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Nitrous oxide (N2O) is a powerful greenhouse gas that degrades ozone. Hypoxia and

ocean acidification are becoming more intense as a result of climate change. The

former stimulates N2O emissions, whereas the effects of the latter on N2O production

vary by the ocean. Hypoxia and ocean acidification may play a critical role in the

evolution of future oceanic N2O production. However, the interactive effects of hypoxia

and ocean acidification on N2O production remain unclear. We conducted a research

cruise in the Bohai Sea of China to assess the occurrence of ocean acidification

in the seasonal oxygen minimum zone of the sea and further conducted laboratory

incubation experiments to determine the effects of ocean acidification and hypoxia on

N2O production. When pH decreased by 0.25, N2O production decreased by 50.77

and 72.38%, respectively. In contrast, hypoxia had a positive impact; when dissolved

oxygen (DO) decreased to 3.7 and 2.4mg L−1, N2O production increased by 49.72 and

278.68%, respectively. The incubation experiments demonstrated that the coupling of

ocean acidification and hypoxia significantly increased N2O production, but, individually,

there was an antagonistic relationship between the two. Structural equation modeling

showed that the total effects of hypoxia treatment on N2Oproduction changes weakened

the effects of ocean acidification, with overall positive effects. Generally speaking, our

results suggest that N2O production from the coastal waters of the Bohai Sea may

increase under future climate change scenarios due to increasingly serious ocean

acidification and hypoxia working in combination.

Keywords: ocean acidification, hypoxia, N2O emission, Bohai Sea, oxygen minimum zone

INTRODUCTION

Nitrous oxide (N2O) is an important greenhouse gas with a warming effect 265 times that of carbon
dioxide (CO2) (Stocker et al., 2013) and with the ability to destroy atmospheric ozone through
photochemical reactions, resulting in significant impacts on global climate change (Crutzen and
Ehhalt, 1977; Freing et al., 2012). N2O emissions from oceans are the second-largest natural source
of atmospheric N2O and account for ∼30% of total natural emissions (Bange, 2006), particularly
N2O emissions from the upper ocean (Nevison et al., 1995), making oceans important contributors
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to global climate regulation (Qin, 2014). However, N2O
emissions are not uniformly distributed in the upper ocean due
to complicated marine environments. Moreover, the effects of
global climate change, including ocean acidification, temperature
rise, and oxygen depletion, are likely to disrupt the balance
(Codispoti, 2010).

Marine ecosystems play an important role in regulating global
climate change through their strong regulatory capacity (Naqvi
et al., 1998). Offshore low-oxygen areas are often caused by an
increase in the flux of land-based nutrients into the sea and
the eutrophication of estuaries and inshore waters. Seasonal
stratification of seawater further hinders the transfer of oxygen
from the upper layer of seawater to the bottom, producing
seasonal variability in offshore hypoxic zones (Zhai et al., 2012;
Zhang et al., 2016). Since hypoxic environments can stimulate the
production and release of N2O, hypoxic zones are hot spots for
global marine N2O emissions, affecting local and global climate.
These areas have become an important subject of research into
N2Oemission fluxes andmechanisms inminimum-oxygen zones
within open oceans (Naqvi et al., 2000; Kalvelage et al., 2013;
Arévalo-Martínez et al., 2015; Babbin et al., 2015; Ji et al., 2015;
Kock et al., 2016; Trimmer et al., 2016).

The increase in global temperature due to the enhanced
greenhouse effect has been balanced by the exchange of ∼25%
of anthropogenic CO2 into the oceans (Le Quéré et al., 2014).
Ocean acidification is the result of the ocean hosting excess CO2,
leading to changes in the carbonate system of upper ocean water
(Orr et al., 2005). Over the past 20 years, this has resulted in
a decrease in seawater pH of ∼0.0011–0.0024 units per year,
with the average marine pH being ∼0.1 unit lower than before
the Industrial Revolution (Stocker et al., 2013). Current research
on biogeochemical cycling processes has shown that increasing
pCO2 and subsequent pH decline in the oceans are expected
to affect microbial nutrient cycling directly and indirectly,
for example, by increasing Trichodesmium-fixed N2 and CO2

(Hutchins et al., 2007) and changing ammonia-oxidizing archaea
(AOA) abundance that indirectly alters N2O emissions (Rees
et al., 2016). Beman et al. (2011) studied changes in the
nitrification rate under ocean acidification, showing that the
nitrification rate decreased significantly while the pH dropped to
the predicted value (1pH = 0.2) of the future ocean. The N2O
produced by nitrification could be reduced by 0.06–0.83 Tg N
year−1 in the next 20–30 years under future ocean acidification.
However, predictions of changing N2O production in ocean
acidification scenarios should also consider the effects of ocean
acidification on denitrification. Although increasing CO2 could
have a negative effect on denitrification (Wan et al., 2016), it
remains unclear how ocean acidification affects N2O production.

Most known coastal anoxic areas appear in semi-enclosed
areas prone to water stratification (Naqvi et al., 2010). The Bohai
Sea of China, a shallow semi-enclosed inland sea, is typical of
such eutrophic water bodies (Li et al., 2015). Rapid industrial
and agricultural development in the region has resulted in high
nutrient input into the Bohai Sea, such that the nitrogen and
phosphate content exceeds Chinese standards and the eutrophic
area has continuously increased (Liu and Yin, 2010). Zhai et al.
(2012) and Zhang et al. (2016) found low DO and pH over a wide

range of the bottom of Bohai Sea, including a total area with DO
< 3.0 mg L−1 of∼4.2× 103 km2. These spatial characteristics are
consistent with a double-center cold-water structure (Lin et al.,
2006; Zhou et al., 2009).

In this study, we designed a laboratory incubation
experiment, investigating the effects of ocean acidification
and hypoxia on seawater N2O production in Bohai Bay, and
then conducted aggregated boosted tree (ABT) and structural
equation model (SEM) analyses to examine potential factors
affecting N2O production. This study was designed to verify
two hypotheses: (1) Ocean acidification alone (Acid) reduces
seawater N2O production, while both hypoxia alone (Hyp)
and ocean acidification with hypoxia (Acid + Hyp) conditions
increase seawater N2O production, and (2) hypoxia and ocean
acidification change N2O production by altering seawater
properties rather than directly affecting N2O production.
A better understanding of changes in N2O production
and its mechanisms in the Bohai Sea hypoxic zone under
future ocean acidification can provide data for improved
prediction models.

MATERIALS AND METHODS

Sample Collection and Experimental
Manipulation
A marine survey was conducted in August 2017 (Figure 1).
Seawater depth at sampling stations ranged from 6 to 27m,
with the deepest at station A5 (Figure 1). Seawater samples for
N2O, pH, and DO were collected, using 5-L Niskin bottles, and
vertical profiles of DO and pH were measured simultaneously
with the Maestro multiparameter sensor (RBR Maestro 3).
Temperature and salinity sensors were calibrated prior to the
survey, and DO and pH sensor data were corrected by measured
data before use. Samples for the incubation experiment were
calibrated on December 21, 2017, at 117◦48′11′′E, 38◦58’41′′N
(station A: relatively low high-quality exogenous substance
input) and 117◦43′23′′E, 39◦553′′N (station B: relatively high
quality of exogenous substance input because of human activity,
especially nitrogen). The 5-L polycarbonate culture bottles filled
with seawater were airtight and were kept in the dark for
2 h when transporting back to the laboratory. Experiments
were performed with the experimental platform already set
up and four target pCO2 and oxygen levels, with triplicate
samples per treatment (Figure 1, Table 1). All treatments were
manipulated by gentle bubbling via plastic diffusers at uniform
rates with commercially prepared air (CO2:O2 mixture) using
acid-washed tubing. The bottle caps were customized for gas
inlet/outlet and connected to the air mixture. The experiments
were equilibrated for 6 h, distributed in 5-L polycarbonate bottles,
sealed for 64 h, and maintained in a laboratory incubator at
in situ temperature (15◦C) in the dark (Table 1). Seawater
CO2 parameters were verified by measuring pH and dissolved
inorganic carbon (DIC).

N2O Analysis
Triplicate samples were collected using acid-cleaned Tygon
tubing by siphoning from 5-L incubation bottles into
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FIGURE 1 | Location of the study area and incubation setup. Black dots indicate sampling sites during Bohai Sea cruises, red dots indicate hatchery experiment

sampling sites, and the blue square indicates the hypoxia zone [defined as dissolved oxygen (DO) < 3mg L−1 by Zhai et al., 2012].

TABLE 1 | Overview of experiments, including sampling locations, treatments (Con, control; Hyp, hypoxia; Acid, acidification; Hyp+Acid, combination of hypoxia and

acidification), and components of bubbling gas, pH, and dissolved oxygen (DO).

Location DIN (µmol L−1) Treatment Component of bubbling gas pH DO (mg L−1)

A 15.09 ± 2.85 Con Air 7.91 ± 0.10 8.7 ± 0.2

Hyp N2+5%O2+400ppmCO2 7.94 ± 0.01 3.7 ± 0.5

Acid N2+21%O2+1000ppmCO2 7.69 ± 0.03 8.9 ± 0.1

Hyp+Acid N2+5%O2+1000ppmCO2 7.76 ± 0.05 3.7 ± 0.1

B 63.91 ± 3.69 Con Air 7.90 ± 0.01 6.7 ± 0.3

Hyp N2+5%O2+400ppmCO2 7.95 ± 0.04 2.4 ± 0.2

Acid N2+21%O2+1000ppmCO2 7.71 ± 0.02 6.9 ± 0.2

Hyp+Acid N2+5%O2+1000ppmCO2 7.69 ± 0.07 2.2 ± 0.4

acid-washed 60-ml glass vials. Samples were allowed to
overflow for two times the volume of the bottle to eliminate air
bubbles. Samples were treated with 0.1ml of saturated mercuric
chloride and sealed with butylene rubber stoppers and an
aluminum crimp seal. The rubber plug of the sample bottle was
first penetrated by an injection syringe; then, 5.0-ml-high purity
N2 (> 99.999%) was injected into the bottle with an airtight
syringe. At the same time, 5.0ml of the sample was discharged
from the bottle through the syringe to form headspace in the
bottle. The bottle was then shaken for 30min and balanced
for 2 h at room temperature. A subsample of the equilibrated
headspace was manually injected into a gas chromatograph
(GC) with electron capture detection (SHIMADZU GC-2010
Plus), equipped with an HP-Plot/column (J and WGC Columns,
Agilent Technologies, USA). The GC was calibrated daily with
three different concentrations of standard gases (291, 617,
and 4,980 ppbv N2O/N2, Research Institute of China National
Standard Materials). The N2O concentrations in the samples
were calculated using the solubility function of Weiss and Price

(1980). The detection limit for N2O analysis was 1.0 nmol L−1,
and the precision was∼2%.

Ancillary Measurements
Dissolved oxygen samples were transferred, stored, and analyzed
using the Winkler method (Grasshoff et al., 1999). The relative
standard deviation of the three samples was 2%. The pH
of the collected samples was measured in situ. A Shimadzu
TOC-L analyzer was used to repeat the sample three times
in the laboratory, and the DIC concentrations of all repeat
subsamples were measured. Water samples for nutrient analysis
were filtered through 0.45-µm acetate cellulose membrane
filters. The filtrates were poisoned with HgCl2 and stored
in the dark at 4◦C. Nutrients, including ammonium (NH+

4 ),
nitrate (NO−

3 ), and nitrite (NO−

2 ), were determined using a
Technicon AA3 Auto-Analyzer (Bran+Luebbe) according to
classical colorimetric methods (Wu et al., 2019). NH+

4 , NO
−

3 ,
and NO−

2 were measured using the indophenol blue method, the
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copper–cadmium column reduction method, and the phosphor-
molybdate complex method, respectively.

Statistical Analysis
Repeated two-way multivariate ANOVA (two-way MANOVA)
with IBM SPSS Statistics software (version 23.0) was used to
examine the effects of treatments and their interactions on N2O
production during incubation. Pearson correlation coefficients
were used to evaluate the relationships between N2O production
and relevant physical and chemical indicators. This analysis was
conducted using the “corrplot” package (Simko, 2017) for R
statistical software (version 4.0.3, R Core Team, 2020). ABT
modeling was used to explain the relative influence of related
parameters on N2O production using the “gbmplus” package
in R (De’ath, 2007). SEM was used to assess the relative direct
and indirect impacts of ocean acidification and hypoxia on N2O
production (Alsterberg et al., 2013; Shi et al., 2016; Zhang et al.,
2019;Wang et al., 2020). The SEM fit was evaluated using the chi-
square test (χ2), comparative fit index (CFI), root mean square
error of approximation (RMSEM), and other parameters.

RESULTS

Vertical and Horizontal Profiles of
Seawater Chemical Properties
The sea surface temperature (SST) was horizontally stable at
∼28◦C across the entire sampling area. Vertical temperature
profiles showed an obvious cold water mass in the bottom
layer of A3, A4, and A5, implying an obvious thermocline
in the middle layer. Vertical density profiles closely mirrored
those of temperature, implying that the latter was the dominant
factor controlling the former. In contrast, the halocline was
much weaker, and the bottom-surface difference in salinity was
mostly <1 across the vertical profile. Chlorophyll a showed little
vertical variation but increased toward the land, with a maximum
concentration of 17.5 µg L−1 at A1.

Vertical profiles of DO and pH showed similar stratification
patterns, with the surface and bottom layers being uniform or
having weak gradients, but the middle layer having rapid changes
(Figure 2). DO and pH were higher in the surface layer than in
the bottom layer. As for oxygen, A3, A4, and A5 were located
in the oxygen minimum zone (O2 < 3.0 mg L−1), with the
bottom of A3 having the lowest oxygen concentration and highest
N2O concentration (37.5 nmol L−1). High N2O production was
accompanied by ocean acidification and hypoxia. The maximum
N2O patterns were consistent with rapid changes in DO and pH.

Seawater Chemical Properties After
Incubation
Seawater that received the Hyp and Acid treatments differed
in pH, DIC, DO, particulate organic carbon and nitrogen
[particulate organic carbon (POC) and particulate organic
nitrogen (PON)], and various inorganic nitrogen forms (NH+

4 ,
NO−

2 , and NO−

3 ) after 64 h of incubation (Tables 2A,B). For the
four treatment groups, the concentrations of seawater NH+

4 -N
and NO−

3 -N at Dongjiang port were four to five times higher
than that at the Hongxing wharf. In addition, Hyp produced the

highest NH+

4 -N and NO−

3 -N. For NH
+

4 -N, all treatment groups
were higher than the ambient control (Con), but, for NO−

3 -N, all
treatment groups performed the same except for Acid (Figure 3).
Compared with the Con, DO in Hyp at the Dongjiang port and
the Hongxing wharf reached 3.7 and 2.4 mgL−1, respectively,
while pH for that group at the Dongjiang port and the Hongxing
wharf reached 7.69 and 7.71, respectively.

At the Dongjiang port, Hyp had a significant effect on DO
(p < 0.001) and NH+

4 -N (p < 0.01) concentrations, while Acid
had a significant effect on pH, POC, and PON (p < 0.05). At
the Hongxing wharf, Hyp had a significant effect on DO (p
< 0.001) and NO−

3 -N (p < 0.05) concentrations, while Acid
had a significant effect on pH and DIC concentrations (p <

0.001). Significantly, interactive effects between Acid and Hyp
on pH, POC, and PON (p < 0.05) were identified by a two-
way MANOVA.

N2O Concentrations in Incubated Seawater
Samples
After incubation, N2O production showed strong variability
between the different treatments (Figure 4). First, both Hyp
and Acid treatment had significant effects on N2O potential
production from different anthropogenic nitrogen input regions.
Hyp had a positive effect on N2O potential production compared
with Acid; the higher the anthropogenic nitrogen input, the
greater was the effect. Relative to Con, Acid resulted in mean
N2O production, dropping from 2.72 to 1.34 nmol L−1 at
the Dongjiang port and from 23.09 to 6.38 nmol L−1 at
the Hongxing wharf, while the observed N2O concentrations
decreased by 50.77 and 72.38%, respectively. Also, relative
to Con, Hyp resulted in mean N2O production, increasing
from 2.72 to 4.08 nmol L−1 at the Dongjiang port and from
23.09 to 110.78 nmol L−1 at the Hongxing wharf, while the
observed N2O concentrations increased by 49.72 and 278.68%,
respectively (Figure 4, Table 3). Similar to Hyp, Hyp+Acid
significantly increased N2O potential production (compared
with Con) from 2.72 to 3.17 nmol L−1 at the Dongjiang port
and from 23.09 to 58.68 nmol L−1 at the Hongxing wharf,
while the observed N2O concentrations increased by 16.23 and
96.38%, respectively (Figure 4A). As expected, regions with
high anthropogenic nitrogen inputs responded more to different
treatments, mainly because these inputs increased substrate
concentrations for nitrification and denitrification, and nitrogen
utilization increased (Figure 4).

Relationships Between N2O Concentration
and Relative Parameters
Pearson’s correlation analysis showed significant variability
between different anthropogenic nitrogen input seawater
responses to different treatments (Figure 5). There was a
significant positive correlation between N2O concentration and
NH+

4 -N at the Dongjiang port (p < 0.001), indicating that the
N2O in this region was mainly produced by nitrification, which
was consistent with results from the open ocean (Beman et al.,
2011). Seawater pH and DO were positively and negatively
correlated with N2O concentration, respectively, consistent
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FIGURE 2 | Vertical profiles of (a) temperature, (b) salinity, (c) chlorophyll a, (d) pH, (e) DO, and (f) N2O at stations A1–A6.

TABLE 2A | Effects of ocean acidification and hypoxia on chemical properties of seawater samples at the Dongjiang port.

Treatment pH DIC

(mg L−1)

DO

(mg L−1)

POC

(mg L−1)

PON

(mg L−1)

TN

(mg L−1)

NH+

4

(µmol L−1)

NO−

2

(µmol L−1)

NO−

3

(µmol L−1)

TIN

(µmol L−1)

Con 7.91 ± 0.10 30.62 ± 0.26 8.7 ± 0.2 0.23 ± 0.04 0.04 ± 0.00 0.20 ± 0.04 2.44 ± 0.49 0.79 ± 0.21 10.71 ± 6.22 13.94 ± 6.72

Hyp 7.94 ± 0.01 29.51 ± 0.35 3.7 ± 0.5 0.35 ± 0.10 0.07 ± 0.02 0.20 ± 0.02 3.69 ± 0.46 0.78 ± 0.13 13.15 ± 3.72 17.58 ± 3.55

Acid 7.69 ± 0.03 31.35 ± 0.73 8.9 ± 0.1 0.23 ± 0.02 0.04 ± 0.00 0.20 ± 0.04 2.05 ± 0.88 0.88 ± 0.14 10.04 ± 1.65 12.96 ± 0.82

Acid+Hyp 7.76 ± 0.05 30.87 ± 1.57 3.7 ± 0.1 0.18 ± 0.00 0.03 ± 0.00 0.17 ± 0.03 2.99 ± 1.37 0.76 ± 0.14 11.78 ± 0.28 15.53 ± 1.28

F-value

Hyp 0.30 2.40 1079.43*** 1.68 1.43 0.80 4.64* 0.89 0.95 1.93

Acid 142.19*** 4.09* 0.59 7.25** 7.96** 0.70 1.16 0.40 0.23 0.46

Hyp*Acid 5.34** 0.37 0.35 7.55** 6.78** 0.79 0.09 0.16 0.03 0.06

DIC, dissolved inorganic carbon; DO, dissolved oxygen; POC, particulate organic carbon; PON, particulate organic nitrogen; TN, total nitrogen; TIN, total inorganic nitrogen; Con, control

treatment; Hyp, hypoxia treatment; Acid, ocean acidification treatment; and Acid+Hyp, the combination of hypoxia and ocean acidification treatment. *, **, and *** indicate significance

levels at p <0.05, p <0.01, and p <0.001, respectively.

with our first hypothesis. However, at the Hongxing wharf, the
results were different; there was a significant positive correlation
between N2O concentration and NO−

3 -N (p < 0.05), and DO
was significantly correlated with N2O concentration (p < 0.001)
(Figure 5). DO, pH, and DIC accounted for 31.3, 25.1, and
18.2%, respectively, of the relative influencing factors for N2O
potential production at the Dongjiang port much larger than for
the other parameters. Similarly, DO, pH, and DIC accounted
for 47.9, 17.5, and 14.5%, respectively, of the relative influencing
factors for N2O potential production at the Hongxing wharf
(Figure 6). This result indicated that changes in DO, pH, and
DIC might be responsible for the increase in N2O potential
production. Overall, hypoxia and acidification are likely to
change the future patterns of ocean N2O potential production.

The SEM also showed strong variability between different
anthropogenic nitrogen input seawater responses to different
treatments (Figure 7). The total effect of ocean acidification and
hypoxia on seawater N2O potential production at the Hongxing
wharf was greater than at the Dongjiang port, which may be
related to the NH+

4 -N wastewater discharged by humans. These
results showed that the overall effect of hypoxia on seawater N2O
potential production was positive, while ocean acidification was

negative, in agreement with our incubation experiments. SEM
also confirmed the regulatory effect of inorganic nutrients on
the effects of hypoxia and ocean acidification on seawater N2O
potential production.

DISCUSSION

Potential Factors for Reducing N2O
Concentration From Ocean Acidification
Our results showed that CO2-driven ocean acidification reduced
N2O potential production in seawater. In the polar Atlantic
Ocean, N2O production was sensitive to pH; when pH decreased
by 0.06–0.4, N2O production decreased by 2.4–44% (Rees et al.,
2016). The generation of seawater N2O under normal oxygen
conditions has always been considered a product of nitrification
(Beman et al., 2011). Previous studies suggested that ocean
acidification would lead to a decrease in the ammonia oxidation
rate, and reducing seawater pH also suppressed seawater N2O
emissions (Beman et al., 2011). Sample collection for the
incubation experiments was poured from the closed water
sampler and immediately kept in the dark, and we assumed that
the sampling process and phytoplankton had little influence on
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TABLE 2B | Effects of ocean acidification and hypoxia on water chemical properties at the Hongxing wharf.

Treatment pH DIC

(mg L−1)

DO

(mg L−1)

POC

(mg L−1)

PON

(mg L−1)

TN

(mg L-1)

NH+

4

(µmol L−1)

NO−

2

(µmol L−1)

NO−

3

(µmol L−1)

TIN

(µmol L−1)

Con 7.90 ± 0.01 35.82 ± 0.26 6.7 ± 0.3 0.23 ± 0.05 0.05 ± 0.01 0.32 ± 0.16 14.20 ± 0.49 1.62 ± 0.15 42.67 ± 8.24 58.49 ± 8.83

Hyp 7.95 ± 0.04 35.21 ± 0.65 2.4 ± 0.2 0.40 ± 0.03 0.07 ± 0.01 0.39 ± 0.03 15.90 ± 2.13 1.53 ± 0.40 54.96 ± 9.74 72.38 ± 12.24

Acid 7.71 ± 0.02 37.74 ± 0.70 6.9 ± 0.2 0.37 ± 0.09 0.06 ± 0.02 0.38 ± 0.05 14.90 ± 2.46 1.83 ± 0.32 44.41 ± 3.05 60.35 ± 5.50

Acid+Hyp 7.69 ± 0.07 36.69 ± 0.50 2.2 ± 0.4 0.43 ± 0.14 0.07 ± 0.02 0.38 ± 0.03 14.93 ± 0.30 1.57 ± 0.15 47.93 ± 3.95 64.43 ± 4.37

F-value

Hyp 0.21 6.67 726.19*** 5.70* 4.15 0.47 1.74 1.23 3.99* 3.50*

Acid 93.70*** 28.04*** 0.00 2.73 1.25 0.23 0.31 0.64 0.45 0.40

Hyp*Acid 2.05 0.46 1.17 1.14 0.41 0.48 0.20 0.27 1.23 1.04

DIC, dissolved inorganic carbon; DO, dissolved oxygen; POC, particulate organic carbon; PON, particulate organic nitrogen; TN, total nitrogen; TIN, total inorganic nitrogen; Con, control

treatment; Hyp, hypoxia treatment; Acid, ocean acidification treatment; and Acid+Hyp, the combination of hypoxia and ocean acidification treatment. *, and *** indicate significance

levels at p <0.05, and p <0.001, respectively.

FIGURE 3 | Concentrations of (A) ammonium and (B) nitrate for different incubation treatments (Con, control; Hyp, hypoxia; Acid, acidification; Acid+Hyp, the

combination of hypoxia and acidification).

NH3 or NH+

4 . Since it has been shown that the composition
of nitrifying bacterial communities can resist changes in ocean
acidification, the observed N2O concentration changes seem
more likely to be related to changes in the NH+

4 :NH3 equilibrium
(Hutchins et al., 2009; Beman et al., 2011). pH may play an
indirect role in controlling N2O potential production because
it changes the chemical speciation of NH+

4 : NH3 covaries with
other factors. NH3 acts as a substrate for nitrification (Ward,
2008). According to the equilibrium equation of Bell et al.
(2008), a decrease in seawater pH from 8.1 to 7.8 will lead to a
50% decrease in NH3 concentration under constant temperature
(22◦C) and salinity (Wyatt et al., 2010). Using that equation, we
estimated the NH3 concentrations based on the calculated pKa
values, pH, and NH+

4 concentrations measured in situ. A pKa
fixed value of 9.25 suggested that NH3 typically accounted for
6.3% of the total NHx. Beman et al. (2011) found significant
correlations between the percentage changes in NH3, pH, and
ammonium oxidation rates (Hutchins et al., 2009) and (Kitidis
et al., 2011) between pH and ammonium oxidation. We showed
a similar relationship between the absolute values of pH and N2O
and the correlation between N2O and NH3 in the incubation

experiments (Figure 8) (R2 = 0.63, p < 0.05) as a result of
the induced shift in the NH+

4 : NH3 ratio. Our results indicated
that changes in pH of 0.25 in the coastal waters of the Bohai
Sea may lead to decreases in N2O potential production of
50.77 and 72.38% due to a reduced NH3 regime of 33.8 and
40.2%, respectively.

In contrast, Breider et al. (2019) examined the response
of N2O production from nitrification to acidification in a
series of incubation experiments conducted in the subtropical
and subarctic western North Pacific, showing that, when
the pH decreased, the N2O production rate significantly
increased during the nitrification process, while the nitrification
rate remained stable or decreased. We suggest two possible
explanations for this difference. First, despite the beginning
oxygen of Acid being comparable to the surrounding oxygen
concentration, after 64 h, the oxygen centralization in the
incubation bottles might have slightly diminished, hindering
nitrification, on the other hand, according to Ji et al. (2018),
when O2 > 6 µmol L−1 was 98% and showed complete
inhibition on N2O production from NO−

2 and NO−

3 reduction.
The oxygen consumed by our incubation process is limited
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FIGURE 4 | Treatment effects on N2O concentration in the seawater samples (A), changes of reduced O2 on N2O concentration (B,C), changes of reduced pH on

N2O concentration (D,E), Con, control; Hyp, hypoxia treatment; Acid, ocean acidification treatment; Aci+Hyp, the combination of hypoxia and ocean acidification

treatment.

TABLE 3 | Increase in, and the increased rate of, N2O under different treatments

at the Dongjiang port and the Hongxing wharf.

The increase of N2O

(nmol N2O L−1)

The increase rate of

N2O(%)

Treatment Dongjiang

port

Hongxing

wharf

Dongjiang

port

Hongxing

wharf

Hyp 1.35 64.35 49.72 278.68

Acid −1.38 −16.71 −50.77 −72.38

Acid+Hyp 0.44 22.26 16.23 96.38

Hyp, hypoxia; Acid, acidification; Aci+Hyp, the combination of hypoxia and acidification.

and does not make the oxygen in the incubation bottles reach
the threshold value of denitrification, ultimately leading to a
reduction in N2O potential production. Second, the methods of
acidification treatment were different between the two studies.
They used HCl solutions and aerated the system with different
concentrations of combined CO2 and O2 to achieve acidification
(Breider et al., 2019). We changed the system pH and altered the
seawater carbonate system, affecting N2O potential production.
In addition, pH reduction had a greater effect on N2O in the
anthropogenic nitrogen input samples, which may have been
related to the high NH+

4 -N in human wastewater discharge.
As ocean acidification intensifies, N2O production decreases,

indicating that future ocean acidification is likely to reduce ocean
N2O potential production, resulting in negative feedback relative
to global warming (Beman et al., 2011). Beman et al. (2011)
estimated that an observed reduction in nitrification rates of
3–44% would result in a reduction in global N2O production
of 0.06–0.83 Tg N/year over the next 20–30 years. Codispoti
(2010) adopted a similar approach and assuming that 50% of the
global ocean source of N2O was 3.8 Tg Nyear−1. For the less

anthropogenic nitrogen input area (pH decreased by 0.25), the
estimated reduction of marine N2O sources was ∼0.96 year−1.
For the large anthropogenic nitrogen input area (pH decreased
by.25), the estimated reduction of marine N2O sources was
∼1.38 year−1.

Effect of Hypoxia on N2O Potential
Production
The potential production of N2O increased significantly with
decreasing DO concentration. Although the regulatory effect of
oxygen on N2O production in the ocean is widely accepted
in principle [∼100 papers cite Goreau et al. (1980) on N2O
production in the ocean], to the best of our knowledge,
there have been few studies on the effect of oxygen on
N2O production in Bohai Bay. Due to eutrophication and
environmental degradation, seasonal oxygen shortages in this
location may expand in the future. Our results showed a
non-linear relationship between N2O concentration and O2

concentration, with the former increasing as the latter decreases
(Figure 9A). The basic linear relationship of1N2O/AOU is often
used to simulate the distribution of N2O in the ocean, in which
the slope value of 1N2O–AOU is regarded as the N2O yield
from nitrification, indicating the amount of N2O produced per
amount of O2 consumed (Nevison et al., 2003). This theory varies
widely (0.08–0.31 nmol N2O per mmolO2), making it difficult to
capture the full dynamics of N2O production in hypoxic water
(Nevison et al., 2003). Trimmer et al. also proposed a mixed-
effects model, which points out that, between 1 and 30 mmol
L−1 O2 concentration, a decrease in O2 concentration leads to
a clear exponential increase in N2O (Yoshida et al., 1984); this is
comparable to our results.

Both high and low anthropogenic nitrogen input seawater
under Hyp resulted in a decreased NO−

2 /NO
−

3 ratio after
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FIGURE 5 | Correlation analysis between environmental parameters and N2O potential production for (A) the Dongjiang port and (B) the Hongxing wharf. Circle colors

and sizes represent Pearson’s correlation coefficients (r). *, **, and ***indicate significance levels at p < 0.05, p < 0.01, and p < 0.001, respectively. DIC, dissolved

inorganic carbon; DO, dissolved oxygen; POC, particulate organic carbon; PON, particulate organic nitrogen; TN, total nitrogen; TIN, total inorganic nitrogen.

FIGURE 6 | Relative influences of parameter contributions to seawater N2O potential production for (A) the Dongjiang port and (B) the Hongxing wharf. DIC, dissolved

inorganic carbon; DO, dissolved oxygen; POC, particulate organic carbon; PON, particulate organic nitrogen; TN, total nitrogen; TIN, total inorganic nitrogen.

incubation (Figure 9B). We speculate that nitrification and
denitrification may occur together with a decrease in oxygen

concentration (even when the oxygen concentration does not

reach complete denitrification), and as NO−

2 is the basis for

both nitrification and denitrification (Wilson et al., 2014), the

consumption of NO−

2 is greater than production. This is similar
to Ji et al. (2018), whose 15N tracer incubation experiments
showed that denitrification was the dominant source of N2O

production in the anoxic and the peripheral suboxic waters,
because rates of N2O production from NO−

2 and NO−

3 reduction

were 10- to 100-fold higher than N2O production from NH+

4
oxidation. Our results also support this view, indicating that

oxygen concentration in the oxycline supports nitrification and

denitrification, resulting in maximum N2O concentration.

Direct vs. Indirect Effects of Ocean
Acidification and Hypoxia on Inorganic
Nitrogen and N2O Potential Production
Our second hypothesis was that hypoxia and ocean acidification
changed N2O potential production by altering seawater
properties rather than directly affecting N2O production. DO,
pH, and DIC were the key factors affecting N2O potential
production (Figure 6). SEM also showed strong variability
among different anthropogenic nitrogen input seawater
responses to different treatments. These results suggested a
role for the indirect effects of ocean acidification and hypoxia
on inorganic nitrogen and N2O potential production in
coastal marine systems. Ocean acidification may directly or
indirectly affect N2O potential production through a variety
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FIGURE 7 | (A,B) SEM analysis examining the effects of ocean acidification and hypoxia on N2O potential production for (A) Dongjiang port; (B) Hongxing watrf. Solid

black and red arrows indicate significant positive and negative effects, and gray lines indicate non-significant coefficients paths. *, **, and ***indicate significance levels

at p <0.05, p <0.01, and p <0.001, respectively. R2-values associated with response variables represent the proportion of variation explained by the relationship with

other variables. Values associated with arrows represent standardized path coefficients.

FIGURE 8 | Seawater N2O concentration associated with estimated NH3

concentration after incubation. The gray area represents a 95% confidence

interval.

of mechanisms, including AOA abundance (Rees et al., 2016)
and nitrification rates (Beman et al., 2011). In the Dongjiang
port, both hypoxia and ocean acidification had direct effects
on seawater N2O potential production (Hypoxia→ N2O,
path coefficients >0.10, but P < 0.05; acidification→ N2O,
path coefficients >0.10 and P > 0.05) but indirect effects via
NH+

4 -N, NO
−

2 -N, and NO−

3 -N (Figure 9A). Hypoxia increased
NH+

4 -N and NO−

3 -N, which, in turn, increased N2O potential
production, while hypoxia also reduced NO−

2 -N and increased
N2O potential production. Thus, the total effect of hypoxia on
seawater N2O potential production was positive (0.67). Ocean
acidification reduced NH+

4 -N and NO−

3 -N, which, in turn,
reduced N2O potential production, and ocean acidification also

increased NO−

2 -N and reduced N2O potential production. Thus,
the total effects of ocean acidification on seawater N2O potential
production were negative (0.57). Hypoxia increased, whereas
ocean acidification reduced, seawater N2O potential production
via direct effects (Figure 9A).

Interestingly, the direct and indirect effects of hypoxia
treatment on changes in N2O potential production counteracted

the effects of ocean acidification. As hypoxia and ocean
acidification increased N2O potential production, the negative

effects of ocean acidification were canceled, and the total effects
were positive (0.10). The situation seems to have changed at the
Hongxing wharf, where both hypoxia and ocean acidification had

significant direct effects on seawater N2O potential production
(Hypoxia→ N2O, path coefficients >0.10 and P < 0.05;
acidification → N2O, path coefficients >0.10 and P >

0.05), with indirect effects via NO−

3 -N (Figure 9B). Hypoxia
increased NH+

4 -N and NO−

3 -N, which, in turn, increased N2O
potential production. Thus, the total effect of hypoxia on
seawater N2O potential production was positive (0.86). Ocean
acidification reduced NH+

4 -N and NO−

3 -N, which, in turn,
reduced N2O potential production. Thus, the total effects of
ocean acidification on seawater N2O potential production were
negative (0.48). Ocean acidification reduced NH+

4 -N and NO−

3 -
N, which, in turn, reduced N2O potential production. Hypoxia
increased, whereas ocean acidification reduced seawater N2O
potential production via direct effects (Figure 9B). Interestingly,
the direct and indirect effects of hypoxia treatment on
changes in N2O potential production counteracted the effects
of ocean acidification. As hypoxia and ocean acidification
increased N2O potential production, the negative effects of
ocean acidification were canceled, and the total effects were
positive (0.38).

The causes of hypoxia and acidification at the bottom of the
Bohai Sea are very complex, including the coupling of physical,
chemical, and biological processes, the most important of which
is caused by the oxygen consumption of biological processes.
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FIGURE 9 | (A,B) O2 concentration vs. N2O concentration and NO−

2 /NO
−

3 after incubation for (A) high anthropogenic nitrogen input seawater under Hyp; (B) low

anthropogenic nitrogen input seawater under Hyp; (C) high anthropogenic nitrogen input seawater under Con; and (D) low anthropogenic nitrogen input seawater

under Con. Con, control; Hyp, hypoxia; Acid, acidification; Aci+Hyp, the combination of hypoxia and acidification.

It is well-known that DO in seawater is significantly related
to photosynthesis and the decomposition of organic matter in
phytoplankton. The photosynthesis of phytoplankton within the
euphotic layer results in high dissolved oxygen. In situ biological
production, especially that driven by nitrification, is commonly
considered to be the major mechanism of N2O production in
the ocean (Naqvi et al., 2010). The formation of a seawater
thermocline limits the exchange of DO from the surface to
the bottom, a key physical mechanism of the oxycline in the
Bohai Sea. Seasonal seawater stratification prevents the bottom
N2O from being transported upward, such that nitrification and
denitrification occur together, leading to the accumulation of
N2O. Generally, phytoplankton blooms occur in spring with
increasing temperature and light intensity in the Bohai Sea.
The concentration of chlorophyll a reaches its highest level
in summer with coefficients sunlight and terrestrial nutrient
input (Liu and Yin, 2010). Therefore, due to the propagation of
phytoplankton in nutrient-rich layers from spring to summer,
the deposition of organic matter and aerobic decomposition
provides the basis for hypoxia occurrence at the bottom during
summer. This limitation of oxygen supply further increases
the pressure of bottom mineralization, exacerbating bottom
hypoxia and leading to denitrification. Aerobic decomposition
of organic matter increases the pCO2 of the underlying seawater
and increases acidification. Our experimental results showed
that ocean acidification can attenuate N2O potential production
in the OMZ, which may also be an important reason for the
lower concentration of N2O at the bottom layer than in the
middle layer.

Our experiments also showed that the coupling of ocean
acidification and hypoxia increased N2O production in coastal
water columns. The decrease in oxygen levels (Gruber, 2011;
Gattuso et al., 2015) and the decrease in organic matter output to

the deep sea due to ocean acidification (Gehlen et al., 2011, due
to reduction in ballast effects) both affect N2O generation and
atmospheric release. Hypoxia stimulates seawater N2O potential
production with positive feedback effects on global warming,
and ocean acidification weakens the increase in N2O caused
by hypoxia. Previous studies argued that the occurrence of
seasonal hypoxia in the Bohai Sea is often accompanied by
ocean acidification (Riebesell and Gattuso, 2015; Wei et al., 2019;
Zhai et al., 2019; Song et al., 2020), but the results show that
hypoxia and ocean acidification are antagonistic to each other
and that artificial nitrogen input can amplify this change. This
finding provides a basis for more accurate estimations of offshore
greenhouse gas production models.

CONCLUSIONS

Ocean acidification and hypoxia decreased and increased
N2O potential production, respectively. Incubation experiments
showed that the combination of ocean acidification and
hypoxia significantly increased N2O potential production, but,
individually, there was an antagonistic relationship between the
two. Seawater pH, DIC, DO, NH+

4 -N, and TIN were the primary
predictors of sensitivity to N2O potential production. SEM
analysis showed that the direct and indirect effects of hypoxia
treatment onN2Opotential production changes counteracted the
effects of ocean acidification treatment. As hypoxia and ocean
acidification together increased N2O potential production, the
negative effects of ocean acidification were canceled out, resulting
in overall positive effects. Generally speaking, our results showed
that N2O potential production from coastal waters of the Bohai
Sea may increase under future climate change scenarios by
enhancing both ocean acidification and hypoxia. Future research
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should focus on whether these experimental results could be
extrapolated to directly assess the response between in situ
N2O potential production and climate change. Moreover, further
attention should be paid to areas with high anthropogenic
nitrogen input.
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