
fmars-08-699055 September 7, 2021 Time: 13:31 # 1

ORIGINAL RESEARCH
published: 10 September 2021

doi: 10.3389/fmars.2021.699055

Edited by:
Konstantinos Topouzelis,

University of the Aegean, Greece

Reviewed by:
Elvira Armenio,

ARPA Puglia, Italy
Apostolos Papakonstantinou,

University of the Aegean, Greece

*Correspondence:
Avi Putri Pertiwi

avi.pertiwi@dlr.de

Specialty section:
This article was submitted to

Coastal Ocean Processes,
a section of the journal

Frontiers in Marine Science

Received: 22 April 2021
Accepted: 09 August 2021

Published: 10 September 2021

Citation:
Pertiwi AP, Lee CB and

Traganos D (2021) Cloud-Native
Coastal Turbid Zone Detection Using

Multi-Temporal Sentinel-2 Data on
Google Earth Engine.

Front. Mar. Sci. 8:699055.
doi: 10.3389/fmars.2021.699055

Cloud-Native Coastal Turbid Zone
Detection Using Multi-Temporal
Sentinel-2 Data on Google Earth
Engine
Avi Putri Pertiwi* , Chengfa Benjamin Lee and Dimosthenis Traganos

German Aerospace Centre, Remote Sensing Technology Institute, Berlin, Germany

The lack of clarity in turbid coastal waters interferes with light attenuation and hinders
remotely sensed studies in aquatic ecology such as benthic habitat mapping and
bathymetry estimation. Although turbid water column corrections can be applied
on regions with seasonal turbidity by performing multi-temporal analysis, different
approaches are needed in regions where the water is constantly turbid or only
exhibits subtle turbidity variations through time. This study aims to detect these turbid
zones (TZs) in optically shallow coastal waters using multi-temporal Sentinel-2 surface
reflectance datasets to improve the aforementioned studies. The herein framework can
be paired with other aquatic ecology remote sensing studies to establish the clear water
focus area and can also be used by decision makers to identify rehabilitation areas. We
selected the coastlines of Guinea-Bissau, Tunisia, and west Madagascar as our case
studies which feature wide-ranging turbidity intensities across tropical, subtropical, and
Mediterranean waters and applied three different methods for the TZ detection: Otsu’s
method for bimodal thresholding, linear spectral unmixing, and Random Forest (RF)
machine learning method on Google Earth Engine as an end-to-end process. Based
on our experiments, the RF method yields good results in all study regions with overall
accuracies ranging between 88 and 96% and F1-scores between 0.87 and 0.96. TZ
detection is highly site-specific due to the inter-class variability that is mainly affected by
the nature of the suspended materials and the environmental characteristics of the site.

Keywords: turbidity, Sentinel-2, multi-temporal data, Google Earth Engine, machine learning, spectral unmixing

INTRODUCTION

Studies in coastal waters using remotely sensed datasets have been progressing significantly due
to the exponential growth in data availability and coverages as well as the resulting wealth of
spatial and temporal resolutions. Image archives of a multitude of optical satellite platforms have
been utilized to map turbidity and the concentration of suspended particulate matter (SPM)
in coastal waters. Turbidity is indicated by the transparency reduction due to the presence of
undissolved matter in a solution, usually expressed in nephelometric turbidity units (NTU),
formazin nephelometric units (FNU), or formazin attenuation units (FAU) (EU, 2008). The
undissolved matter can include both inorganic particles—e.g., silt, clay, and mineral and organic
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particles—e.g., as bacteria, viruses, algae, and detritus (Stramski
et al., 2004). Water turbidity is a good proxy of water quality
which is important for studies of coastal ecosystems. Various
studies of remotely sensed turbidity expressed turbidity in the
aforementioned units or estimated the SPM in ML−3.

The key to retrieving turbidity in optically shallow coastal
waters is by incorporating spectral bands sensitive to suspended
materials as well as having a limited depth penetration to avoid
interferences from the seabed (Caballero et al., 2019). The optical
satellite bands in the visible and near-infrared (NIR) wavelength
(400–900 nm) have been commonly utilized to estimate turbidity
and SPM in coastal waters. A number of remotely sensed ocean
color turbidity studies have improved the estimation of turbidity
with optical satellite data: seasonal variation of the turbidity
and SPM ratio using green and red bands (Jafar-Sidik et al.,
2017); turbidity mapping using red, red edge, and NIR bands on
separate RGB spectra classes (Vanhellemont, 2019); using neural
network to estimate turbidity directly from Rayleigh-corrected
reflectance using green, blue, and red bands, in which the
relationship between tidal height and turbidity was also assessed
(Feng et al., 2020); and calibrating a semi-empirical single band
turbidity algorithm using red and NIR bands (Dogliotti et al.,
2015). Other studies have explored various approaches of SPM
concentration estimation using optical satellite data: deriving
a mathematical model for empirical linear transformation of
the satellite water-leaving reflectance (Rhown) values to SPM
values in bands between 520 and 885 nm (Nechad et al., 2010);
assessing the SPM dynamics using NIR bands (Robert et al.,
2017); calculating the Secchi disk depth and SPM with the
red edge band (Sebastiá-Frasquet et al., 2019); and retrieving
colored dissolved organic matter (CDOM) concentration using
a regularized linear regression, Random Forest (RF), kernel ridge
regression, and Gaussian process regression on blue to NIR bands
(Ruescas et al., 2017). These studies incorporated in situ data
or modeled turbidity to calibrate and validate the result. Turbid
water decreases the water clarity which impedes the remotely
sensed identification of benthic substrates (Vela et al., 2008;
Caballero et al., 2019; Nahirnick et al., 2019) or satellite-derived
bathymetry (SDB) (Caballero and Stumpf, 2020) due to the
interference in light attenuation. Turbid water corrections can be
applied on areas with seasonal turbidity by using multi-temporal
data (Caballero and Stumpf, 2020). Unfortunately, this approach
cannot be used in turbid zones (TZ) where the water column
is constantly turbid or only shows subtle changes in turbidity
variation (Feng et al., 2020) throughout the image acquisition.
Under these circumstances, different approaches are needed, e.g.,
performing in situ data acquisition (Vela et al., 2008).

In this study, we thematically mapped the TZs in the shallow
coastal waters of Guinea-Bissau, Tunisia, and west coastlines
of Madagascar using three different methods: Otsu’s method
(OM) for bimodal thresholding (Otsu, 1979), spectral unmixing
(SU) (Uhrin and Townsend, 2016; Ettritch et al., 2018), and
RF supervised classification (Breiman, 2001). Our aim is to
evaluate the accuracy and the scalability of these three approaches
to detect TZs in tropical, Mediterranean, and subtropical
climate regions in Africa on the Google Earth Engine (GEE)
cloud platform. Previous studies have demonstrated turbidity

estimation using optical satellite image data that showed high
ranges of turbidity intensities in these coastal zones: deriving
turbidity using broad red band in Guinea-Bissau TZ ranging
from approximately 5 to 9 TNU, whereas the clear water (CW)
pixels were defined as having SPM concentration values of below
3 g/m3 (Vanhellemont et al., 2013); deriving turbidity and SPM
using red band in Gulf of Gabes, Tunisia, ranging from 0.2
to 9.9 NTU and 0.7 to 30 mg/l, respectively (Katlane et al.,
2010); and monitoring the evolution of the sediment transport
of Bombetoka Bay, Madagascar using multi-temporal optical
satellite data (Raharimahefa and Kusky, 2010).

MATERIALS AND METHODS

Study Sites
In this study, we selected Guinea-Bissau, Tunisia, and the
west coastline of Madagascar (Figure 1) based on previous
assessments where we had observed high turbidity in the satellite
image scenes. The Guinea-Bissau coastline is dominated by
mangrove habitats and muddy waters due to the circulation of
marine mud and fluvial sediment loads (Anthony, 2006). Lagoons
and gulfs along the Tunisian coastline have experienced severe
environmental issues due to eutrophication from natural and
anthropogenic factors (Ærtebjerg et al., 2001; Katlane et al., 2010;
Abidi et al., 2018). A study in Bombetoka Bay, Madagascar
(Raharimahefa and Kusky, 2010), pointed out that the transport
of lateritic sediments from the Madagascar highlands kept on
increasing for the past 30 years, leaving the rivers in red hues,
accumulated in the delta lobes as well as in the estuaries.

Data
Sentinel-2 Level-2A Surface Reflectance Archive
This study utilized the image collection of Sentinel-2 L2A
(S2 L2A) surface reflectance data available on GEE. S2 L2A
images acquired between March 28, 2017 and December 3, 2020
were retrieved and synthesized. Heavily turbid water is visually
distinctive through the synthesized S2 L2A RGB composite as
it tends to look murky and muddy in red to brown hues as
opposed to the turquoise-blue CW (subsets of the synthesized
RGB composites presented in Figures 4A–C).

Training and Validation Data
The training and validation datasets for the TZ and CW classes
were manually digitized by observing both the synthesized S2
L2A composites and the high-resolution satellite base map on
the GEE cloud platform. The datasets consist of 160 training
data points and 40 validation data points in each study region—
to satisfy the split proportion of 80:20, labeled to TZ and CW
classes (Figure 1).

Figure 2 shows the spectral profiles of Rhown values sampled
to the labeled training data points in the three study regions.
CW class is represented by lower spectral values—representing
the dark blue water, whereas TZ class is represented by
higher spectral values—representing the lighter colors of the
suspended sediments.
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FIGURE 1 | Map of the study regions; Guinea-Bissau, Tunisia, and the west coastline of Madagascar with annotated training and validation data points for CW and
TZ (basemap by CartoDB).

Methods
With the capabilities of the cloud platform GEE, it is possible
to process country-scale raster images in a timely manner by
offloading the heavy computational tasks to the server. We
employed GEE for our end-to-end workflow which includes:
image pre-processing, TZ and CW separation [using OM
(Otsu, 1979), SU (Uhrin and Townsend, 2016; Ettritch et al.,
2018), and RF (Breiman, 2001)], and accuracy assessments.
Figure 3 shows a flowchart that systematically illustrate these
methodological steps.

Image Pre-processing
The cloud-native S2 L2A image pre-processing workflow
(Traganos et al., 2018) was adapted with slight modifications.
GEE S2 L2A image collections retrieved and filtered by date
and area were masked from cloud cover with a cloud pixel
percentage filter of less than 25% as well as using the S2
L2A cloud mask (QA60) band and Scene Classification (SCL)
map. Furthermore, multi-temporal data synthesis to reduce the
image collections to their 20th percentile pixels was applied to
reduce interferences with higher reflectance values in coastal
waters such as sun glint, turbidity, waves, haze, and clouds.

The land pixels were omitted using OM (Otsu, 1979) based on
the modified normalized difference water index (MNDWI) (Xu,
2006), resulting in synthesized Rhown composites. Table 1 shows
the specifications of S2 L2A scenes used to build the syntheses
and the corresponding investigated areas.

Otsu’s Method for Bimodal Thresholding
Otsu’s method (Otsu, 1979) was applied on SPM-transformed
S2 L2A blue (SPM B2), green (SPM B3), red (SPM B4), red
edge bands (SPM B5) (Nechad et al., 2010), normalized red-blue
band difference [ND(B4/B2)] (Li et al., 2020), and normalized
red-green band difference [ND(B4/B3)]. This method works for
single-band images with bimodal pixel distribution by defining
a minimum threshold value that separates two classes. These
minimum threshold values were then readjusted in order to fit
the intended borders between the TZ and CW classes, resulting
in a binary turbidity map.

Linear Spectral Unmixing
Google Earth Engine’s ee.Image.unmix is a linear SU function
which assumes that each class is represented by unique spectral
profiles which can be summed up in a linear model to obtain the
final spectral values of the raster image. The presence of each class
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FIGURE 2 | Sentinel-2 L2A water-leaving reflectance (Rhown) spectral profile of the TZ and CW training data in the three study regions: (A) Guinea-Bissau,
(B) Tunisia, and (C) Madagascar.

FIGURE 3 | The flowchart of the applied methodology.

TABLE 1 | The specifications of image collection scenes used to build the image syntheses and the investigated areas in km2.

Study site Image collection Number of scenes Investigated area (km2)

Guinea-Bissau March 28, 2017–December 3, 2020 1,447 824

Tunisia March 28, 2017–December 3, 2020 5,754 465

Madagascar March 28, 2017–December 3, 2020 11,435 1,284

Total 18,636 2,573

was assumed based on their required composition in the model.
The labeled training data points were used to train the model
together with the sampled reflectance values. Using this method,

we experimented with five combinations of S2 L2A visible band
composites: (1) blue, green, red, and red edge (B2-B3-B4-B5);
(2) blue, green, and red (B2-B3-B4); (3) blue and green (B2-B3);
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TABLE 2 | Accuracy scores of the best turbid zone (TZ) and clear water (CW) class separation using Otsu’s method (OM), spectral unmixing (SU), and Random Forest (RF), reported in producer’s accuracies (PA), user’s
accuracies (UA), F1-scores, overall accuracies (OA) in Guinea-Bissau, Tunisia, and west coastline of Madagascar study regions.

Guinea-Bissau Tunisia Madagascar

Method and
band input

Th PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

OM SPM B3 4.8 93 95 95 93 0.94 94 100 93 93 100 0.96 96 23 90 69 54 0.51 56

OM SPM B4 8.12 45 100 100 65 0.70 73 60 100 100 71 0.79 80 15 100 100 54 0.48 58

OM SPM B5 10 50 100 100 67 0.73 75 83 93 92 84 0.87 88 30 100 100 59 0.60 65

OM ND(B4/B2) 0.1 68 98 96 75 0.82 83 63 88 83 70 0.75 75 98 100 100 98 0.99 99

OM ND(B4/B3) 0.01* 70 100 100 77 0.85 85 53 88 81 65 0.69 70 90 100 100 91 0.95 95

SU 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

B2-B3-B4-B5 10 100 63 73 100 0.81 81 100 93 93 100 0.96 96 100 90 91 100 0.95 95

20 100 63 73 100 0.81 81 100 93 93 100 0.96 96 100 90 91 100 0.95 95

30 100 85 87 100 0.92 93 100 93 93 100 0.96 96 98 90 91 97 0.94 94

40 100 98 98 100 0.99 99 100 93 93 100 0.96 96 95 90 90 95 0.92 93

50 75 100 100 80 0.87 88 98 93 93 97 0.95 95 88 90 90 88 0.89 89

60 63 100 100 73 0.81 81 83 93 92 84 0.87 88 83 90 89 84 0.86 86

70 45 100 100 65 0.70 73 75 98 97 80 0.86 86 68 90 87 73 0.78 79

80 35 100 100 61 0.64 68 60 100 100 71 0.79 80 58 90 85 68 0.73 74

90 13 100 100 53 0.46 56 48 100 100 66 0.72 74 48 95 90 64 0.70 71

100 0 100 0 50 0.33 50 20 100 100 56 0.52 60 5 100 100 51 0.39 53

SU 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

B2-B3-B4 10 100 63 73 100 0.81 81 100 93 93 100 0.96 96 100 90 91 100 0.95 95

20 100 68 75 100 0.83 84 100 93 93 100 0.96 96 100 90 91 100 0.95 95

30 100 93 93 100 0.96 96 100 93 93 100 0.96 96 98 90 91 97 0.94 94

40 100 98 98 100 0.99 99 100 93 93 100 0.96 96 98 90 91 97 0.94 94

50 83 100 100 85 0.91 91 100 93 93 100 0.96 96 90 90 90 90 0.90 90

60 65 100 100 74 0.82 83 95 93 93 95 0.94 94 88 90 90 88 0.89 89

70 45 100 100 65 0.70 73 85 95 94 86 0.90 90 73 90 88 77 0.81 81

80 40 100 100 63 0.67 70 70 100 100 77 0.85 85 53 90 84 65 0.70 71

90 15 100 100 54 0.48 58 50 100 100 67 0.73 75 43 90 81 61 0.64 66

100 10 100 100 53 0.44 55 0 100 0 50 0.33 50 33 90 76 57 0.58 61

SU 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

B2-B3 10 100 63 73 100 0.81 81 100 85 87 100 0.92 93 100 83 85 100 0.91 91

20 100 63 73 100 0.81 81 100 93 93 100 0.96 96 98 88 89 97 0.92 93

30 98 83 85 97 0.90 90 100 93 93 100 0.96 96 93 88 88 92 0.90 90

40 90 98 97 91 0.94 94 100 93 93 100 0.96 96 90 90 90 90 0.90 90

50 83 100 100 85 0.91 91 100 93 93 100 0.96 96 90 90 90 90 0.90 90
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TABLE 2 | Continued

Guinea-Bissau Tunisia Madagascar

Method and
band input

Th PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

PA TZ
(%)

PA
CW
(%)

UA TZ
(%)

UA
CW
(%)

F1-
score

OA
(%)

60 65 100 100 74 0.82 83 100 93 93 100 0.96 96 85 90 89 86 0.87 88

70 43 100 100 63 0.69 71 98 93 93 97 0.95 95 75 90 88 78 0.82 83

80 38 100 100 62 0.65 69 80 95 94 83 0.87 88 58 90 85 68 0.73 74

90 25 100 100 57 0.56 63 73 100 100 78 0.86 86 45 90 82 62 0.66 68

100 13 100 100 53 0.46 56 0 100 0 50 0.33 50 30 90 75 56 0.56 60

SU 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

B3-B4 10 100 63 73 100 0.81 81 100 93 93 100 0.96 96 100 90 91 100 0.95 95

20 100 68 75 100 0.83 84 100 93 93 100 0.96 96 100 90 91 100 0.95 95

30 100 88 89 100 0.94 94 100 93 93 100 0.96 96 98 90 91 97 0.94 94

40 100 98 98 100 0.99 99 100 93 93 100 0.96 96 98 90 91 97 0.94 94

50 80 100 100 83 0.90 90 100 93 93 100 0.96 96 90 90 90 90 0.90 90

60 65 100 100 74 0.82 83 95 93 93 95 0.94 94 88 90 90 88 0.89 89

70 45 100 100 65 0.70 73 80 98 97 83 0.89 89 73 90 88 77 0.81 81

80 45 100 100 65 0.70 73 63 100 100 73 0.81 81 53 90 84 65 0.70 71

90 15 100 100 54 0.48 58 50 100 100 67 0.73 75 40 90 80 60 0.63 65

100 0 100 0 50 0.33 50 40 100 100 63 0.67 70 30 90 75 56 0.56 60

SU 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

B2-B4 10 100 63 73 100 0.81 81 100 93 93 100 0.96 96 100 90 91 100 0.95 95

20 100 68 75 100 0.83 84 100 93 93 100 0.96 96 100 90 91 100 0.95 95

30 100 90 91 100 0.95 95 100 93 93 100 0.96 96 100 90 91 100 0.95 95

40 100 98 98 100 0.99 99 100 93 93 100 0.96 96 98 90 91 97 0.94 94

50 83 100 100 85 0.91 91 98 93 93 97 0.95 95 90 90 90 90 0.90 90

60 65 100 100 74 0.82 83 90 93 92 90 0.91 91 85 90 89 86 0.87 88

70 45 100 100 65 0.70 73 80 95 94 83 0.87 88 73 90 88 77 0.81 81

80 45 100 100 65 0.70 73 58 98 96 70 0.77 78 58 95 92 69 0.75 76

90 15 100 100 54 0.48 58 50 100 100 67 0.73 75 38 100 100 62 0.65 69

100 10 100 100 53 0.44 55 0 100 0 50 0.33 50 33 100 100 60 0.62 66

RF** 0 100 0 50 0 0.33 50 100 0 50 0 0.33 50 100 0 50 0 0.33 50

10 100 90 91 100 0.95 95 100 93 93 100 0.96 96 100 90 91 100 0.95 95

20 100 90 91 100 0.95 95 100 93 93 100 0.96 96 100 90 91 100 0.95 95

30 100 95 95 100 0.97 98 100 93 93 100 0.96 96 100 100 100 100 1.00 100

40 98 98 98 98 0.98 98 100 93 93 100 0.96 96 100 100 100 100 1.00 100

50 95 100 100 95 0.97 98 100 98 98 100 0.99 99 98 100 100 98 0.99 99

60 93 100 100 93 0.96 96 100 98 98 100 0.99 99 98 100 100 98 0.99 99
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(4) green and red (B3-B4); and (5) blue and red (B2-B4). We
applied the sum-to-one and non-negative constraints to the
output in order to normalize the output range between 0 and 1,
multiplied the resulting unmixed layers with 100 to get the value
range of 0–100, and applied thresholds with the interval of 10 to
produce multiple binary turbidity maps.

Random Forest Supervised Classification
The GEE smileRandomForest function with class probability
layer output was selected to separate the TZ and CW classes.
RF differentiates the class of the pixel using multiple decision
trees (we selected 50 trees) with a voting system trained with
the labeled training data and sampled reflectance values. Prior
to the classification, the variable importance—which returns the
sum of Gini impurity index decrease over the trees—was assessed
in order to select the most relevant bands for the classification.
The classification output is a raster image of class probability
ranging between 0 and 100, to which we applied thresholds with
the interval of 10, resulting in multiple binary turbidity maps.

Accuracy Assessments
The labeled validation datasets were used to sample all resulting
binary turbidity maps and then validated. For each validation,
we quantified the accuracies with error matrices and reported
the results in overall accuracies (OA), producer’s accuracies (PA),
user’s accuracies (UA), and F1-scores. The OA, PA, UA, and F1-
scores were used as a base to determine the selected maps for
further visual inspections. Visual inspections were conducted in
order to check the map accuracies quantitatively as compared to
the TZ seen on the synthesized S2 L2A RGB composites and the
GEE high-resolution satellite base map.

RESULTS

Table 2 shows the accuracy scores of all the attempts with
the three methods and varying thresholds and band input
combination. Methods and the inputs that yield the best results
are highlighted in green. Based on the iterative experiments
with OM and visual interpretation, ND(B4/B2) shows the
best sensitivity to the intensity of turbidity, with the acquired
minimum threshold value of 0.01. The OA of Guinea-Bissau
and Madagascar turbidity maps are satisfactory at 85 and 95%,
respectively, and the F1-scores, 0.85 and 0.95, are showing a
relatively good balance between the UA and PA. However, the
OA and F1-score of Tunisia turbidity map—70% and 0.69—are
relatively lower because the acquired threshold value was too low
for this region specifically. The threshold values were adjusted
by visually observing ND(B4/B2) gradient and the synthesized S2
L2A RGB composites, resulting in the final separating thresholds
of 0.02, 0.05, and 0.01 for the Guinea-Bissau, Tunisia, and
Madagascar study regions, respectively. Figures 4D–F show the
TZ (in red hashed red polygons) detected by OM with ND(B4/B2)
input from the three study regions. As seen in Figure 4E, the TZ
in Tunisia was overpredicted on the darker pixels which might
represent vegetated substrates such as seagrass meadows or algae,
which was not an isolated case with this band input, as it occurred
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with separation using other band inputs [TSM B2, TSM B3, TSM
B4, TSM B5, and ND(B4/B3)]. Nevertheless, this method shows
good results in the Guinea-Bissau and Madagascar study regions.

By using the SU method, the highest OA and F1-scores were
achieved by applying the threshold value of 40 to the unmixed
layers with the input of B2-B3-B4-B5 composite. However,
further visual inspection of the resulting binary map reveals that
this threshold value leads to overprediction of TZ. The unmixed
layer threshold values of 50, 70, and 50 were then selected
for the Guinea-Bissau, Tunisia, and Madagascar study regions,
respectively, as they separated the two classes more precisely. OA
and F1-scores of these three sites were close, ranging between 86
and 89% and 0.86 and 0.89 (Table 2), respectively. Figures 4G–
I show the TZ detected by SU method. Unlike the results of
OM, the dark pixels in Tunisia are not misclassified (Figure 4H).
However, TZ in Guinea-Bissau is slightly underpredicted: shallow
waters with moderate intensities of turbidity on the northwest
were classified as such (Figure 4G)—which is apparent in the
accuracy scores, where TZ features a PA lower than the UA, and
also lower than both the PA and UA of CW.

Figure 5 presents the RF band variable importance scores
of each study region. In the Guinea-Bissau study region, the
red band holds the highest score in variable importance, 11.93,
followed by the blue, 9.44, and the green band, 7.54. In Tunisia,
the best variable importance score falls to green band, 14.31,
followed by red, 12.14, and blue band, 10.61. As opposed to
those regions, the importance scores of the red and the first two
red edge bands in Madagascar are much higher compared to
the others, 9.19, 9.67, and 11.16, whereas the scores of the blue
and green bands are relatively low, 2.86 and 2.13, respectively.
Therefore, we narrowed the RF band input to blue, green, and red
band (B2-B3-B4) in the Guinea-Bissau and Tunisia study regions,
and we narrowed down the RF band input to the red band and
the first two red edge bands (B4-B5-B6) in the Madagascar study
region. Figures 4J–L show the TZ detected by RF classification.
RF results in more balanced prediction accuracies compared to
the previous two methods: moderately turbid regions in Guinea-
Bissau are masked out (Figure 4J), dark pixels in Tunisia are
intact (Figure 4K), and TZ in the estuary is not overly predicted
(Figure 4L). This is also reflected in the F1-scores: 0.87, 0.90, and
0.96 for Guinea-Bissau, Tunisia, and Madagascar study regions.
The OA of the RF turbidity map are also relatively high: 88, 90,
and 96% for the three sites (Table 2).

DISCUSSION

In this study, we experimented on TZ detection leveraging
OM (Otsu, 1979), SU (Uhrin and Townsend, 2016; Ettritch
et al., 2018), and RF machine learning method (Breiman,
2001) with multi-temporal satellite data synthesis (Traganos
et al., 2018) two-class separation—TZ and CW—across tropical,
Mediterranean, and subtropical coastline-to-national scales in
Africa. TZ detected with these three methods coincide with
the highly turbid regions pointed out by previous studies along
the Guinea-Bissau coastline (Vanhellemont et al., 2013), Gulf
of Gabes in Tunisia (Katlane et al., 2010), and Bombetoka

Bay in Madagascar (Raharimahefa and Kusky, 2010). Based
on our experiments, no one method is fit-for-all due to the
inter-class variability that is caused mainly by the suspended
sediment compositions and the benthic substrate variability
which determine the dominant colors. Additionally, the multi-
temporal data synthesis method, the degree of salinity, the seabed
geomorphology, the climatic conditions of the study regions, and
human activities all affect the spectral histograms of these two
classes as well.

RF supervised classification method works relatively well
for all study regions with varying scores of spectral band
importance and class probability threshold values. The variable
importance graph (Figure 5) shows that red and red edge bands
are more relevant to distinguish these two classes across the
west Madagascar coastline as opposed to the Guinea-Bissau and
Tunisia study regions where the blue, green, and red bands score
higher. This might be linked to the main composition of the
suspended sediments along the west coastline of Madagascar
which originate from laterites—iron and aluminum-rich rocks
severely transformed by tropical weathering—on the Madagascar
highlands, leaving the color of the sediment dominantly in red
hues (Raharimahefa and Kusky, 2010). On the other hand, the
suspended sediments along the Guinea-Bissau coastline mostly
consist of marine mud and fluvial sediments (Anthony, 2006),
while the suspended sediments in Tunisian lagoons and gulfs are
mainly accumulated from nutrients and byproducts of human
activities (Ærtebjerg et al., 2001; Katlane et al., 2010; Abidi et al.,
2018). The dominant color of the suspended sediments varies
from light brown to brown along the Guinea-Bissau coastline
and spanning from yellow to green and brown hues along the
Tunisian coastline. This shows that the spectral band sensitivity
to turbidity depends on the source of the suspended materials
which does not only affect their colors but also their sub-
pixel compositions.

In order to better understand the spectral profiles of the
TZ and CW classes in these three regions, we analyzed the
distributions of the pixel values representing each class. Figure 2
illustrates the distribution of the synthesized S2 L2A Rhown
spectral profiles spanning from the visual bands—blue, green,
red, red edge—to the NIR band based on the labeled training
data. These spectral profiles show that although the TZ and CW
classes have distinctive pixel values on most of the plotted bands,
they share overlapping pixel values. However, these spectral
profiles should be interpreted with care as they are only the
statistical representatives and not the actual spectral profile
of a pixel in either class. Through these spectral profiles, we
also observe that in the Madagascar study region, the spectral
variation between TZ and CW classes on the red and the red
edge bands is much higher than their spectral variation in the
other two regions. As the TZ class is represented by higher
reflectance values, CW regions with shallow sandy seabed—
commonly represented by higher reflectance values as well—
were often misclassified as TZs. Additionally, turbidity acts as a
secondary property in the form of sediments that are suspended
throughout the water column. Therefore, turbid water may exist
over various benthic substrates and depths. As such, improving
the TZ extraction requires disentanglement of the confounding

Frontiers in Marine Science | www.frontiersin.org 8 September 2021 | Volume 8 | Article 699055

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-699055 September 7, 2021 Time: 13:31 # 9

Pertiwi et al. Cloud-Based Sentinel-2 Turbidity Detection

FIGURE 4 | Subsets of the synthesized S2 L2A RGB composite of (A) Guinea-Bissau; (B) Tunisia; and (C) Madagascar study regions; (D–F) RGB composites with
turbid zone detected by Otsu’s separation method on ND(B4/B2) raster; (G–I) RGB composites with turbid zone detected by spectral unmixing on B2–B5
composite; (J–L) RGB composites with turbid zone detected by Random Forest classification (base map by CartoDB).

values from the primary properties (e.g., benthic substrates)
as well as calibration of turbidity in order to better identify
the turbid areas.

Turbid zone acquired through the OM with ND(B4/B2)
and ND(B4/B3) were overpredicted because the normalized

difference images fail to indicate other possible classes such
as vegetated substrate which might be represented by similar
spectral values. This is especially apparent in Tunisia where the
dark vegetated benthic pixels are classified as TZ, which can
be attributed to a source of the therein turbidity: nutrients. On
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FIGURE 5 | Random Forest Sentinel-2 L2A band variable importance for TZ and CW classification.

the other hand, although the accuracy scores with the TSM
B3, B4, and B5 were seemingly sufficient, we observed pixel
misclassification in many regions as well. Although red and
red edge bands by themselves are sensitive to turbidity, the
information from a single band is apparently not enough to
detect TZ composed by varying spectral profiles in one image.
Compared to the results using OM which is reliant on a single
band or a single normalized band difference input, SU and
RF are more accurate—both quantitatively and qualitatively—as
multiple spectral band inputs are supported, with an additional
cost-benefit of requiring less manual tuning on the threshold
values. With these two methods, dark pixels that might represent
vegetated substrates were not falsely detected as TZ. However,
these two methods were unable to resolve the overprediction
of shallow sandy seabed. Furthermore, by using SU, we observe
overprediction of TZ over water with low intensity of turbidity
and underprediction over light-colored water with moderate
intensity of turbidity in Guinea-Bissau and Madagascar study
regions. By using RF, the feature—in this case, the spectral
band—importance can be easily assessed, making it easier
to narrow down the most relevant bands to distinguish the
classes. With RF, overprediction occurred mostly in slightly
turbid water regions.

Other factors that might affect the accuracy are the multi-
temporal synthesis, salinity, seabed geomorphology, climatic
conditions of the study regions, and human activities. Here, we
performed multi-temporal synthesis using the 20th percentile
of over 25 billion pixels of more than 18,600 cloud-filtered
S2 L2A scenes which results in synthetic images with of
darkest pixels across the selected satellite time series. As
a result, seasonal turbid regions might have been omitted

from the final syntheses. With this synthesis method, we
did not acquire the ephemeral TZ, but detected only TZ
which are consistent throughout the time period of the
satellite syntheses (Table 1). Seasonal TZ detection can be
performed by selecting monthly to seasonal time windows
to conduct the in contrast to the 3-year time windows
here. However, as a tradeoff, other optical interferences like
clouds, especially in tropical and subtropical regions, might
impede the smaller time windows and syntheses. Seawater
salinity also affects the light attenuation in these three
regions. Mediterranean seas are relatively of higher salinity
than those of the Guinea-Bissau and Madagascar coastlines,
affecting the spectral profiles and the color variations. Moreover,
the seabed geomorphology and climatic conditions such as
the sun zenith angles, the intensity of the sunlight, the
temperature, persistent cloud covers, and the rainfall intensity
also affect the spectral profiles of the final syntheses. Human
activities in the proximity of the study regions contribute
to the main constituents of the suspended sediments in the
rivers, river estuaries, and coastlines. An improved tuning
of these factors can be performed by using ground-truth
data, through which the training and validation data can be
further calibrated.

CONCLUSION

The aim of this study is to evaluate the accuracy and the
scalability of three different methods to detect non-seasonal TZs
of wide-ranging magnitude and composition. We experimented
with OM, linear SU, and RF to detect the TZ in three study
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sites in tropical (Guinea-Bissau), Mediterranean (Tunisia), and
subtropical (Madagascar) climate regions. TZs detected by
these three methods coincide with the primarily turbid regions
pointed out by previous studies. TZ detection is highly site-
specific, depending highly on the compositions of the suspended
materials and the variability of the benthic substrate. The
compositions of the suspended materials depend heavily on
the land surface geomorphology, human activities, and the
soil nutrients. Additionally, at a lesser extent, the multi-
temporal synthesis, seawater salinity, seabed geomorphology,
the climatic conditions, and human activities are also affecting
the dominant colors of the sediments and the whole aquatic
ecosystem. Based on our experiments with these three methods,
adjustments in input and threshold values were still needed
prior to and after the classification. RF produced the best
result both quantitatively and qualitatively, with automated
assessments of the spectral band importance, with the F1-
scores of 0.87, 0.90, and 0.96 and the OA of 88, 90, and
96% for Guinea-Bissau, Tunisia, and Madagascar study regions,
respectively. The result of this study can support relevant coastal
aquatic remote sensing studies, such as benthic habitat and
SDB mapping, where one can mask out the TZ and focus
the mapping on the CW regions where the light attenuation
is not disturbed. Accurate TZ detection can better inform

coastal aquatic ecology and decision making on suitable areas to
rehabilitate the water quality.
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