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The objective of this research is to explore the relationships among various
multidimensional factor groups and the density of fishery resources of ecosystems in
offshore waters and to expand the application of deep machine learning algorithm in this
field. Based on XGBoost and random forest algorithms, we first conducted regulatory
importance ranking analysis on the time factor, space factor, acoustic technology factor,
abiotic factor, and acoustic density of offshore fishery resources in the South China Sea.
Based on these analyses, data slicing is carried out for multiple factors and acoustic
density, and the relationship between multidimensional factor group and the density of
marine living resources in the ecosystem of offshore waters is elaborately compared
and analyzed. Importance ranking shows that the concentration of active silicate at
20 m depth, water depth, moon phase perfection, and the number of pulses per unit
distance (Ping) are the first-order factors with a cumulative contribution rate of 50%.
The comparative analysis shows that there are some complex relationships between
the multidimensional factor group and the density of marine biological resources. Within
a certain range, one factor strengthens the influence of another factor. When Si20 is in
the range of 0–0.1, and the moon-phase perfection is in the range of 0.3–1, both Si20
and moon-phase perfection strengthened the positive influence of water depth on the
density of fishery biological resources.

Keywords: acoustic technical factors, deep machine learning, fishery acoustics, active silicates, offshore
ecosystems, moon phase

INTRODUCTION

Long term monitoring data can be a good judgment of trends in fishery resources.
A trend of degradation is observed in the coastal ecosystem, and the ecological problems
such as the low age of fishery organisms, the miniaturization of individuals, and the
degradation of the trophic niche are intensified (Chen Z. Z. et al., 2006; Chen et al.,
2008, 2011; Qiu, 2002). Regulatory details in the short term are highly desirable for low
age organisms dominated ecosystems. From the perspective of adverse factors, short-lived
species have stronger adaptability, and survival opportunities, and their adaptive response to
environmental changes is more rapid, while long-lived species have lower adaptability due
to longer generations and higher energy demand (Lauchlan and Nagelkerken, 2020). In the
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short term, in order to adapt to the environmental changes,
marine organisms tend to concentrate in time and space, which
is more conducive to survival and reproduction (Chen and
Chen, 2020; Lauchlan and Nagelkerken, 2020). The community
distribution in the coastal ecosystem may also show a high
correlation with some ecological factors, which may deeply affect
the community structure and the distribution density of marine
living resources in the ecosystem in a short time.

At present, the impact of various ecological factors on marine
organisms has been extensively researched, including factors (Qiu
et al., 2010; Zhang et al., 2017; Doray et al., 2018; Selfati et al.,
2019; Chen and Chen, 2020; Lauchlan and Nagelkerken, 2020;
Ljungstrom et al., 2020; Lopez et al., 2020) such as nutrients,
temperature, water depth, longitude and latitude, transparency,
chlorophyll, etc. The nutrients mainly include active silicate,
active phosphate, nitrate, nitrite, and ammonium salt in seawater,
which are the main food of marine phytoplankton closely related
to aquaculture development. Therefore, the study of nutrient
elements is necessary for the routine investigation of seawater
chemistry, and it indicates the fertility of seawater. In the low
ridge area, the growth and reproduction of organisms are limited,
and the density of biological resources is relatively low. Whereas
in the fertile sea area, many organisms can live in groups,
and the density of biological resources is relatively high. Our
recent studies have shown that there is a regulatory correlation
between the density of fishery biological resources and the
concentrations of nitrite, nitrate, and phosphate in a single season
(Sun et al., 2020).

Compared with conventional studies, innovation lies in
increasing the number of types of ecological factors and using
deep machine learning method to analyze multidimensional
ecological factors synchronously. In addition to the conventional
factors, some factors of short-term time series also have potential
research value, such as the moon phase perfection (Imre and
Boisclair, 2005; Ndobe et al., 2014; Perez et al., 2019) (i.e., the
moon’s surplus and deficiency state), continuous-time (24 h),
etc. In terms of experimental conditions, different conditions
of equipment may also have potential impacts on the data
analysis, such as the working frequency (kHz) of the investigation
equipment and the number of pulses related to the speed of
navigation (Ping). The reported models in the literature are
linear (including generalized linear models), additive models
(including generalized additive models), and complex models
(including deep learning, deep machine learning, and others). In
general, models vary greatly in their expressiveness (formula or
graphical expression) and the goodness of fit. For example, the
linear model has the best expressiveness; however, the goodness
of fit is the least. The additive model is less expressive than
the linear model; however, it has higher goodness of fit. The
goodness of fit of the complex model is the highest; however,
the expression ability is poor. Moreover, Pearson’s correlation
coefficient, which reflects the strength of the linear correlation,
can only reflect the one-to-one relationship, and cannot measure
the many to one relationship. The XGBoost (eXtreme Gradient
Boosting) (Chen et al., 2016) and Random Forests (Svetnik et al.,
2003) are potential deep machine learning algorithms, which
are widely used in different fields, such as image classification

(Bosch et al., 2007), data analysis (Marmion et al., 2010; Chen
et al., 2017; Lu et al., 2018), and information classification (Torlay
et al., 2017). They are also used to evaluate the sensitivity of
features and calculate the importance scores for influencing
factors (Menze et al., 2009; Sun et al., 2020). In the present study,
we integrated these two deep machine learning algorithms to
fit the multidimensional ecological factors and the nautical area
scattering coefficient (NASC) (Chen G. B. et al., 2006; Knudsen
et al., 2006; Zhao et al., 2008; Sun et al., 2019), which reflects the
density of marine fishery biological resources.

In order to explore the combination of ecological factors
that are most likely to affect the community structure of the
ecosystem, we used the same standard to compare the multiple
ecological factors and analyzed the possible action mode of the
combination of ecological factors on the ecosystem.

MATERIALS AND METHODS

Site Description and Sampling
Acoustic data were collected using single boat bottom otter trawl
(engine: 441 kW, gross tonnage: 242 t, length of boat: 36.8 m,
width: 6.8 m) in the offshore of the Northern South China Sea,
named Beiyu 60011, with a scientific fisheries portable echo
sounder (70, 120, and 200 kHz; Figure 1). Sampling time is July
to August 2014, October to November 2014, April to May 2015
(see Table 1).

Fishery samples were collected from 99 sites using a single
boat bottom otter trawls, with 404 type otter trawl, 80.80 m
circumference, and 20 cm mesh size around the leading edge
of the net. The total length of the net was 60.54 m, and the
mesh size was 39 mm. It took 60 min per site. The sum mass
and the number of samples were measured. The determination
parameters of catches mainly include name, minimum body
length and maximum length, minimum and maximum weight,
total quantity and total weight.

Water temperature, salinity, and depth of water were obtained
using AML Plus X, and nutrients and transparency were also
collected. Both nutrient and transparency sampling methods use
standard ocean survey sampling methods. The sampling depths
for nutrients were 0, 10, and 20 m.

Data Preprocessing
Echoview software (Version 6.11) was used for the analysis of
the acoustic data. All data were checked carefully, and data not
belonging to the routes were excluded. Data from two water
layers were analyzed in the surface mixed layer (20 m below
effective acoustic data line, except for blind zone) and the bottom
cold-water layer (20 m above effective acoustic data line, except
for blind zone). The basic integral voyage unit was selected as
3 nmi. The integral threshold was set as −80 dB. Background
noise was removed, and the surface and bottom NASC (m2/nmi2)
integral values were collected, which were also fishery density for
the same volume as the sampling range for surface and bottom
cold-water layers was the same. NASC-based fisheries acoustics

1https://www.echoview.com/
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FIGURE 1 | Acoustic navigation route (red lines) and sampling sites (black points) employed during the fishery. The letters A–I represent each partition (Map created
in ArcGIS Desktop 9.3. https://www.esrichina.com.cn/).

technology has been widely used in the field of fishery resources
assessment (Maclennan and Holliday, 1996; Mason et al., 2005;
Simmonds and Maclennan, 2005).

Abiotic factors included both primary and derived. Primary
features include surface salinity (SS, ppt) and surface temperature
(ST, ◦C) at 2 m in the surface mixed layer, bottom salinity (BS,
ppt) and bottom temperature (BT, ◦C) at 2 m in the bottom
cold water layer, water depth (WD, m), longitude (X, ◦), latitude
(Y, ◦), time (24 h), year, month, moon-fullness ratio (moon),
transparency (TRA, m), and chlorophyll concentration (CHL,
mg/m3). The derived factors calculated on the basis of primary
factors included salinity difference (DS, ppt) and temperature
difference (DT,◦C) between the surface and bottom cold-water
layers, concentration difference between NO2

− at 0 m and 10 m
(N2-d010, mg/L), and a few others as given in Table 1.

The present study classified all factors into five categories: (1)
spatial factors; (2) temporal factors; (3) acoustic technical factors;
(4) dynamic abiotic factors or stressors, with all derived factor
(total 17), and (5) the other 21 factors or stressors, belonging to
the static abiotic factors. See Table 1 for details.

Data Expansion and Resampling of
Various Factors
The sample size, an important part of the analysis on factors, was
less than 100 in the offshore of the northern South China Sea in
this study and was limited by the number of survey sites. As the
sample size was not enough to analyze the data comprehensively,
we extended point data to face data by spatial interpolation.

Interpolation methods included Kriging and inverse distance
weighting (IDW). The methods were selected based on the
highest goodness of fit (R2) and minimum mean squared error
(MSE) (Sun et al., 2019). The longitude and latitude of resampling
were determined according to the acoustic navigation route,
and the minimum distance between sampling points was three
nautical miles. Abnormal data were screened and eliminated, and
2544 valid sample points were obtained.

Data Modeling
The relationships between the NASC and the 48 factors
were determined with XGBoost, Random Forests, and linear
regression models. Furthermore, all the 48 factors sampled were
made dimensionless using Min-Max Scaling (Normalization).
The model effect was estimated based on the highest goodness of
fit (R2) and MSE from cross-validation methods. The proportion
between the training dataset and the testing dataset was 7:3.
According to Zhou (2016), when the amount of data is small,
about 2/3 to 4/5 of the sample data should be used for training,
and the rest should be used for testing. Besides, a proportion of
7:3 of the training data and test data are also a kind of allocation
ratio usually employed for small data, which can effectively
improve the generalization ability of the model.

The XGBoost and random forests models are based on
multiple decision trees on the same dataset. Random Forests
model generates several trees, and each tree is independent
(Svetnik et al., 2003) with leaves of equal weight within the
model for obtaining higher accuracy. The XGBoost introduces
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TABLE 1 | List and grouping of all factors.

Group Factor
(abbreviation)

Factor (note) Unit Remark

Spatial
Factors

Water depth Water depth m

X Longitude ◦

Y Latitude ◦

Temporal
Factors

Y2014/Y2015 Year: 2014 or 2015

Month Month: 4, 5, 7, 8, 10,
11

Time Time (24 h):
0.00–23.99

Moon Moon phase
perfection: 0 – 1

Acoustic
Technical
Factors

kHz Acoustic frequency:
70, 120, 200

kHz

Ping Number of received
pulses per 3 nautical

miles

Static
abiotic
factors

SS Surface salinity ppt Surface

BS Bottom salinity ppt Bottom

ST Surface temperature ◦C Surface

BT Bottom temperature ◦C Bottom

TRA Transparency m Surface

CHL Chlorophyll
concentration

mg/m3 Surface

N2M0 NO2
− 0 m

concentration
mg/L Surface

N2M10 NO2
− 10 m

concentration
mg/L Surface

N2M20 NO2
− 20 m

concentration
mg/L Bottom

N3M0 NO3
− 0 m

concentration
mg/L Surface

N3M10 NO3
− 10 m

concentration
mg/L Surface

N3M20 NO3
− 20 m

concentration
mg/L Bottom

N4M0 NH4
+ 0 m

concentration
mg/L Surface

N4M10 NH4
+ 10 m

concentration
mg/L Surface

N4M20 NH4
+ 20 m

concentration
mg/L Bottom

P0 PO4
3− 0 m

concentration
mg/L Surface

P10 PO4
3− 10 m

concentration
mg/L Surface

P20 PO4
3− 20 m

concentration
mg/L Bottom

Si0 SiO3
2− 0 m

concentration
mg/L Surface

Si10 SiO3
2− 10 m

concentration
mg/L Surface

Si20 SiO3
2− 20 m

concentration
mg/L Bottom

(Continued)

TABLE 1 | Continued

Group Factor
(abbreviation)

Factor (note) Unit Remark

Dynamic
abiotic
factors

DS Salinity difference
between surface and

bottom layers

ppt

DT The temperature
difference between
surface and bottom

layers

◦C

N2D010 Concentration
difference between
NO2

− 0 and 10 m

mg/L

N2D020 Concentration
difference between
NO2

− 0 and 20 m

mg/L

N2D1020 Concentration
difference between
NO2

− 10 and 20 m

mg/L

N3D010 Concentration
difference between
NO3

− 0 and 10 m

mg/L

N3D020 Concentration
difference between
NO3

− 0 and 20 m

mg/L

N3D1020 Concentration
difference between
NO3

− 10 and 20 m

mg/L

N4D010 Concentration
difference between
NH4

+ 0 and 10 m

mg/L

N4D020 Concentration
difference between
NH4

+ 0 and 20 m

mg/L

N4D1020 Concentration
difference between
NH4

+ 10 and 20 m

mg/L

P010 Concentration
difference between
PO4

3− 0 and 10 m

mg/L

P020 Concentration
difference between
PO4

3− 0 and 20 m

mg/L

P1020 Concentration
difference between

PO4
3− 10 and 20 m

mg/L

Si010 Concentration
difference between
SiO3

2− 0 and 10 m

mg/L

Si020 Concentration
difference between
SiO3

2− 0 and 20 m

mg/L

Si1020 Concentration
difference between

SiO3
2− 10 and 20 m

mg/L

leaf weighting to penalize those trees that do not improve the
model predictability (Chen and Guestrin, 2016; Chen et al.,
2016). In order to improve the efficiency of model optimization,
some important parameters can be adjusted. If satisfactory
results are achieved, model optimization is ended. If the results
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of model optimization are not satisfactory, fine adjustment of
parameters that are more complex is carried out. Here, we
adjusted the learning_rate, n_estimators, and the subsample
(Chen and Guestrin, 2016). With the optimized model, feature
weighting of the 48 factors on fishery resource density was
calculated and their importance scores were obtained.

The analysis was performed in Python 3.7 using the Scikit-
Learn package (Pedregosa et al., 2013) and the XGBoost library
(Chen and Guestrin, 2016; Chen et al., 2016).

Importance Ranking of Factors
The analysis of the sensitivity of factors provides a score that
indicates the value of each feature in the construction of decision
trees within the model. In order to reduce the error, the
importance scores for each factor in XGBoost and random forests
were averaged. The sum contribution was set as 50, 80, and 95%,
ranked from level one to level four, meaning the first level was the
most important, and the fourth was the lowest.

Association Analysis of Significant
Factors
The association between significant factors and density was
comprehensively analyzed by Pearson’s correlation coefficient as
well as multidimensional factor slicing.

RESULTS

Model Fitting Effect
The two regulatory deep machine learning algorithms (XGBoost
and Random Forest) performed much better than the linear
regression model. It is reflected in the differences of both
goodness of fit (R2) and MSE values (Figure 2). Both
XGBoost and Random Forests have advantages; however, the
R2 of Random Forests is slightly higher, but the MSE of
XGBoost is lower.

The Order of Importance for Each Factor
According to Figure 3, the total score of the first level factors
affecting the density distribution of fishery resources is about
0.5 (characteristic contribution rate is 50%), which includes
SiO3

2− 20 m concentration (Si20, mg/L), water depth (m), and
moon phase perfection (moon, 0∼1). The importance score of
SiO3

2− 20 m concentration (Si-20 m, mg/L) is 0.26 (characteristic
contribution rate 26%), which is >0.20 and can be used as the
maximum probability influencing factor. Water depth (m) with
an importance score of 0.12 (characteristic contribution rate of
12%), which is >0.10 and is a large probability influencing factor.
The total score of the second level factor is about 0.3, mainly
including 21 factors, such as NO2

− 0 m concentration (N2M0,
mg/L), NH4

+ 0 m concentration (N4M0, mg/L), SiO3
2− 10 m

concentration (Si10, mg/L), time (24 h, 0.00–23.99), temperature
above 2 m at the bottom (BT, ◦C), month (4–5, 7–8, 10–11),
salinity above 2 m at the bottom (BS, PPT), the temperature
difference between surface and bottom (DT, ◦C), longitude (X,

◦

),
chlorophyll (CHL, mg/m3), concentration difference of PO4

3−

between 0 and 10 m (P010, mg/L), transparency (TRA, m), the
concentration difference of NO2

− between 0 and 20 m (N2D020,
the concentration of NH4

+ 20 m (N4M20, mg/L), and the
concentration difference of NO3

− between 0 and 20 m (N3D020,
mg/L). The total score of the third level factor is about 0.15,
including 16 factors such as temperature at 2 m of surface layer
(ST, ◦C), NO2

− 20 m concentration (N2M20, mg/L), PO4
3−

20 m concentration (P20, mg/L), salinity at 2 m of surface layer
(SS, ppt), and so on (see Figure 3 for details). The total score
of the fourth level factor is about 0.05, including 12 factors,
which are the lowest group of importance scores, including the
concentration difference of SiO3

2− between 0 and 10 m (Si010,
mg/L), the concentration difference of SiO3

2− between 0 and
20 m (Si020, mg/L), and so on (see Figure 3 for details).

The total score represents the sum of the importance of all
such factors, and the average represents the arithmetic mean
of the importance of all such factors. The total score shows
that the static abiotic factors ranked the highest (Figure 4),
accounting for more than half of the importance, followed by
the dynamic abiotic factors, spatial factors, temporal factors, and
finally acoustic technical factors. The average score shows that
spatial factors have the highest mean value, followed by the static
abiotic factors, temporal factors, and acoustic technical factors,
and finally, dynamic abiotic factors.

In the first level factor, static factor, spatial factor,
temporal factor, and acoustic technical factor account for
one share, respectively.

Pearson’s Correlation of the First-Order
Factor
The first-order factors showing positive correlations with the
NASC are water depth and Ping, and that showing a negative
correlation is Si20 (Figure 5). However, there is only a very
weak linear correlation between the NASC and the moon.
The moon phase, which seems to be relatively independent,
has a positive correlation with Si20 and Ping; however, the
correlation with Si20 is slightly stronger than that with Ping.
Therefore, moon phase perfection may act on both the negative
and positive factors related to the NASC. Overall, the NASC is
independent of water depths, while the other factors have certain
internal relations, and the moon phase perfection may play a
bi-directional balancing role in it.

Spatio-Temporal Relationships Among
the NASC, Si20, and Water Depth
The correlation characteristics between the NASC and the Si20
are different in different seasons (Figures 6–8 and Table 2).
However, the correlations are similar for A, B, C, G, H, and I, in
different seasons, in which the NASC and the Si20 are positively
correlated for B, while the rest shows a negative correlation. The
seasonal differences in the correlation between NASC and Si20 in
D, E, and F regions are prominent.

Slice Analysis of Multidimensional Data
The distribution curve of NASC is mainly in the range of
60–200 m2/nmi2, and there is no significant difference among
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FIGURE 2 | The comparison of the goodness of fit (R2) and mean squared error (MSE) of the three algorithms: the black inverted triangle represents R2, and the blue
square is the MSE.

different moon phase perfection (Figure 9). The distribution of
Si20 is concentrated in the range of 0.12–0.20 mg/L during the
moon of 0.0–0.3, and the distributions in other moon phases are
gentle. There is no significant linear correlation in the scatter
distribution map; however, different Y corresponding to the
same variable X shows different scatter distribution patterns.
For example, the scatter distribution is crescent, circular, and
rectangular, when X is NASC and Y is Si20, water depth,

FIGURE 3 | The comprehensive order of importance between the acoustic
density of fishery resources and the 48 factors of five major categories in the
offshore ecosystem of the South China Sea. Green, blue, yellow, and red
represent the first level to the fourth level, respectively, and the cumulative
contribution rate ranges are 50, 80, and 95%, respectively.

and Ping, respectively. The distribution of dark color is more
concentrated than that of the light color, which corresponds to
each phase of the moon.

Multidimensional data provides more information and is
more conducive to regulatory correlation analysis.

There are several interesting findings in Figure 10:

(1) It seems that the moon phase perfection has an effect on
the fluctuating range of Si20. In the 0.0–0.4 range of lunar
phase, Si20 is relatively stable, of which only the phase 0.2
shows a small amount of continuous fluctuation within
0.1–0.6, and the fluctuation depth is about 60 m, and the
corresponding abscissa NASC value is 500. In the 0.5–1.0
range of the lunar phase, Si20 fluctuates greatly, and the

FIGURE 4 | Comparison of the total score (blue stripe) and the average score
(red stripe) of different categories of factors.
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FIGURE 5 | Pearson’s correlation matrix between the nautical area scattering
coefficient (NASC) and the first-order factors.

maximum water depth is mainly in the shallow water area
(within 45 m) or the deep-water area (150–200 m). When
the moon phase is 0.8, the fluctuation range is the largest,
and the abscissa NASC is concentrated in the range of 0–
500. When the moon phase is 0.9 and 1.0, NASC increases
and disperses in the high-value range of Si20.

(2) When Si20 is close to 0, and the moon phase perfection
is greater than or equal to 0.3, the NASC value shows a
positive correlation with water depth; that is, the deeper the
water depth, the greater the NASC value.

(3) ] When the moon phase perfections are0.2, 0.5, 0.7,
0.8, and 0.9, the correlation trend between Si20 and
NASC is reversed.

(4) Higher the Ping value (the smaller the point, i.e., the lower
the ship speed) shows a higher aggregation of points. When
the moon is 0.5, 0.7, and 0.8, high Ping value clusters of Si20
and NASC appear in shallow water.

DISCUSSION

In this study, we used a deep machine learning algorithm
to analyze the importance of five kinds of factors to NASC
and further carried out multidimensional data analysis on
several main factors. Some results are dialectically analyzed,
including algorithms, factor categories, analysis strategies,
relative relations and so on.

Deep Machine Learning Algorithm
Compared with deep learning, deep machine learning focuses
more on ensemble learning algorithms, such as XGBoost and
Random Forests. Both models are machine learning algorithms
with better performance (higher R2 and smaller MSE value)
than the linear regression model under the condition that data
quality and sample size are the same. Moreover, with the increase
of data volume, the model performance also improves (Sun
et al., 2020). Based on the interpolation methods, data size could
be extended using coordinates (Burrough and Mcdonnel, 1999;
Freeman and Moisen, 2007; Sales et al., 2007; Pereira et al., 2015;

Sun et al., 2017) to improve the performance of deep machine
learning algorithms.

Deep machine learning algorithm has a wide range of
application potential and can be used for multi-domain and
interdisciplinary comprehensive analysis. XGBoost and Random
Forests are widely used in several areas, such as image
classification (Bosch et al., 2007), data analysis (Marmion et al.,
2010; Chen et al., 2017; Lu et al., 2018), and information
classification (Torlay et al., 2017). They are also used to evaluate
the sensitivity of features and calculate the importance scores
for all factors (Menze et al., 2009; Sun et al., 2020). Through
the goodness of fit (R2), MSE, and importance ranking of
feature factors obtained using deep machine learning algorithm
modeling; we can analyze and infer the relationship, which is
difficult to find using linear functions. High goodness of fit and
relatively small MSE indicate that the modeling performance is
good, and the model has high credibility for data understanding
and mining. The importance ranking of feature factors reflects
the correlation strength of various factors on the acoustic density
of marine fishery organisms in this study.

Instead of using the importance score of XGBoost or Random
Forests separately, we used the average of the two methods. As
XGBoost and Random Forests models have their own advantages
and disadvantages (Pedregosa et al., 2013; Chen et al., 2016), in
order to avoid the extreme of the two methods, we adopted a
compromise approach. Besides XGBoost and Random Forests
models, support vector machine (SVM) (Huang et al., 2014)
and logistic regression (Cheng et al., 2006; Pal, 2012; Talenti
et al., 2015) are available for feature selection. If a simple method
can achieve good modeling results, it should be used first.
However, most of the data often possess complex regulatory
relations; therefore, deep machine learning often has better
performance for research projects with a multidimensional and
a large amount of data.

Importance of Five Categories of Factors
The factors related to the distribution of marine living resources
are of many kinds. In the study, we mainly select five categories
that can be divided into four categories, namely, spatial factors,
temporal factors, acoustic technology factors, and physical and
chemical factors. Among them, physical and chemical factors
are divided into two categories, namely static abiotic factors
and dynamic abiotic factors. Overall, 21 static abiotic factors, 17
dynamic abiotic factors, 5 temporal factors, 3 spatial factors, and
2 acoustic technical factors are used in this study.

It is observed that the static factor is the most important
factor among the five categories and is related to a number
of factors. Physical and chemical factors, also known as abiotic
factors, are the various elements in the living environment of
marine organisms that are the most directly related to the survival
and distribution of marine organisms. There are many kinds of
abiotic factors, and these factors in different horizontal or vertical
positions may have different degrees of correlation with the
survival of marine organisms. This correlation is closely related
to the multidimensional ecological factors (Sun et al., 2020). The
average importance score of dynamic physical and chemical
factors is the lowest, which is similar to that of a single season
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FIGURE 6 | The temporal and spatial distribution of the nautical area scattering coefficient (NASC). The color green is the lowest, yellow is the middle, and red is the
highest. (A) July to August 2014; (B) October to November 2014; (C) April to May 2015.

FIGURE 7 | The temporal and spatial distribution of Silicates at 20 m depth (Si20). Blue is the lowest, yellow is the middle, and red is the highest. (A) July to August
2014; (B) October to November 2014; (C) April to May 2015.
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FIGURE 8 | The spatial distribution characteristics of water depth measured by acoustic equipment: blue is the shallowest, yellow is the middle, and red is the
deepest.

(Sun et al., 2020). Therefore, the types of dynamic physical and
chemical factors in the study can be appropriately reduced to
simplify the composition of characteristic factors and improve
modeling efficiency.

As the results of this paper show, the relationship between the
distribution of marine organisms and multidimensional factors
is complex and regulatory. The importance of the same factor
in different time periods and different regions is different, which
may be a positive correlation or a negative correlation. The
average importance score of the spatial factor is the highest, and
the average importance score of the temporal factor is the third,
which indicates the necessity of comprehensive research on these
two factors. Spatial factors are mainly used to measure some
horizontal spatial characteristics, such as longitude, latitude, and
water depth. The temporal factor is mainly used to quantify
some variables with time characteristics, such as year, month,
time, and moon phase perfection. There are few reports about
the influence of the time and the moon phase on the density of
marine living resources.

Different kinds of data have their own units of measurement,
and for each of these factors, different acquisition methods or
technical means may also have certain errors, which may hamper
the research results. Therefore, acoustic technical parameters are
taken as characteristic factors. These factors are several important
parameters in the acoustic evaluation method of fishery resources
and are related to the acquisition method of data. The factor
"kHz" is used in this paper to evaluate the level of influence of
different sound frequencies on the survey data (Brierley et al.,
2004; Yasuma et al., 2006; Godlewska et al., 2009; Guillard et al.,

2014; Garcia-Seoane et al., 2016). Another acoustic technical
factor, Ping, evaluates the level to which navigation speed affects
survey results. The result shows that the average importance score
of acoustical technical factors is not the lowest among the five
categories indicating that related technical factors may have some
influence on the research results.

Analysis Strategy of the
Multidimensional Ecological Factors
All kinds of factors are important nodes of the multidimensional
network. Whether they are related to the survival and distribution
of marine living resources, climate, and environmental factors,

TABLE 2 | The positive or negative correlations between the NASC and the Si20
values in different seasons in the A–I region.

Region July to
August

October to
November

April to
May

Average depth
(m)

A − − − 29.59

B + + + 59.22

C − − − 113.25

D − + + 45.25

E + − + 123.33

F + − − 49.31

G − − − 119.47

H − − − 47.12

I − − − 112.74
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FIGURE 9 | The scatter distribution of the nautical area scattering coefficient (NASC) and main factors, and the diagonal diagram is the distribution curve of each
factor in different moon phase perfections. The color of the dot or line gradually deepens with the increase of the moon’s degree of fullness.

etc., they all have complex relationships. However, the difficulty
of analysis increases with the dimension.

We have attempted to slice major factors, such as time or
space factors, by selecting a factor or a class of factors as slicing
angles. In the study, the temporal factor of the first-order factor,
moon phase perfection, was used as the slicing angle for the
multidimensional analysis.

It is worth considering the choice of model fitting and
application ability. Increasing the time dimension may not
necessarily improve the fitness of the model, rather reduce fitness.
The multi-season fitting is about 80% and the single-season fitting
is up to 94% (Sun et al., 2020); however, the generalization of the
model is greatly limited. The reduction of time span makes the
model only useful to analyze the relationship between existing
data and loses the ability to predict future data. Therefore, a
large time span may lose fitness; however, its ability to predict
future data improves.

Targeted analysis based on known or possible features of
the research object may have a better modeling performance.
Ocean water bodies are layered cubic spaces, and marine life
distributions vary from region to region, both in horizontal
space (longitude and latitude) and vertical space (different
water layers or depths). Therefore, stratified analysis of
marine biological resource density is usually better than non-
stratified analysis. The fitting degree of stratified analysis is
9–14 percentage points higher than that of non-stratified
analysis (Sun et al., 2020). That is, the stratified feeding
characteristics of the research object (marine organisms)
can be combined to analyze the vertical space, which
is more conducive to revealing the internal relationship

between marine organisms in different water layers and the
multidimensional factors.

Relative Relationship Between
Multidimensional Factors and Density of
Fishery Biological Resources
There is no absolute relationship between the multidimensional
ecological factors and the density of fishery biological resources,
or there is no necessary law between them, at least at present.
Even the most important primary factor, their linear correlation
to the density of fishery biological resources, is weak or very
weak. However, from the point of view of the modeling effect,
the goodness of fitting has exceeded 80%, which has far exceeded
the linear fitting, indicating that there is a relationship between
each factor and the density of the fishery biological resources.

This kind of relationship can be simulated linearly by the
linearization method; however, it will increase errors and even
mislead due to limitations. This is because the relationship is
relative, limited, or applicable, and it may be a combination of one
or more complex ecological factors, such as the first-order factor
combination (Si20, water depth, moon-phase perfection, Ping)
in this study. This is confirmed by exploring the relationship
between NASC at several slice angles. The influence of each
factor on the density of fishery biological resources is restricted
by other factors, and it, in turn, also has certain restrictions on
the influence of other factors. Within a certain range, one factor
strengthens the influence of another factor. For example, when
Si20 is in the range of 0–0.1, and the moon-phase perfection
is in the range of 0.3–1, both Si20 and moon-phase perfection
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FIGURE 10 | Scatter plot of multidimensional data: the color of the points distinguishes the water depth, and the size of the points distinguishes the number of Ping
in each acoustic analysis unit.

strengthened the positive influence of water depth on the density
of fishery biological resources. As silicate is a necessary nutrient
for some phytoplankton (Sommer, 1986; Egge and Aksnes, 1992;
Egge and Jacobsen, 1997; Kamykowski et al., 2002; Torres et al.,
2011; Severin et al., 2018; Wang Y. et al., 2018; Barrera-Alba et al.,
2019; Gogoi et al., 2019; Wei et al., 2020), and phytoplankton is
an important bait for fish, the distribution regularity of silicate
affects the distribution of bait organisms of fishery organisms
to a certain extent. Further analysis shows that the silicate
concentration at 20 m has a much higher effect on marine biota
than that at 10 and 0 m. At the same time, with the increase
of the moon phase, fortnightly tide and moonlighting changes
may enhance bait organism growth and reproduction, resulting
in the rapid consumption of silicate in seawater. As a result the

feeding activity of marine organisms is strengthened, and the
negative correlation between silicate concentration at 20 m and
fishery biological resource density is strengthened. In addition to
the fluctuation caused by the fixation and catabolism of silicate
in organisms, human activities, ocean currents, and even the
vertical migration of marine organisms may also cause vertical
disturbance to silicate in different water layers, resulting in the
fluctuation of silicate concentration at 20 m. The monthly phase
completeness is a reflection of the intensity of natural light
at night. Without considering the weather changes, the higher
the degree of fullness represents, the higher the brightness of
the sea surface. The effect of the monthly phase satisfaction
on the ecological factor combination is indeed an unexpected
discovery that may be related to the night phototaxis of marine
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life. Although the change of activity may not increase the resource
density, it is helpful for marine organisms to find food. A related
factor is a time, as continuously recorded 24/7 times can detect
changes in marine life’s behavior over the periods, such as the diel
vertical migration of marine life (Sekino and Yamamura, 1999;
Simard and Lavoie, 1999; Schabetsberger et al., 2000; Benoit-
Bird, 2006; Davoren et al., 2006; Melanie et al., 2015; Kao et al.,
2016). The ranking of the factor Time indicates that the density
of marine living resources does have some temporal differences.

These relative relationships are obviously not absolute. The
more dimensions of ecological factors involved in the analysis,
the closer they are to the truth. On the contrary, the fewer the
dimensions, the more unilateral the results are. A particular factor
may have a very weak linear correlation with the distribution of
marine living resources (Pearson’s correlation coefficient < 0.2),
however, it may form a factor combination with strong regulatory
correlation with other multidimensional factors, such as the
moon phase perfection. We can further infer that the research
value of a factor in the multidimensional factor combination is
often much higher than that of the independent existence of this
factor. This study, therefore, includes not only an increase in
correlation but also a decrease in correlation. The importance
of nitrite is very high in the single-season dimension (Sun et al.,
2020); however, it is reduced to the second-order in the multi-
season analysis.

Some factors with great significance showed low importance
score, such as temperature, kHz, longitude (X), chlorophyll,
salinity, nitrite, and ammonium salt. Sea surface temperature
is one of the major factors influencing the surface layer and
bottom layer (Sun et al., 2020). However, when the time scale
is relatively large, the importance of temperature is less than
that of single season. The temperature has an influence on fish
parasites (Franke et al., 2017) and fish community structure
(Riegl, 2002), and temperature change greatly influences fish
behavior (Stegmann and Yoder, 1996). The sensitivity and extent
of the reaction to temperature variation differed with species and
age (Elliott and Hurley, 2010). Chlorophyll is less important in
both single-season and multi-season time scales, which is often
considered having a 30-day accumulation period prior to being
reflected in the higher trophic levels through ocean food chains
(Shen et al., 2010; Wang L. et al., 2018). The importance of
nitrite in a single season is one level higher than that of a multi-
season. In addition, nitrite is of the highest importance at 10
and 20 m, respectively, in the surface layer and the bottom layer
in a single season, while nitrite is of the highest importance at

0 m in the multi-season. Nitrite is usually taken up across the
gills along with chloride, which disturbs several physiological
functions (Martinez and Souza, 2002). Salinity shows certain
importance in the form of surface-bottom salinity difference
in single-season stratification analysis, while bottom salinity is
more important in the multi-season non-stratification analysis.
Generally, the salinity of the offshore waters varies little in a single
season, while the difference between surface and bottom salinity
is a relatively larger factor carrying more information. In multi-
season, the variation of bottom salinity fluctuates greatly due to
climate change and ocean currents. For a non-stratified analysis,
this is one of the necessary conditions for the formation of factors
of greater importance to the near-shore ecosystem. In addition,
the order of kHz also indicates that the impact of different sound
wave frequencies (70, 120, 200 kHz) on offshore fishery resources
assessment is not very different.
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