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Observations of real-time ocean surface currents allow one to search and rescue
at ocean disaster sites and investigate the surface transport and fate of ocean
contaminants. Although real-time surface currents have been mapped by high-
frequency (HF) radar, shipboard instruments, satellite altimetry, and surface drifters,
geostationary satellites have proved their capability in satisfying both basin-scale
coverage and high spatiotemporal resolutions not offered by other observational
platforms. In this paper, we suggest a strategy for the production of operational surface
currents using geostationary satellite data, the particle image velocimetry (PIV) method,
and deep learning-based evaluation. We used the model scalar field and its gradient
to calculate the corresponding surface current via PIV, and we estimated the error
between the true velocity field and calculated velocity field by the combined magnitude
and relevance index (CMRI) error. We used the model datasets to train a convolutional
neural network, which can be used to filter out bad vectors in the surface current
produced by arbitrary model scalar fields. We also applied the pretrained network to
the surface current generated from real-time Himawari-8 skin sea surface temperature
(SST) data. The results showed that the deep learning network successfully filtered out
bad vectors in a surface current when it was applied to model SST and created stronger
dynamic features when the network was applied to Himawari SST. This strategy can
help to provide a quality flag in satellite data to inform data users about the reliability of
PIV-derived surface currents.

Keywords: surface current, geostationary satellite, convolutional neural network, sea surface temperature,
particle tracking velocimetry, submesoscale circulations

INTRODUCTION

Ocean surface currents are the most complex flows in the ocean, as non-homogeneous, non-
isotropic, and non-stationary processes dominate the flows with temporal variability from hours
to years. They are also the most interactive flows, as biological, geochemical, and physical processes
coexist to create the unique phenomena between the ocean interior and the atmosphere. Although
many observational platforms have been successfully introduced to monitor the complex surface
currents, there is still a need to observe the broader surface area in more detail and even
more frequently.

The information of surface currents is crucial in practical and scientific applications. Accurate
real-time estimation of surface currents is required for conducting search and rescue activities at
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maritime accidents and predicting the transport of contaminants
in the ocean surface layer (Walker et al., 2005; Breivik and
Allen, 2008; Rypina et al., 2014). Maritime accidents such as the
Malaysian Airlines Flight 370 airplane crash in 2014 (Corrado
et al., 2017) and the Stellar Daisy bulk carrier sinking in 2017
(Dalziel and Pelot, 2019) demonstrate the importance of surface
currents, which can be used to backtrack paths to the initial
accident locations (Dohan, 2017). Most ocean contaminants [e.g.,
crude oil (Laxague et al., 2018), radioactive substances (Buesseler
et al., 2012), microplastic (Iwasaki et al., 2017), sargassum (Kwon
et al., 2019), river plume of nutrient-rich agricultural runoff
(Sklar and Browder, 1998)] are initially distributed in the surface
layer and persist in the upper layer for a while. Consequently, the
surface information provides a crucial clue to estimate the fate of
the contaminants. The derivation of surface currents also enables
scientific estimations of the spectral behavior of kinetic energy,
local dispersion, biological productivity, energy transfer, frontal
behavior, and air–sea interaction, which elucidate the roles they
play in weather and climate (Boccaletti et al., 2007; LaCasce, 2008;
Molemaker et al., 2010; Mahadevan, 2016; Choi et al., 2019).

A major breakthrough in generating surface currents was
facilitated by the advancement of satellite remote sensing. Surface
currents have been measured by not only in situ observations
at moorings and ships (Rocha et al., 2016) but also remote
observations such as floats, drifters, and high-frequency (HF)
radar (Bracco et al., 2003; Lumpkin and Pazos, 2007; Rypina
et al., 2014; Berta et al., 2015; Yoo et al., 2018). Starting
from the geophysical-scale velocity field calculated by Leese
et al. (1971), the products of a polar-orbiting satellite have
been successfully exploited to generate surface currents (Emery
et al., 1986; Zavialov et al., 2002; Osadchiev and Sedakov,
2019). The high-resolution surface roughness measurements
from SAR have also shown great potential to create surface
currents unaffected by cloud block (Dohan and Maximenko,
2010; Yanovsky et al., 2020).

Over the past decade, a geostationary satellite has been used
to generate submesoscale currents using ocean color products
(Yang et al., 2014; Kim et al., 2016; Sun et al., 2016; Park
et al., 2018; Choi et al., 2019). Its unique “stationary” feature
alleviates the chronic issue of low temporal resolution of the
polar-orbiting satellite. Thanks to the capability of high temporal
measurements, the Geostationary Ocean Color Imager has been
used to not only generate high-resolution surface currents
but also study submesoscale turbulence in the surface layer
(Choi et al., 2019).

Although the geostationary satellite is capable of resolving
submesoscale currents and the demand for data on surface
currents has increased, no geostationary satellite-based
operational surface currents have been used in practice.
The AVISO global geostrophic currents have been operated
by using data from satellite altimetry, and data-assimilated
products such as the Ocean Surface Currents Analyses Real-time
(OSCAR) are also being operated to produce mixed-layer surface
currents combining AVISO geostrophic currents and Ekman
and thermal wind components. However, those platforms have
coarse resolutions (∼1 day, 25 km) unsuitable for narrowing the
location of a surface target whose movement is affected by wind,

tides, and small-scale circulations and understanding vertical
transport associated with submesoscale phenomena.

In this paper, considering the geostationary satellite as an
operational surface currents platform, we propose a preliminary
strategy for generating the satellite-based surface currents by
applying a deep learning convolutional neural network (CNN).
Deep learning examines the relationship between input data and
output data to prepare rules for estimating or evaluating output
associated with new input data. As a subset of deep learning,
CNNs are commonly applied in pattern recognition and image
processing, and have recently become a powerful tool to identify
and classify patterns in Earth science data (Ham et al., 2019;
Huntingford et al., 2019; Chattopadhyay et al., 2020; Lou et al.,
2021). In our application, we trained a neural network using
a model dataset, and the network was used to determine the
goodness of fit of each vector in the surface currents to provide a
quality flag along with the surface currents. We apply this strategy
to Himawari-8 skin SST data to demonstrate the generation of
surface currents using satellite data.

MATERIALS AND METHODS

Surface Current Generation
In this paper, we suggest a strategy that can be used to produce
operational surface currents using data from a geostationary
satellite. One possible data source is the SST from the Advanced
Himawari Imager (AHI) onboard Himawari-8. The SST is
estimated from the infrared (IR) bands centered at 3.9, 8.6, 10.4,
and 11.2 µm whose spatial resolution in the raw data is 2 km.
Validation performed against over 630,000 pairs with drifting
and moored buoy data showed a root-mean-square difference of
0.59 K and bias of −0.16 K (Kurihara et al., 2016). The negative
bias is due to the difference between the skin temperature
that satellites sense and the bulk temperature that the buoy
measures, and the bias of −0.16 K is consistent with the bias
level reported for an advanced very-high-resolution radiometer
(Donlon et al., 2002).

To generate a velocity field near the ocean surface from the
geostationary data, we use the PIVlab Matlab code (Thielicke,
2014; Thielicke and Stamhuis, 2014; Thielicke and Sonntag, 2021)
that implements the Particle Image Velocimetry (PIV) technique
(Wereley and Meinhart, 2010; Xu and Chen, 2013). It is a
standard experimental strategy that generates an instantaneous
velocity field in the laboratory, where the particles (herein,
equivalent to scalar tracers SST or Chla) in the cross section
of the water channel (herein, satellite coverage) are illuminated
by a laser sheet (herein, the sun), and the particle movement
is recorded by a camera (herein, a satellite sensor). The PIV
algorithm generates a cross-correlation plane by taking the
FFT between two same-sized interrogation windows obtained
individually from two successive images, and an optimized
displacement vector is determined in a way that maximizes image
matching. By virtue of its ability to derive a wide range of
velocity scales, the PIV has been applied to analyzing micro-
fluid (Santiago et al., 1998), river discharge (Legleiter et al., 2017),
supersonic flows (Avallone et al., 2016), the atmospheric flow
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of Jupiter (Tokumaru and Dimotakis, 1995), and the flow rate
of the Deepwater Horizon oil spill (McNutt et al., 2012). Our
application aimed to generate a basin-scale velocity field across
the satellite coverage by applying the PIV technique to two
satellite images, followed by evaluating the velocity field by the
deep learning CNN.

Evaluation of Surface Current by
Convolutional Neural Network
The CNN architecture consists of multiple layers (input, output,
and other hidden layers). In this calculation, the hidden
layers include multiple convolutional layers: max pooling layer,
activating layers (batch normalization, PreLu, and softmax
layers), fully connected layer, and classification layer. The batch
normalization, Parametric rectified Linear unit (PreLu), and max
pooling layers are used after each convolutional layer. The final
layer, the classification layer, uses the probabilities returned by
the softmax activation function for each input to assign the input
to one of the mutually exclusive classes and calculate the loss.
After defining the network structure, the dataset is trained with
the specific options: stochastic gradient descent with momentum
(SGDM), constant learning rate of 0.01, and maximum number
of epochs of 60. The convolutional layers are established with a
padding and stride of 1, the size of filter at 11, and the number
of filters at 128. The images are categorized into two classes (i.e.,
good and bad, each with 80,000 images), and the deep learning
CNN1 is used to train and validate the velocity data.

In this paper, the evaluation of the surface current consists of
three steps: preparing ground truth data (model SST field and
corresponding model velocity field), training a neural network
using the ground truth dataset, and applying the network to
model SST and Himawari-8 SST to demonstrate a quality flag in
the satellite data.

First, to train the deep learning network, we prepared the
ground truth data from the ocean model and synthesized it
by image translation. We used model SST from the Ocean
Predictability Experiment for Marine environment (OPEM)
based on the GFDL Modular Ocean Model (MOM) version
5 with a horizontal resolution of 1/24◦ (Kim et al., 2015).
We interpolated the raw data to a 2-km grid to match the
resolution of Himawari-8 SST in the area of the East/Japan Sea
(Supplementary Figure 1). We used the model SST snapshots
(300× 300) at 12 different times through the 9-month simulation
to train the deep learning network. We translated each image
of model SST (I1) by a spatially constant velocity field (Vtrue)
to create a new deformed image (I2). Then, the PIV algorithm
processed the two images (I1 and I2) to generate a calculated
velocity field (Vcal). Three calculated velocity fields (SST-R, SST-
G, SST-G2) were considered: SST-R is surface currents from
the raw SST (SST-R), SST-G is surface current from the spatial
gradient of raw SST, and SST-G2 is surface current from the
double gradient of raw SST. By comparing Vtrue and Vcal, an
error between model (true) and PIV (calculated) velocity fields
was estimated to evaluate the performance of the PIV algorithm

1MATLAB and Deep Learning Toolbox Release 2021b, The MathWorks, Inc.,
Natick, MA.

at every vector. To ensure the deep learning network could cope
with various cases, instead of using the model velocity field
corresponding to the model SST field, we used various velocity
fields that differed in amplitude (0.05, 0.1, 0.2, 0.4, and 0.7 m/s)
and direction (0 to 330◦ at intervals of 30◦), which provided 60
times more data (approximately 1.8 million vectors) for training
than using the model velocity fields. To validate the network
trained using 80% of the vectors, we estimated the classification
accuracy (validation accuracy) using the remaining 20% vectors.

We implemented three types of error (weighted relevance
index (WRI), weighted magnitude index (WMI), and combined
magnitude and relevance index (CMRI) used in Willman et al.,
2020) to quantify the deviation of Vcal from Vtrue. Because typical
indices such as the relevance index (RI) and the magnitude
similarity index (MSI) are known to show problematic high
sensitivity to low-amplitude vectors, we used these errors (WRI,
WMI, and CMRI) to overcome the issue (Willman et al., 2020).
The WRI is a metric of alignment evaluation, the WMI is a
metric of magnitude evaluation, and the CMRI considers both
evaluations of alignment and direction (Willman et al., 2020).
These errors are defined as
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where x and y are two-dimensional coordinates, U1
and U2 are the magnitude of the true and calculated
velocity vectors, RI is [=(−→u1 ·

−→u2 )/(
∣∣−→u1

∣∣ ∣∣−→u2
∣∣)], and MSI is

( = 1− (
∣∣−→u1 −

−→u2
∣∣)/(∣∣−→u1

∣∣+ ∣∣−→u2
∣∣), where u1 and u2 are the true

and calculated velocity vectors, and median is defined as the
statistical median of all components.

Second, we trained a neural network that was fed SST image
data. The difference in the two images represents the temporal
and spatial changes in a concise way, so the image difference
(I2−1) between I1 and I2 was chosen as the input to the network.
Since it is trained such that the errors are paired up with
the characteristics of I2−1, the deep learning network allows
the estimation of the goodness of fit of a PIV-derived vector
associated with an arbitrary I2−1.

Third, we evaluated the PIV-derived velocity field by applying
the pretrained network to the arbitrary model SST field that
accompanied the velocity field, from which the performance of
the trained network was examined. The network was also applied
to SST observation from the geostationary satellite (Himawari-8
SST) to demonstrate the generation of surface currents with deep
learning-selected vectors. Due to the lack of ground truth data to
train the network for evaluating satellite-based surface currents,
the offline pretrained neural network should be prepared using
synthetic data, as we did in this paper.
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FIGURE 1 | Example comparison of true velocity field Vtrue in a 10 km-grid (red arrows) and calculated velocity field Vcal in a 10 km-grid (white arrows) for raw SST
(A) and SST gradient (B). Contours in panels (C,D) show CMRI errors corresponding to panels (A,B), respectively.

RESULTS

Surface Current by Particle Image
Velocimetry and Sea Surface
Temperature
Figure 1 compares the idealized uniform velocity field and
the calculated velocity field. Despite the uniform velocity field
used to deform or translate the scalar field, the deviations in
amplitude and alignment were not homogeneous, and they
showed a bias linked to the spatial structures of the scalar field.
For the SST-R, it tends to show poor agreement between Vtrue
(red arrows) and Vcal (white arrows) over the region where
the direction of Vtrue is aligned with the direction of the SST
front [e.g., (x, y) = (−200, −50) and (150, 100)], while good
agreement can be found in the region where the direction of
Vtrue is perpendicular to the direction of the SST front [e.g.,
(x, y) = (150, −50)]. The spatially different errors can be more
clearly identified when SST-G is considered. It is observed that the
directions of the SST gradient and the CMRI error are strongly
correlated when they are parallel or perpendicular to each other:
a high CMRI for the parallel direction and a low CMRI for
the perpendicular direction. For the other angles, the direction
of Vcal is coherently biased toward the normal direction of the

front, as demonstrated at (x, y) = (30,−120) and (120, 0) in
Figure 1B.

The relevant spatially varying error inevitably occurs by the
PIV method that applies to the smooth scalar image that does not
include noise-like particles whose scale is much smaller than the
interrogation window. Even the scale of features revealed in the
scalar field we have was comparable to the grid size of the velocity
field. In this case, the PIV algorithm misleadingly interprets the
movement of a unidirectional front to the direction normal to
the front. The smaller the features in the scalar field, the lower
the CMRI error. This can be simply examined by adding a noise
before performing PIV: if a random noise (maximum magnitude
at 5% of STD) was added to the first image (I1), the CMRI error in
Figures 1C,D were reduced by 10% for SST-R and 50% for SST-G.

Figure 2 shows spatially averaged errors (WRI, WMI, and
CMRI) that vary with different angles and magnitudes of
Vtrue for SST-R, SST-G, and SST-G2 (second-order gradient).
For the SST-R case, the difference between two consecutive
images is less distinct, which increases the uncertainty in
determining the displacement vector in the cross-correlation
calculation. WRI (Figures 2A–C), WMI (Figures 2D–F), and
CMRI (Figures 2G–I) indicate that taking the gradient of
SST is advantageous for both vector alignment and magnitude
estimations. Emery et al. (1986) qualitatively showed that

Frontiers in Marine Science | www.frontiersin.org 4 November 2021 | Volume 8 | Article 695780

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-695780 November 9, 2021 Time: 18:13 # 5

Choi et al. Surface Current Derivation and Evaluation

using the SST gradient yields better results from raw SST;
however, most works afterward utilized raw scalar fields to derive
surface currents from satellite observations (Yang et al., 2014;

Kim et al., 2016; Sun et al., 2016; Park et al., 2018; Choi
et al., 2019). Nevertheless, when taking multiple gradients, the
narrowing front becomes indistinguishable from random noise

FIGURE 2 | Spatially-averaged WRI (upper panels), WMI (middle panels), CMRI (lower panels) errors for SST-R (A,D,G), SST-G (B,E,H), and SST-G2 (C,F,I)
depending on the magnitude and direction of Vtrue. SST-R, SST-G, and SST-G2 indicate surface current generated from the raw SST, the spatial gradient of raw SST,
and the second order spatial gradient of raw SST, respectively.

FIGURE 3 | Surface current reliability determination based on CNN evaluation for SST-R (A) and SST-G (B). The black vector is the model surface current (true), and
the green vector is the PIV surface current (calculated). The background color represents the difference (CMRI error) between the true value and the calculated value
(0: lowest error / 1: highest error). The blue circles designate the vectors within top 30% having high reliability evaluated by deep learning CNN.
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so that the error can be increased from the smallest grid size, as
shown in Figures 2C,F,I.

The error is amplified near the angles around 90◦ and 270◦
(Figure 2A), and such observation indicates an anisotropy in
the horizontal shape of mesoscale eddies and fronts that are
elongated and aligned along the north–south direction over the
East/Japan Sea, which appears more prominently in the WRI
error. The spatial averages of CMRI were 0.34, 0.20, and 0.15 for
SST-R, SST-G, and SST-G2, respectively. Those for WRI (WMI)
were 0.04, 0.02, and 0.02 (0.65, 0.37, and 0.28), respectively.

Convolutional Neural Network Training
and Surface Current Evaluation
By applying the CNN to the training datasets SST-R and SST-
G, we generated a network that classified the image difference
into two classes, good and bad, based on the CMRI error.
For the SST-R training dataset, the image difference for low
CMRI < 0.3 and high CMRI > 0.4 were labeled as good and
bad vectors, respectively, while for the SST-G training dataset,
low CMRI < 0.1 and high CMRI > 0.3 were labeled as good

and bad vectors (Supplementary Figure 3). The shape of the
probability density function (PDF) of CMRI is skewed toward
low CMRI for SST-R and Gaussian for SST-G. Those partitions
were made to ensure the bad and good classes had similar
amounts of data, and different datasets may have different
partitions depending on the CMRI PDF. In most cases, images
showing more coherent patterns are placed in the good class;
however, the traits that lead a vector to be classified in the good or
bad class are not determinable without performing deep learning-
based examination. In this work, we trained only the SST-R and
SST-G datasets for evaluating the surface current, and the final
validation accuracies for those at 100 epochs were 85.8 and 89.7%,
respectively. The accuracy and the results did not show significant
changes after epoch 50.

Figure 3 shows the deep learning-based evaluation of the
surface current using synthetic data generated simultaneously
by SST and velocity fields on DOY 150 covering longitude
129◦N–136.5◦N and latitude 36.5◦E–40.5◦E in the OPEM model.
The black and green vectors indicate the model surface current
(Vtrue) and calculated surface current (Vcal), and the SST-R
and SST-G datasets are sequentially displayed in Figures 3A,B.

FIGURE 4 | One-day averaged surface current in a 10 km-grid in the East/Japan Sea on 25th March 2018 derived from Himawari SST (A) and Himawari SST
gradient (B) and corresponding scalar fields. 22 hourly velocity fields derived from 23 consecutive SST images were used to calculate the mean surface current for
that date. The scattered cloud area accounted for about 68%, and the area excluding the cloud area was used to calculate the mean velocity field. (C,D) Indicate
vorticity and divergence PDF normalized by local Coriolis parameter. In the legend, “CNN” indicates 1-day averaged surface current using vectors filtered by CNN,
“raw” indicates 1-day averaged surface current without CNN filtering, and “gradient” indicates surface current derived from SST gradient. The standard derivation
(STD) of the PDF are 0.0158 (CNN), 0.0254 (CNN-gradient), 0.0117 (raw), and 0.0183 (raw-gradient) for relative vorticity, and 0.0288 (CNN), 0.0420 (CNN-gradient),
0.0181 (raw), and 0.0284 (raw-gradient) for relative divergence. The changes in STD show that flatter PDF (or smaller circulations) can be obtained by CNN-filtering
and taking gradient of a scalar field.
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The background color of the figure is the CMRI error showing
the deviation between Vtrue deforming the original image and
Vcal obtained by applying PIV to the original image (I1)
and the deformed image (I2). The blue circles designate the
vectors within top 30% having high reliability evaluated by deep
learning CNN. The pretrained deep learning network classified
good vectors (blue circles shown in Figure 3), mostly at low
CMRI values. To quantify the performance of the network,
the correlation coefficient (r) between Vtrue and Vcal was
calculated (Supplementary Figure 5). For SST-R, u and v velocity
components showed ru = 0.572 and rv = 0.479 while applying the
trained network gave ru = 0.761 and rv = 0.722. For SST-G, u and
v velocity components showed ru = 0.704 and rv =0.608 while
applying the trained network gave ru = 0.799 and rv = 0.816. We
also calculated the correlation coefficient between δtrue and δcal
(divergence) using the same velocity fields. For SST-R, applying
the network increased rδ from 0.366 to 0.401, and for SST-G,
applying the network increased rδ from 0.514 to 0.550. Overall,
the surface current involved with SST-G resulted in a lower
CMRI error than that involved with SST-R, and the pretrained
network using the SST-G dataset showed better performance in
identifying good vectors.

The same procedures of calculating the surface current and
applying the deep learning pretrained network as above were
implemented with the image pair of Himawari skin SST captured
on March 25, 2018 over the area of the East/Japan Sea. We
obtained Vcal in a 10-km resolution by applying PIV to two
consecutive Himawari SST images in a 2-km resolution, and
each vector was linked to a good or bad vector based on the
evaluation by the deep learning network. Figure 4 shows the 1-
day average of the hourly surface currents from hourly Himawari
SST (Figure 4A) and the Himawari SST gradient (Figure 4B).
Only vectors within the top 30% accuracy evaluated by the deep
learning network at each snapshot were used for the average,
and the field were smoothed by a 3 × 3 mean filter. The surface
current generated by the SST gradient contains slightly stronger
velocity and dynamic features such that more distinct eddies
can be identified.

Figures 4C,D show the PDFs of the vorticity (Figure 4C)
and divergence (Figure 4D) fields normalized by the Coriolis
parameter. The PDFs calculated from the PIV-derived current
with CNN filtering (solid red lines) have heavier or flatter
tails than the ones from the PIV-derived current without the
CNN filtering (dashed red lines), and taking the gradient (black
lines) also leads the tails to be flatter. Since heavier tail in a
divergence and vorticity PDFs is indicative of realizing smaller-
scale features (or stronger submesoscale circulations) (Barkan
et al., 2017; Choi et al., 2017), it is considered that taking
gradients of a scalar field along with filtering the vectors through
CNN evaluation are considered helpful in realizing smaller
features in the surface current. Due to the limited grid size of
surface currents, the sub-grid circulations with a size less than
10 km cannot be considered in this study. However, applying
the strategy to high-resolution scalar fields, such as 250 m-grid
satellite products from the Geostationary Ocean Color Imager
(GOCI), would provide submesoscale-resolving (∼3 km) features
in surface currents.

CONCLUSION

The estimation of surface currents associated with geostationary
satellite data, the PIV method, and deep learning networks
has been conducted to suggest a strategy for the production
of operational surface currents. Information of real-time
surface currents can be very useful for practical and
scientific applications. However, an operating system based
on geostationary satellite observation that can cover marginal
seas and sample at high spatiotemporal resolutions has not
yet been developed.

We demonstrated the generation of surface currents from
model SST. Applying PIV to the scalar field resulted in errors
that were correlated with the direction of the front and true
velocity field. To point out erroneous vectors, we conducted a
deep learning-based evaluation of vectors, which was achieved
by training the image difference between two consecutive scalar
images. We found taking the gradient of the scalar field
performed better in generating surface currents. We also applied
the same procedure to Himawari SST to provide a quality
flag indicating the surface current’s reliability. Based on the
quality flag that evaluated each vector, good vectors were chosen
and used to generate an averaged velocity field showing clear
dynamics of coherent mesoscale eddies, which was confirmed
by heavy tails in the PDFs of kinematics. Although a limited
amount of training data was generated and used for deep
learning training, the trained network successfully discerned
more accurate vectors of the calculated surface currents.

The strategy introduced in this paper can be applied to not
only the Himawari satellite but also the newly launched GOCI-
II geostationary satellite that just started generating ocean color
scalar fields in a 250-m grid. Furthermore, this study can be
extended to produce vast synthetic data (model and experimental
data) to develop a pretrained network that can give the right
vector in numerous situations and can be applied to different
kinds of scalar fields.
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