong in the entire water column.

The distribution pattern of $D^{210}Pb$ is generally similar to that of $D^{210}Po$ (**Figures 3A,D**). The variation range of $D^{210}Pb$ is from 1.15 to 2.97 Bq·m⁻³, with the lowest in the shelf and the highest in the open ocean (p < 0.001, one-way ANOVA, **Figure 3D**). The $D^{210}Pb$ is lower in surface water due to more effective particle scavenging, while the $D^{210}Pb$ increases in the subsurface and deep water. The higher $D^{210}Pb$ in CDW is affected by the remineralization of particulate organic matter (Bacon et al., 1976; Somayajulu and Craig, 1976; Thomson and Turekian, 1976; Wei et al., 2011). The activity concentration of $P^{210}Pb$ ranges from 0.07 to 0.59 Bq·m⁻³. In the shelf, the $P^{210}Pb$ is higher in surface water, and lower in deep water (0.07–0.11 Bq·m⁻³) (**Figure 3E**). The activity concentration of $T^{210}Pb$ ranges from 1.26 to 3.16 Bq·m⁻³, with an average of 2.20 ± 0.17 Bq·m⁻³ (**Table 1**). The $T^{210}Pb$ in the surface water is the lowest, especially in the shelf (**Figure 3F**), indicating that ^{210}Pb is effective scavenged by particles. The activity concentration of $T^{210}Pb$ in CDW (2.49–3.02 Bq·m⁻³) is higher than that in other water masses (p < 0.002, one-way ANOVA), which is consistent with the highest $T^{210}Pb$ (~3 Bq·m⁻³) in ACC reported previously (Rama et al., 1961; Somayajulu and Craig, 1976; Chung and Applequist, 1980; Chung, 1981).

DISCUSSION

²¹⁰Po/²¹⁰Pb Disequilibria

The activity ratio of $T^{210}Po/T^{210}Pb$ ranges from 0.36 to 1.33, and shows a widespread deficiency of ^{210}Po with respect to ^{210}Pb around Prydz Bay (**Figure 4**). The average value of $T^{210}Po/T^{210}Pb)_{A.R.}$ in the upper 100 m water column is 0.66, reflecting the influence of biological activity and particle scavenging. Compared with ^{210}Pb , organisms preferentially absorb ^{210}Po , and organic tissues have a stronger affinity for ^{210}Po (Bacon et al., 1976; Cochran et al., 1983; Stewart and Fisher, 2003; Stewart et al., 2007; Yang et al., 2009), which leads to more effective removal of ^{210}Po from the euphotic zone. Under the combined action of biological absorption and particle adsorption, the $T^{210}Po/T^{210}Pb$ ratio in the shelf is lower than those in the slope and open ocean (compare the right and left panels in

Figure 4), which is consistent with the observed low nutrients and high POC in the shelf (Figure 2).

Some previous studies have shown a secular equilibrium is reached between ²¹⁰Pb and ²¹⁰Po in water deeper than 1000 m, such as the North Atlantic (Bacon et al., 1976), the South Pacific (Turekian and Nozaki, 1980), and the Indian Ocean (Chung and Finkel, 1988). However, a large deficiency of ²¹⁰Po has been found in deep waters of some seas, such as the East China Sea and the Philippine Sea (Nozaki et al., 1990), the equatorial Pacific and the Bering Sea (Nozaki et al., 1997), the Sargasso Sea (Kim and Church, 2001), and the South China Sea (Chung and Wu, 2005; Hong et al., 2013). In this study, most of the ²¹⁰Po in deep water around Prydz Bay are in equilibrium with ²¹⁰Pb, but there is an excess or deficiency of ²¹⁰Po at certain depths at some sites (Figure 4). These disequilibria may be caused by differences in particle composition. Hong et al. (2013) found a positive correlation between the flux of P²¹⁰Po and the flux of calcium carbonate, while no correlation between P²¹⁰Pb and calcium carbonate. However, Niedermiller and Baskaran (2019) found a significant negative correlation between the inventories of T²¹⁰Pb and particulate Al, but no correlation between ²¹⁰Po and particulate Al, suggesting much less removal of ²¹⁰Po by lithogenic material compared to ²¹⁰Pb. Therefore, detailed mineralogical and chemical composition of particles play an important role in deep water scavenging.

The activity ratios of $T^{210}Po/T^{210}Pb$ are less than 1.0 in the bottom water of some sites, such as Stns. P7-15, P7-14, and P7-07 (**Figure 4**), indicating that boundary scavenging results in preferential removal of ²¹⁰Po over ²¹⁰Pb. The resuspension of sediments may increase the concentration of particles in nearbottom water, thereby enhancing the scavenging and removal of ²¹⁰Po in the benthic boundary layer, similar to what happens in

the euphotic zone. Ma (2006) found that 210 Po in the bottom water of the Northeast Pacific was depleted relative to 210 Pb (the average ratio of T 210 Po/T 210 Pb was 0.64), which was attributed to the effect of benthic boundary scavenging.

High Activity Concentrations of ²¹⁰Po and ²¹⁰Pb in CDW

The CDW around Prydz Bay mainly exists in a depth range of 200–2,000 m, and it upwells during southward movement due to the effect of the seabed topography (Smith et al., 1984; Pu and Dong, 2003; Pu et al., 2007). Our results show that CDW has the highest activity concentrations of ²¹⁰Po and ²¹⁰Pb compared with other water masses (p < 0.01, one-way ANOVA, **Figure 5**). The reason is worthy of in-depth study.

The half-life of²¹⁰Pb is relatively long (22.3 years), so lateral transport is one of the important factors affecting its redistribution in seawater (Smoak et al., 1996; Moran et al., 1997). Ku and Lin (1976) measured ²²⁶Ra in deep water south of the Antarctic Convergence Zone, and found that the distribution of ²²⁶Ra is related to the latitudinal transport of the circumpolar current from the Pacific sector to the Atlantic sector. Hanfland (2002) found that the highest activity concentration of ²²⁶Ra (about 3.08 Bq·m⁻³) was stable in the ACC. ²²⁶Ra is a soluble radionuclide with a half-life of 1602 years. The movement of ACC around the Antarctic continent causes ²²⁶Ra to accumulate in the CDW and present a uniform characteristics. Therefore, the high activity concentration of ²¹⁰Pb in CDW is attributed to the *in situ* decay of ²²⁶Ra.

However, for the 210 Po in CDW, only considering the *in situ* production by 210 Pb decay cannot explain the 210 Po excess we observed (**Figure 5**). Due to the short half-life of 210 Po (138.4 days), the horizontal transport of the water mass cannot retain the excess signal of 210 Po for a long time. Therefore, the

²¹⁰Po in CDW is more likely to be supplied by local source. In the process of remineralization of POM, both ²¹⁰Po and ²¹⁰Pb are released into the dissolved phase, but the priority of ²¹⁰Po can lead to an excess of ²¹⁰Po over ²¹⁰Pb, because more ²¹⁰Po is bound to organic matter (Shimmield et al., 1995; Nozaki et al., 1997; Wei et al., 2011). Therefore, the remineralization of particulate organic matter is most likely to be responsible for the high ²¹⁰Po and its excess in the CDW. A similar situation was observed in the 100–300 m layer in the eastern North Atlantic and the intermediate layer in the northwestern North Pacific, which was attributed to the remineralization of biogenic particles or measurement errors (Bacon et al., 1976; Kawakami et al., 2008).

Estimates of POC Export Flux

Our results show that there is a good positive correlation between the solid to liquid ratio of 210 Po (i.e., P^{210} Po/ D^{210} Po) and POC, while 210 Pb does not (**Figure 6**). This confirms that particulate organic matter regulates the biogeochemical cycle of 210 Po, and it is feasible to use 210 Po/ 210 Pb disequilibria to estimate POC export flux around Prydz Bay.

Based on the ²¹⁰Po/²¹⁰Pb disequilibria, the POC export flux in the entire water column varies from 0.8–31.9 mmol·m⁻²·d⁻¹, among which the variation ranges in the open ocean, the slope and the shelf are 0.8–20.2, 1.5–4.8, and 4.8–31.9 mmol·m⁻²·d⁻¹, respectively (**Table 2**). Note that the calculated F_{POC} at station P7-15 is negative, which is caused by a slight excess of ²¹⁰Po over ²¹⁰Pb. In this case, the removal flux of ²¹⁰Po calculated by the model may not represent the real situation and will not be considered in the subsequent discussion. As shown in **Figure 7**, the POC export flux in the upper water column in the shelf is higher than that in the slope and the open ocean (p < 0.05, oneway ANOVA). The high POC export is consistent with active biological activities in the shelf. Previous studies have shown that

the Chl-*a* concentration and primary productivity in Prydz Bay are significantly higher than those outside the bay, and there is a positive correlation between the Chl-*a* and POC in the euphotic zone (Liu et al., 2002; Qiu et al., 2004; Cai et al., 2005; Han et al., 2011; Yu et al., 2011; Sun et al., 2012). The active photosynthesis in the upper water enhances the export of POC to the deep sea in Prydz Bay. In fact, the POC export flux in deep water in the shelf (such as Stn. P7-14 and P7-15) is also higher than that in the slope and the open ocean.

In addition to ²¹⁰Po/²¹⁰Pb disequilibria,²³⁴Th/²³⁸U disequilibria have also been widely used to estimate the

TABLE 2 | POC export flux at different depth interfaces estimated from $^{210}\text{Po}/^{210}\text{Pb}$ disequilibria.

Station	Depth interface	F _{PPo}	POC/P ²¹⁰ Po	F _{POC}
	(m)	(Bq⋅m ⁻² d ⁻¹)	(mmol Bq ⁻¹)	(mmol m ⁻² d ⁻¹)
P7-05	25	0.14 ± 0.02	6.8 ± 1.4	1.0 ± 0.3
	200	0.63 ± 0.17	6.3 ± 2.0	4.0 ± 1.6
	1,000	0.97 ± 0.83	5.5 ± 1.1	5.3 ± 4.7
	3,493	1.19 ± 1.62	7.1 ± 1.4	8.4 ± 11.6
P7-07	25	0.14 ± 0.02	5.6 ± 1.3	0.8 ± 0.2
	200	0.74 ± 0.12	5.6 ± 1.3	4.2 ± 1.2
	1,000	2.32 ± 0.72	8.7 ± 2.4	20.2 ± 8.4
	3,200	3.19 ± 1.18	5.6 ± 1.2	17.9 ± 7.6
P7-09	25	0.13 ± 0.02	11.9 ± 3.8	1.5 ± 0.5
	200	0.60 ± 0.11	3.0 ± 0.6	1.8 ± 0.5
	1,000	0.95 ± 0.62	5.0 ± 1.2	4.8 ± 3.3
P7-14	25	0.08 ± 0.02	nda	nd
	100	0.29 ± 0.03	21.8 ± 13.2	6.4 ± 3.9
	303	0.71 ± 0.05	44.7 ± 50.2	31.9 ± 35.9
P7-15	25	-0.02 ± 0.02	5.4 ± 0.8	-0.1 ± 0.1
	100	0.30 ± 0.03	16.0 ± 11.8	4.8 ± 3.6
	425	0.87 ± 0.11	9.6 ± 3.4	8.4 ± 3.2

^and means no data.

POC export flux in the euphotic zone (Murray et al., 1989, 2005; Shimmield et al., 1995; Kim and Church, 2001; Friedrich and Rutgers van der Loeff, 2002; Stewart et al., 2007; Buesseler et al., 2008; Wei et al., 2011). However, the different half-lives of ²³⁴Th and ²¹⁰Po and their different affinities for particulate matter $(Po >> Pb \approx Th >> Ra > U)$ may cause differences in the POC export fluxes estimated by the two methods (Kharkar et al., 1976; Murray et al., 2005). It is of great significance to compare the POC export flux obtained by the two methods. Since most of the reports based on ²³⁴Th/²³⁸U disequilibria are concerned with the POC export at a depth of 100 m, here we focus on comparing the POC export at this interface. Based on ²¹⁰Po/²¹⁰Pb disequilibria, POC export flux at 100 m depth interface around Prydz Bay is estimated to be in a range of 4.2–9.0 mmol $m^{-2} d^{-1}$, with an average of 6.9 mmol m^{-2} d⁻¹, which is comparable to most previously reported values in Antarctica seas, whether based on ²³⁴Th/²³⁸U or ²¹⁰Po/²¹⁰Pb disequilibria (**Table 3**). Yang et al. (2009) estimated by ²¹⁰Po/²¹⁰Pb disequilibria that the POC export flux at a site (64.00 °S, 73.00 °E) outside Prydz Bay is 2.3 mmol $m^{-2} d^{-1}$, which is slightly lower than this study. Note that its site is located in the northern part of our sites and is more affected by the ACC upwelling, its lower POC export is reasonable. In contrast, the reported POC export fluxes at the 100 m interface in Prydz Bay via 234 Th/238U disequilibria $(17.1-117.2 \text{ mmol m}^{-2} \text{ d}^{-1}, \text{ avg. 63.5 mmol m}^{-2} \text{ d}^{-1}, \text{ He et al.},$ 2007) were 9.2 times of our estimates on average, even though the sampling season and locations are close. We found that the POC concentration in the He et al. (2007) (avg. 17.5 μ mol/dm³) was on average 8.3 times that of this study (avg. 2.1 μ mol/dm³), which resulted in a significant increase in their POC export flux. Considering that biological activities in the Antarctic seas often show large interannual and temporal variability, it cannot be ruled out that the changes in phytoplankton growth have led to such large differences.

The difference in the POC export flux obtained between the ²³⁴Th method and the ²¹⁰Po method has also been found in the study of the equatorial Pacific Ocean (Murray et al., 1989),

TABLE 3 The POC export flux at a depth of 100 m in	he Southern Ocean estimated from	n ²³⁴ Th/ ²³⁸ U to ²¹⁰ Po/ ²¹	¹⁰ Pb diseguilibria
--	----------------------------------	---	--------------------------------

Method	Sampling month	Region	F_{POC} (mmol m ⁻² d ⁻¹)	References
²³⁴ Th	December	Bellingshausen Sea	21	Shimmield et al., 1995
²³⁴ Th ^a	October–December	Polar Front (49 °S)	13–26	Rutgers van der Loeff et al., 1997
		Southern ACC (57 °S)	3–5	
		Marginal Ice Zone (51 °S)	11–20	
²³⁴ Th	October-November	Ross Sea	0–4	Cochran et al., 2000
	January–February		7–91	
	March-May		2–22	
²³⁴ Th	October-March	Southern Ocean ^b	5–45	Buesseler et al., 2001
²³⁴ Th	October-November	Polar Front	14.1-84.1	Friedrich and Rutgers van der Loeff, 2002
		Southern ACC	17.4–38.7	
²³⁴ Th	January–February	Prydz Bay	29.5–262.4	He et al., 2007
²¹⁰ Po	December	Bellingshausen Sea	0.03-2.2	Shimmield et al., 1995
²¹⁰ Po	October-November	Southern ACC	14.1-84.1	Friedrich and Rutgers van der Loeff, 2002
²¹⁰ Po	February	Prydz Bay	2.3	Yang et al., 2009
²¹⁰ Po	January-February	Prydz Bay	4.2-9.0	This study

^aA latitudinal transect along 6 °W.

^bA latitudinal transect along 170 °W.

the Mediterranean Sea (Stewart et al., 2007), the Bellingshausen Sea (Shimmield et al., 1995), and the Antarctic Circumpolar Current (Friedrich and Rutgers van der Loeff, 2002; Verdeny et al., 2009). The difference in the time scale and biogeochemical behavior between ²³⁴Th and ²¹⁰Po is proposed to be responsible for this. The half-life of ²³⁴Th is relatively short (24.1 days), it records the export of particulate matter in a short time scale, including occasional blooms in productive sea areas, while ²¹⁰Po has a longer half-life (138.4 days), and its record is more likely to be smoothed and homogenized. In addition, in the one-dimensional steady-state model for calculating the export flux of nuclides, the physical processes such as advection, upwelling, and horizontal transport are ignored. This may have different effects

on different nuclides, leading to deviations in the calculated export flux. For example, the upwelling brings deep water with a high activity concentration of ²¹⁰Po or ²³⁴Th to the surface, which underestimates the POC export flux. The underestimation of the ²¹⁰Po method may be greater because ²¹⁰Po has a longer half-life. The difference in biogeochemical behavior between ²³⁴Th and ²¹⁰Po is another possibility (Fisher et al., 1983; Murray et al., 2005). In the Bellingshausen Sea, the POC export flux estimated by the ²³⁴Th method is higher than that by the ²¹⁰Po method, which is attributed to the fact that ²³⁴Th tends to be adsorbed by lithogenic materials (Shimmield et al., 1995). Friedrich and Rutgers van der Loeff (2002) found that in the ACC, ²³⁴Th is easier to bind with biogenic silica, while ²¹⁰Po has a stronger

affinity for POC. Murray et al. (2005) pointed out that ²¹⁰Po can be absorbed into cells by organisms, while ²³⁴Th is only adsorbed on particle surface, thereby ²¹⁰Po may be more conducive to tracking the export of POC. As the phytoplankton around Prydz Bay grows rapidly in summer (Liu et al., 2002; Qiu et al., 2004; Cai et al., 2005), ²¹⁰Po/²¹⁰Pb disequilibria is an ideal method to estimate the POC export flux in this case.

Although the values of POC export flux estimated by the two methods are different, their spatial distributions are similar around Prydz Bay, showing that the POC export flux at the 100 m interface in the shelf is higher than those in the slope and open ocean (**Figure 7**). It is worth noting that He et al. (2007) observed an extremely high POC export flux at 50 m in the slope, which was attributed to the rising CDW transporting nutrients to the surface, stimulating the primary productivity and the removal of ²³⁴Th. However, judging from our ²¹⁰Po/²¹⁰Pb results, the upwelling of CDW may lead to an underestimation of ²¹⁰Po export flux due to the impact of organic matter remineralization. In addition, we noticed that the POC/P²¹⁰Po ratios in the slope are closer to those in the shelf. Therefore, horizontal transport across the shelf may partially compensate for the underestimated ²¹⁰Po export's impact on the POC export flux.

CONCLUSION

In this study, dissolved and particulate ²¹⁰Po and ²¹⁰Pb were measured in the entire water column around Prydz Bay. Our results show that the D²¹⁰Po and D²¹⁰Pb in the shelf are lower than those in the slope and the open ocean, indicating an enhanced particle scavenging in the shelf. Among the various water masses, the CDW has the highest activity concentrations of T²¹⁰Pb and T²¹⁰Po, reflecting the effects of ²¹⁰Pb decay and POM remineralization. Our results show that there is a good positive correlation between the solid-liquid ratio of ²¹⁰Po and POC, while ²¹⁰Pb does not. This indicates that particulate organic matter regulates the biogeochemical cycle of ²¹⁰Po, and ²¹⁰Po/²¹⁰Pb disequilibria is a reliable method for estimating the POC export flux around Prydz Bay. The estimated POC export flux based on ²¹⁰Po/²¹⁰Pb disequilibria ranges from 0.8 to 31.9 mmol m⁻² d⁻¹. The higher POC

REFERENCES

- Arrigo, K. R., Van Dijken, G. L., and Bushinsky, S. (2008). Primary production in the Southern Ocean, 1997–2006. J. Geophys. Res. 113:C08004. doi: 10.1029/ 2007JC004551
- Bacon, M. P., Spencer, D. W., and Brewer, P. G. (1976). ²¹⁰Pb/²²⁶Ra and ²¹⁰Po/²¹⁰Pb disequilibria in seawater and suspended particulate matter. *Earth Planet. Sci. Lett.* 32, 277–296. doi: 10.1016/0012-821X(76)90068-6
- Buesseler, K. O., Bacon, M. P., Cochran, J. K., and Livingston, H. D. (1992). Carbon and nitrogen export during the JGOFS North Atlantic Bloom experiment estimated from ²³⁴Th: ²³⁸U disequilibria. *Deep Sea Res. I* 39, 1115–1137. doi: 10.1016/0198-0149(92)90060-7
- Buesseler, K. O., Ball, L., Andrews, J., Cochran, J. K., Hirschberg, D. J., Bacon, M. P., et al. (2001). Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W. *Deep Sea Res. II* 48, 4275–4297. doi: 10.1016/S0967-0645(01)00089-3

export at the 100 m interface in the slope is attributed to the horizontal transport across the shelf. Although the difference in biogeochemical behavior and time scale between ²¹⁰Po and ²³⁴Th may affect the estimated POC export flux, the spatial variation of POC export flux estimated by these two methods is consistent, which shows that ²¹⁰Po/²¹⁰Pb disequilibria is a reliable method for POC export.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

HH and MC designed the study and wrote the manuscript. XL sampled onboard and measured ²¹⁰Po. CR determined POC. RJ sampled and revised the manuscript. YQ and MZ contributed the experimental tools. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by Impact and Response of Antarctic Seas to Climate Change (IRASCC 01-01-02C and 02-01-01) and funded by Ministry of Natural Resources of the People's Republic of China and Chinese Arctic and Antarctic Administration, National Natural Science Foundation of China (41721005), and Program funded by China Ocean Mineral Resources R&D Association (No. DY135-13-E2-03).

ACKNOWLEDGMENTS

As with most endeavors, we owe thank to a number of people: Jianming Pan and Zhengbing Han for providing nutrient data, the captains and crews of R/V *XUELONG* for their assistance in sampling, and colleagues in the SCSEMC for supporting efforts.

- Buesseler, K. O., Benitez-Nelson, C. R., Moran, S. B., Burd, A., Charette, M., Cochran, J. K., et al. (2006). An assessment of particulate organic carbon to thorium-234 ratios in the ocean and their impact on the application of ²³⁴Th as a POC flux proxy. *Mar. Chem.* 100, 213–233. doi: 10.1016/j.marchem.2005. 10.013
- Buesseler, K. O., Lamborg, C., Cai, P., Escoube, R., Johnson, R., Pike, S., et al. (2008). Particle fluxes associated with mesoscale eddies in the Sargasso Sea. *Deep Sea Res. II* 55, 1426–1444. doi: 10.1016/j.dsr2.2008.02.007
- Cai, Y. M., Ning, X. R., Zhu, G. H., and Shi, J. X. (2005). Size fractionated biomass and productivity of phytoplankton and new production in the Prydz Bay and the adjacent Indian sector of the Southern Ocean during the austral summer of 1998/1999. Acta Oceanol. Sin. 27, 135–147. doi: 10.1029/2002JC001507
- Chen, M., Ma, Q., Guo, L. D., Qiu, Y. S., Li, Y. P., and Yang, W. F. (2012). Importance of lateral transport processes to ²¹⁰Pb budget in the eastern Chukchi Sea during summer 2003. *Deep Sea Res. II* 81, 53–62. doi: 10.1016/j. dsr2.2012.03.011

- Cherrier, J., Burnett, W. C., and LaRock, P. A. (1995). Uptake of polonium and sulfur by bacteria. Geomicrobiol. J. 13, 103-115. doi: 10.1080/01490459509378009
- Chung, Y. (1981). ²¹⁰Pb and ²²⁶Ra distributions in the circumpolar waters. Earth Planet. Sci. Lett. 55, 205-216. doi: 10.1016/0012-821X(81)90100-X
- Chung, Y., and Applequist, M. D. (1980). 226 Ra and 210 Pb in the Weddell Sea. Earth Planet. Sci. Lett. 55, 401-410. doi: 10.1016/0012-821X(80)90082-5
- Chung, Y., and Finkel, R. (1988). ²¹⁰Po in the western Indian Ocean: distributions, disequilibria and partitioning between the dissolved and particulate phases. Earth Planet. Sci. Lett. 88, 232-240. doi: 10.1016/0012-821X(88)90080-5
- Chung, Y., and Wu, T. (2005). Large ²¹⁰Po deficiency in the northern South China Sea. Cont. Shelf Res. 25, 1209-1224. doi: 10.1016/j.csr.2004.12.016
- Cochran, J. K. (1992). "The oceanic chemistry of the uranium- and thorium-series nuclides," in Uranium-Series Disequilibrium-Applications to Earth, Marine, and Environmental Sciences, 2nd Edn, eds M. Ivanovich and R. S. Harmon (Oxford: Clarendon Press), 334-395.
- Cochran, J. K., Bacon, M. P., Krishnaswami, S., and Turekian, K. K. (1983). ²¹⁰Po and ²¹⁰Pb distributions in the central and eastern Indian Ocean. Earth Planet. Sci. Lett. 65, 433-452. doi: 10.1016/0012-821X(83)90180-2
- Cochran, J. K., Buesseler, K. O., Bacon, M. P., Wang, H. W., Hirschberg, D. J., Ball, L., et al. (2000). Short-lived thorium isotopes (234Th, 228Th) as indicators of POC export and particle cycling in the Ross Sea, Southern Ocean. Deep Sea Res. II 47, 3451-3490. doi: 10.1016/S0967-0645(00)00075-8
- Fisher, N. S., Burns, K. A., and Heyraud, M. (1983). Accumulation and cellular distribution of ²⁴¹ Am, ²¹⁰ Po and ²¹⁰ Pb in two marine algae. Mar. Ecol. Prog. Ser. 11, 233-237. doi: 10.3354/meps011233
- Friedrich, J., and Rutgers van der Loeff, M. M. (2002). A two-tracer (210 Po-234 Th) approach to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep Sea Res. I 49, 101-120. doi: 10.1016/ \$0967-0637(01)00045-0
- Grasshoff, K., Kremling, K., and Ehrhardt, M. (1983). Methods of Seawater Analysis. Weinheim: Verlag Chemie.
- Han, Z. B., Hu, C. Y., Xue, B., Pan, J. M., and Zhang, H. S. (2011). Particulate organic carbon in the surface water of South Ocean and Prydz Bay during the austral summer of 2007/2008 and 2008/2009. Chin. J. Polar Res. 23, 11-18. doi: 10.1007/s11589-011-0776-4
- Hanfland, C. (2002). Radium-226 and Radium-228 in the Atlantic sector of the Southern Ocean. Polar Mar. Res. 431:135.
- He, J. H., Ma, H., Chen, L. Q., Xiang, B. Q., Zeng, X. Z., Yin, M. D., et al. (2007). The estimates of the particulate organic carbon export fluxes in Prydz Bay, Southern Ocean using ²³⁴Th/²³⁸U disequilibria. Acta Oceanol. Sin. 29, 69-76. doi: 10.3321/j.issn:0253-4193.2007.04.008
- Hong, G. H., Baskaran, M., Church, T. M., and Conte, M. (2013). Scavenging, cycling and removal fluxes of ²¹⁰Po and ²¹⁰Pb at the Bermuda time-series study site. Deep Sea Res. II 93, 108-118. doi: 10.1016/j.dsr2.2013.01.005
- Kaste, J. M., and Baskaran, M. (2012). "Meteoric 7Be and 10Be as process tracers in the environment," in Handbook of Environmental Isotope Geochemistry, ed. M. Baskaran (Berlin: Springer-Verlag), doi: 10.1007/978-3-642-10637-8_5
- Kawakami, H., Yang, Y., and Kusakabe, M. (2008). Distributions of ²¹⁰Po and ²¹⁰Pb radioactivity in the intermediate layer of the northwestern North Pacific. J. Radioanal. Nucl. Chem. 279, 561-566. doi: 10.1007/s10967-008-7324-2
- Kharkar, D. P., Thomson, J., Turekian, K. K., and Forster, W. O. (1976). Uranium and thorium decay series nuclides in plankton from the Caribbean. Limnol. Oceanogr. 21, 294-299. doi: 10.4319/lo.1976.21.2.0294
- Kim, G., and Church, T. M. (2001). Seasonal biogeochemical fluxes of ²³⁴Th and ²¹⁰Po in the upper Sargasso Sea: influence from atmospheric iron deposition. Global Biogeochem. Cycles. 15, 651-661. doi: 10.1029/2000GB001313
- Ku, T. L., and Lin, M. C. (1976). 226 Ra distribution in the Antarctic Ocean. Earth Planet. Sci. Lett. 32, 236-248. doi: 10.1016/0012-821X(76)90064-9
- Liu, Z. L., Cai, Y. M., Chen, Z. Y., Liu, C. G., Zhu, G. H., and Wang, X. G. (2002). The distribution feature of chlorophyll a and primary productivity in Prydz Bay and its north sea area during the austral summer of 1998/1999. Chin. J. Polar Res. 14, 12-21.
- Ma, Q. (2006). Particle Transport and Export in the North Pacific and the Western Arctic Ocean as Revealed by Radionuclides. Ph.D thesis. Xiamen: Xiamen University.
- Masqué, P., Sanchez-Cabeza, J. A., Bruach, J. M., Palacios, E., and Canals, M. (2002). Balance and residence times of ²¹⁰Pb and ²¹⁰Po in surface waters of the

northwestern Mediterranean Sea. Cont. Shelf Res. 22, 2127-2146. doi: 10.1016/ S0278-4343(02)00074-2

- Moore, R. M., and Smith, J. N. (1986). Disequilibria between ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po in the Arctic Ocean and the implications for chemical modification of the Pacific water inflow. Earth Planet. Sci. Lett. 77, 285-292. doi: 10.1016/0012-821X(86) 90140-8
- Moran, S. B., Charette, M. A., Hoff, J. A., Edwards, R. L., and Landing, W. M. (1997). Distribution of ²³⁰Th in the Labrador Sea and its relation to ventilation. Earth Planet. Sci. Lett. 150, 151-160. doi: 10.1016/S0012-821X(97)0 0081-2
- Murray, J. W., Downs, J. N., Strom, S., Wei, C. L., and Jannasch, H. W. (1989). Nutrient assimilation, export production and ²³⁴Th scavenging in the eastern equatorial Pacific. Deep Sea Res. A 36, 1471-1489. doi: 10.1016/0198-0149(89) 90052-6
- Murray, J. W., Paul, B., Dunne, J. P., and Thomas, C. (2005). ²³⁴Th, ²¹⁰Pb, ²¹⁰Po and stable Pb in the central equatorial Pacific: tracers for particle cycling. Deep Sea Res. I 52, 2109-2139. doi: 10.1016/j.dsr.2005.06.016
- Niedermiller, J., and Baskaran, M. (2019). Comparison of the scavenging intensity, remineralization and residence time of ²¹⁰Po and ²¹⁰Pb at key zones (biotic, sediment-water and hydrothermal) along the East Pacific GEOTRACES transect. J. Environ. Radioactiv. 198, 165-188. doi: 10.1016/j.jenvrad.2018. 12 016
- Nozaki, Y., Ikuta, N., and Yashima, M. (1990). Unusually large ²¹⁰Po deficiencies relative to ²¹⁰Pb in the Kuroshio Current of the East China and Philippine Seas. J. Geophys. Res. 95, 5321-5329. doi: 10.1029/JC095iC04p05321
- Nozaki, Y., Thomson, J., and Turekian, K. K. (1976). The distribution of ²¹⁰Pb and ²¹⁰Po in the surface waters of the Pacific Ocean. Earth Planet. Sci. Lett. 32, 304-312. doi: 10.1016/0012-821X(76)90070-4
- Nozaki, Y., Zhang, J., and Takeda, A. (1997). ²¹⁰Pb and ²¹⁰Po in the equatorial Pacific and the Bering Sea: the effects of biological productivity and boundary scavenging. Deep Sea Res. II 44, 2203-2220. doi: 10.1016/S0967-0645(97) 00024-6
- Pu, S. Z., and Dong, Z. Q. (2003). Progress in physical oceanographic studies of Prydz Bay and its adjacent oceanic area. Chin. J. Polar Res. 15, 53-64. doi: 10.1016/S0955-2219(02)00073-0
- Pu, S. Z., Dong, Z. Q., Hu, X. M., Yu, F., and Zhao, X. (2002a). Variability of the continental water boundary near the Prydz Bay. Mar. Sci. Bull. 4, 1-10.
- Pu, S. Z., Dong, Z. Q., Yu, W. D., Lu, Y., and Xiang, B. Q. (2007). Features and spatial distributions of circumpolar deep water in the Southern Indian Ocean and effect of Antarctic Circumpolar Current. Adv. Mar. Sci. 25, 1-8. doi: 10.3969/j.issn.1671-6647.2007.01.001
- Pu, S. Z., Hu, X. M., Dong, Z. Q., Yu, F., and Chen, X. R. (2002b). Features of circumpolar deep water, Antarctic Bottom Water and their movement near the Prydz Bay. Acta Oceanol. Sin. 24, 1-8. doi: 10.3321/j.issn:0253-4193.2002. 03.001
- Qiu, Y. S., Huang, Y. P., Liu, G. S., and Chen, M. (2004). Spatial and temporal variations of primary productivity in Prydz Bay and its Adjacent Sea Area, Antarctica. J. Xiamen Uni. (Nat. Sci.) 43, 676-681.
- Rama, Koide, M., and Goldberg, E. D. (1961). Lead-210 in natural waters. Science 134, 98-99. doi: 10.1126/science.134.3472.98
- Ren, C. Y. (2015). Stable Carbon and Nitrogen Isotopic Composition in Particulate organic Matter in the Prydz Bay and the Antarctic Peninsula. PhD thesis. Xiamen: Xiamen University.
- Rigaud, S., Stewart, G., Baskaran, M., Marsan, D., and Church, T. (2014). ²¹⁰Po and ²¹⁰Pb distribution, dissolved-particulate exchange rates, and particulate export along the North Atlantic US GEOTRACES GA03 section. Deep Sea Res. II 116, 60-78. doi: 10.1016/j.dsr2.2014.11.003
- Rutgers van der Loeff, M. M., Friedrich, J., and Bathmann, U. V. (1997). Carbon export during the Spring Bloom at the Antarctic Polar Front, determined with the natural tracer ²³⁴Th. Deep Sea Res. II 44, 457-478. doi: 10.1016/S0967-0645(96)00067-7
- Shimmield, G. B., Ritchie, G. D., and Fileman, T. W. (1995). The impact of marginal ice zone processes on the distribution of ²¹⁰Pb, ²¹⁰Po and ²³⁴Th and implications for new production in the Bellingshausen Sea, Antarctica. Deep Sea Res. II 42, 1313-1335. doi: 10.1016/0967-0645(95)00071-W
- Smith, N. R., Dong, Z. Q., Kerry, K. R., and Wright, S. (1984). Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Res. I 31, 1121-1147. doi: 10.1016/0198-0149(84)90016-5

- Smoak, J. M., Demaster, D. J., Kuehl, S. A., Pope, R. H., and Mckee, B. A. (1996). The behavior of particle-reactive tracers in a high turbidity environment: ²³⁴Th and ²¹⁰Pb on the Amazon continental shelf. *Geochim. Cosmochim. Acta.* 60, 2123–2137. doi: 10.1016/0016-7037(96)00092-0
- Somayajulu, B. L. K., and Craig, H. (1976). Particulate and soluble ²¹⁰Pb activities in the deep sea. *Earth Planet. Sci. Lett.* 32, 268–276. doi: 10.1016/0012-821X(76) 90067-4
- Stewart, G., Cochran, J. K., Miquel, J. C., Masqué, P., Szlosek, J., Rodriguez y Baena, A. M., et al. (2007). Comparing POC export from ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb disequilibria with estimates from sediment traps in the northwest Mediterranean. *Deep Sea Res. I* 54, 1549–1570. doi: 10.1016/j.dsr.2007. 06.005
- Stewart, G. M., and Fisher, N. S. (2003). Experimental studies on the accumulation of polonium-210 by marine phytoplankton. *Limnol. Oceanogr.* 48, 1193–1201. doi: 10.4319/lo.2003.48.3.1193
- Stewart, G. M., Fowler, S. W., Teyssié, J. L., Cotret, O., Cochran, J. K., and Fisher, N. S. (2005). Contrasting transfer of polonium-210 and lead-210 across three trophic levels in marine plankton. *Mar. Ecol. Prog. Ser.* 290, 27–33. doi: 10.3354/ meps290027
- Sun, W. P., Hu, C. Y., Han, Z. B., Pan, J. M., and Weng, H. X. (2012). Distribution of nutrients and Chl a in Prydz Bay during the austral summer of 2011. *Chin. J. Polar Res.* 24, 178–186. doi: 10.3724/SP.J.1084.2012.00178
- Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tibrook, B., et al. (2002). Global sea-air CO₂ flux based on climatological surface ocean pCO₂, and seasonal biological and temperature effects. *Deep Sea Res. II* 49, 1601–1622.
- Tang, Y., Lemaitre, N., Castrillejo, M., Roca-Martí, M., and Masqué, P. (2019). The export flux of particulate organic carbon derived from ²¹⁰Po/²¹⁰Pb disequilibria along the North Atlantic GEOTRACES GA01 transect: GEOVIDE cruise. *Biogeosciences* 16, 309–327. doi: 10.5194/bg-16-309-2019
- Thomson, J., and Turekian, K. K. (1976). ²¹⁰Po and ²¹⁰Pb distributions in ocean water profiles from the Eastern South Pacific. *Earth Planet. Sci. Lett.* 32, 297–303. doi: 10.1016/0012-821X(76)90069-8
- Turekian, K. K., and Nozaki, Y. (1980). "²¹⁰Po and ²¹⁰Pb in the Eastern South Pacific: the role of upwelling on their distributions in the water column," in

Isotope Marine Chemistry, eds E. D. Goldberg, Y. Horibe, and K. Saruhashi (Tokyo: Uchida Rokakuho Publ Co), 157–164.

- Verdeny, E., Masqué, P., Garcia-Orellana, J., Hanfland, C., Cochran, J. K., and Stewart, G. M. (2009). POC export from ocean surface waters by means of ²³⁴Th/²³⁸U and ²¹⁰Po/²¹⁰Pb disequilibria: a review of the use of two radiotracer pairs. *Deep Sea Res. II* 56, 1502–1518. doi: 10.1016/j.dsr2.2008.12.018
- Wei, C. L., Lin, S. Y., Sheu, D. D. D., Chou, W. C., Yi, M. C., Santschi, P. H., et al. (2011). Particle-reactive radionuclides (²³⁴Th, ²¹⁰Pb, ²¹⁰Po) as tracers for the estimation of export production in the South China Sea. *Biogeosciences* 8, 3793–3808. doi: 10.5194/bg-8-3793-2011
- Yang, W. F. (2005). Marine Biogeochemistry of ²¹⁰Po and ²¹⁰Pb and Their Implications Regarding the Cycling and Export of Particles. PhD thesis. Xiamen: Xiamen University.
- Yang, W. F., Huang, Y. P., Chen, M., Qiu, Y. S., Peng, A. G., and Zhang, L. (2009). Export and remineralization of POM in the Southern Ocean and the South China Sea estimated from ²¹⁰Po/²¹⁰Pb disequilibria. *Chin. Sci. Bull.* 54, 2118–2123. doi: 10.1007/s11434-009-0043-4
- Yang, W. F., Huang, Y. P., Chen, M., Zhang, L., Li, H. B., Liu, G. S., et al. (2006). Disequilibria between ²¹⁰Po and ²¹⁰Pb in surface waters of the southern South China Sea and their implications. *Sci. China Ser. D.* 49, 103–112. doi: 10.1007/ s11430-004-5233-y
- Yu, P. S., Hu, C. Y., Zhu, G. H., Pan, J. M., and Zhang, H. S. (2011). Characteristics of particulate organic carbon in the Prydz Bay of Antarctica. *Acta Oceanol. Sin.* 33, 181–186.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Hu, Liu, Ren, Jia, Qiu, Zheng and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.