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Mediterranean marine biodiversity is still underestimated especially for groups such
as nudibranchs. The identification of nudibranchs taxa is challenging because few
morphological characters are available and among them chromatic patterns often do
not align with species delimitation. Molecular assessments helped unveiling cryptic
diversity within nudibranchs and have been mostly based on mitochondrial markers.
Fast evolving nuclear markers are much needed to complement phylogenetic and
systematic assessments at the species and genus levels. Here, we assess the utility
of the nuclear Internal Transcribed Spacer 2 (ITS2) to delimit species in the eolid
nudibranchs using both primary and secondary structures. Comparisons between the
variation observed at the ITS2 and at the two commonly used mitochondrial markers
(COI and 16S) on 14 eolid taxa from 10 genera demonstrate the ability of ITS2 to
detect congeneric, closely related, species. While ITS2 has been fruitfully used in several
other mollusc taxa, this study represents the first application of this nuclear marker
in nudibranchs.

Keywords: integrative taxonomy, Heterobranchia, molecular morphology, species delimitation, secondary
structure, evolution

INTRODUCTION

Mediterranean marine biodiversity is still underestimated and new cryptic species continue to be
identified, described, and added to our inventory of marine fauna (Calvo et al., 2009; Uriz et al.,
2017; González-Castellano et al., 2020; Furfaro et al., 2021). Our knowledge on diversity of groups
such as nudibranchs is recently increasing as demonstrated by the number of studies published
in the last years (Cella et al., 2016; Furfaro and Trainito, 2017; Korshunova et al., 2017, 2019;
Furfaro et al., 2018; Chimienti et al., 2020; Furfaro and Mariottini, 2020). In nudibranchs, few
morphological characters are available, and the same chromatic pattern is often shared between
closely related species, thereby making difficult the species identification based on morphology
alone (Johnson and Gosliner, 2012; Furfaro et al., 2021). These uncertainties are overcome with
the application of an integrative taxonomic approach.

The mitochondrial gene cytochrome oxidase c subunit 1 (COI) is the reference marker for DNA
barcoding and species delimitation in animals, due to its fast evolutionary rate that makes this
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marker very useful to investigate diversity at lower taxonomic
levels (Bucklin et al., 2011). Almost all the published studies
concerning nudibranchs include the COI marker, and most
of them also combine the mitochondrial 16S rRNA, which
has proved to be valuable for species delimitation (Lydeard
et al., 2000; Alqudah et al., 2015). However, limitations of
using only mitochondrial data in taxonomic and evolutionary
studies are well known (Moritz and Cicero, 2004) and additional
nuclear markers are needed to improve results or resolve species
delimitation in closely related taxa. To date, the most used
nuclear marker in nudibranch phylogenetics and systematics is
the histone H3. However, this marker is weakly informative,
given its low evolutionary rate, especially at the species or genus
levels (Galia-Camps et al., 2020; Furfaro et al., 2021).

The nuclear Internal Transcribed Spacer 2 (ITS2) rRNA has
proved informative at both lower and higher taxonomic levels
(Koetschan et al., 2010) in many invertebrates including marine
molluscs (Oliverio et al., 2002; Salvi et al., 2010, 2014; Salvi and
Mariottini, 2012, 2017). The ITS2 is located inside the rRNA gene
cluster, between the 5.8S and 28S rRNA genes (Tague and Gerbi,
1984). A peculiar feature of this marker is its bivalent patterns of
variation: while its primary sequence has a high mutation rate,
the secondary RNA structure is very conserved, probably due
to its crucial role in the processing of the “pre-rRNA” (Joseph
et al., 1999; Côté and Peculis, 2001). For this reason, it has
been successfully applied both to barcoding analyses (Müller
et al., 2007; Yao et al., 2010) and molecular phylogenies (Wade
and Mordan, 2000; Oliverio et al., 2002). In molluscs, the most
common secondary structure of the ITS2 rRNA has four/five
helices (domains D1–5). The first two domains (D1 and D2) on
the 5′ region are more conserved and shorter than the two or
three domains of the 3′ region (D3 and D4/D5), which are often
ramified (Joseph et al., 1999; Schultz et al., 2005). In the domains
D3 and D4, it is located the so-called apical STEM, which is an
extremely conserved sequence that has been described in a few
molluscan taxa (Oliverio et al., 2002; Coleman, 2007; Salvi and
Mariottini, 2012).

The barcoding power of the ITS2 is anticipated by the finding
that there is a correlation between differences at the ITS2
sequence-structure and the biological species concept (Müller
et al., 2007). In this context, a very useful character for species
delimitation inferences is represented by Compensatory Base
Changes (CBCs), i.e., two mutations that occur in a paired region
of a primary RNA transcript so that pairing itself is maintained
(e.g., G-C mutates to A-U) (Müller et al., 2007).

Despite there are now more than 390,000 sequences available
(April 7, 2021) in the “ITS2 Database”1 (Koetschan et al., 2010),
ITS2 studies are still limited to a few groups of molluscs. To date
the ITS2 has been used only in two studies on nudibranchs and
none of them have combined the analysis of the primary sequence
with the secondary structure (Eriksson et al., 2006; Trickey, 2013).

The aim of this study is to assess the utility of the nuclear
ITS2 to delimit species in the eolid nudibranchs (suborder
Cladobranchia) using both primary and secondary structures
and to identify diagnostic CBSs and semi-CBCs that can aid

1http://its2.bioapps.biozentrum.uni-wuerzburg.de/

identification of species and genera, being useful for future
studies on other nudibranchs groups.

MATERIALS AND METHODS

Sample Collection and DNA Sequencing
Specimens of Calmidae Iredale and O’Donoghue, 1923,
Coryphellidae Bergh, 1889, Facelinidae Bergh, 1889, Fionidae
Gray, 1857, Flabellinidae Bergh, 1889, and Trinchesiidae F.
Nordsieck, 1972 from Mediterranean and eastern Atlantic
localities were collected by SCUBA diving (Supplementary
Table 1). Samples were preserved in 95% EtOH, and DNA was
extracted using the salting out procedure (Aljanabi and Martinez,
1997). Amplifications were performed by PCR using universal
primers: LCO1490 and HCO2198 (Folmer et al., 1994) for the
COI, and 16Sar-L and 16Sbr-H (Palumbi et al., 2001) for the 16S
fragment. The newly designed forward primer ITS2 MAT-03 [5′-
CGUCGC(A/G)GACGCCUC(U/C)GCGC-3′] and the reverse
primer ITS2 MOD Rev: 5′-AGTTCTTTTCCTCCGCTTA-3′

TABLE 1 | ITS2, COI, and 16S interspecific genetic distance values (p-distance:
lower; K2p: upper) between representatives of six eolid families at the ITS2, COI
and 16S loci (ITS2/COI/16S).

Calmidae C. gla C. gob

Calma
glaucoides

– 0.055/0.142/0.031

Calma
gobioophaga

0.053/0.127/0.030 –

Coryphellidae C. ver F. lin M. gra

Coryphella
verrucosa

– 0.191/0.114/0.027 0.406/0.163/0.034

Fjordia lineata 0.168/0.106/0.027 – 0.371/0.135/0.034

Microchlamylla
gracilis

0.311/0.145/0.033 0.290/0.123/0.033 –

Facelinidae C. ele D. odh F. ann

Caloria elegans – 0.485/0.229/0.167 0.424/0.225/0.158

Dicata odhneri 0.355/0.195/0.149 – 0.504/0.236/0.138

Facelina
annulicornis

0.323/0.194/0.142 0.360/0.201/0.125 –

Flabellinidae F. aff F. gab F. isc

Flabellina affinis – 0.480/0.232/0.076 0.503/0.184/0.075

Flabellina
gabinierei

0.354/0.197/0.071 – 0.310/0.148/0.042

Flabellina
ischitana

0.366/0.163/0.072 0.252/0.133/0.041 –

Fionidae;
Trinchesiidae

F. pin T. cae T. mor

Fiona pinnata – 0.380/0.232/0.206 0.387/0.241/0.188

Trinchesia
caerulea

0.294/0.198/0.179 – 0.143/0.126/0.060

Trinchesia
morrowae

0.298/0.205/0.165 0.130/0.114/0.058 –

Species acronyms: C. gla, Calma glaucoides, C. gob, Calma gobioophaga; C. ver,
Coryphella verrucosa; F. lin, Fjordia lineata; M. gra, Microchlamylla gracilis; C. ele,
Caloria elegans; D. odh, Dicata odhneri; F. ann, Facelina annulicornis; F. aff,
Flabellina affinis; F. gab, Flabellina gabinierei; F. isc, Flabellina ischitana; F. pin, Fiona
pinnata; T. cae, Trinchesia caerulea; T. mor, Trinchesia morrowae.
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were used for the ITS2. PCR conditions were the same as
reported in Furfaro et al. (2016b). Amplicons were sequenced by
Macrogen Inc. (Netherlands).

Analysis of Primary Sequences
ITS2, COI, and 16S DNA sequences were aligned together with
GenBank sequences. We used the Muscle algorithm implemented
in MEGA X (Kumar et al., 2018) for COI dataset, while for
ITS2 and 16S, sequence-structure alignments were built using
combined sequence-structure models in 4Sale (Seibel et al., 2008)
and further optimised considering the consensus sequence of
each rRNA domain. The software “WebLogo”2 was used to
generate a graphical representation of conserved domains and
stems based on multiple sequence alignment (Crooks et al.,
2004). Genetic distance (p-distance and Kimura 2-paramer,
K2p, distance) and segregating sites were calculated using the
programme Mega X for each marker (Kumar et al., 2018). Species
delimitation analyses based on both genetic distances [Automatic
Barcode Gap Discovery (ABGD) (Puillandre et al., 2012) and
Species Identifier (Meier et al., 2006)] and on phylogenetic
trees [Bayesian and maximum-likelihood analyses and Bayesian

2https://weblogo.berkeley.edu/logo.cgi

Poisson Tree Process (bPTP) (Zhang et al., 2013)] were carried
out with the ITS2 dataset. Acanthodoris pilosa (Abildgaard
in Müller, 1789) was used as the outgroup in BI and ML
analyses. The GTR + I + G model was selected as the best
substitution model by JModelTest 0.1 (Posada, 2008) according
to the Bayesian information criterion (BIC). BI analyses were
carried out with MrBayes 3.2.6 (Ronquist et al., 2012) running
four Markov chains of five million generations each, sampled
every 1000 generations. Consensus trees were calculated on trees
sampled after a burnin of 25%. Maximum-likelihood analyses
were performed in raxmlGUI 1.5b2 (Silvestro and Michalak,
2012), a graphical front-end for RAxML 8.2.1 (Stamatakis,
2014), with 100 independent ML searches and 1000 bootstrap
replicates. Additionally, the recently developed Assemble Species
by Automatic Partitioning (ASAP) analysis (Puillandre et al.,
2021) was performed using default parameters.

Secondary Structure Modelling and
Compensatory Base Changes (CBCs)
Analysis
Complete ITS2 rRNA and partial 16S rRNA (region from
L7 to L13 stem-loops) secondary structures were obtained

FIGURE 1 | Bayesian phylogenetic tree based on the ITS2 dataset. Bayesian posterior probabilities and Bootstrap values based on the maximum-likelihood analysis
are indicated at each node, respectively. On the top-left is the ABGD histogram showing the gap between intraspecific (dark grey) and interspecific (light grey)
distances calculated with the Kimura-2-parameter model (K2P). Results of species delimitation analyses are reported in I (ASAP) II (bPTP) and III (Species Identifier).
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using the programme mfold (Zuker and Jacobson, 1998; Zuker,
2003). Best-supported folding models were predicted combining
a thermodynamic approach (Mathews et al., 1999) with a
close inspection of paired conserved regions. CBCs of rRNA
sequence-structure were calculated and visualised in 4Sale
(Seibel et al., 2008).

RESULTS

ITS2, COI, and 16S Primary Sequence
Comparisons in Eolid Nudibranchs
Genetic distance values for ITS2 rRNA and the mitochondrial
COI and 16S rRNA markers are reported in Table 1. The lower
genetic distance at ITS2 was obtained for Calma spp. with 5.3
and 5.5% p-distance and K2p, respectively, while the higher
values were observed for Flabellina spp. with 36.6 and 50.3%.
ITS2 is the more variable marker in most of the cases (Table 1).
The lowest intrageneric p-distance and K2p values retrieved
for the COI are 11.4 and 12.6% for Trinchesia spp. while the
highest ones are 19.7 and 23.2% for Flabellina spp. (Table 1).
Lowest values for the 16S marker were 3.0 and 3.1% between
congeneric Calma spp., while the highest values were 7.1 and
7.6% for Flabellina spp. Intergeneric ITS2 p-distance and K2p
values ranged from 16.8 to 19.1% between Coryphella and Fjordia
species to 36 and 50.4% between Facelina and Dicata species.

Genetic distance values of the two ITS2 conserved domains D1
and D2 are reported in Supplementary Table 2. Results from all
the species delimitation analyses were congruent to each other
(Figure 1) revealing the ability of the ITS2 to detect species even
if closely related. Results from BI and ML phylogenetic inferences
produced the same topology (statistical supports at each node are
reported in Figure 1) and recovered two distinct monophyletic
clades within Fjordia lineata (Lovén, 1846) that will need further
taxonomic assessment.

ITS2 and 16S Secondary Structure
Comparisons in Eolid Nudibranchs
The ITS2 rRNA alignment consisted of 44 sequences, from 14
species in 10 genera and six families (Supplementary Table 1
and Supplementary Figure 1), and 668 positions, among which
446 segregating sites. The ITS2 sequence length ranged from 275
nucleotides in Calma gobioophaga (Calado and Urgorri, 2002)
to 391 nucleotides in Flabellina gabinierei (Vicente, 1975) with
a mean length of 321 nucleotides. No differences in intra-specific
ITS2 rRNA lengths were observed, except for the Atlantic and
Mediterranean populations of F. lineata that show 311 and 313
nucleotides, respectively. The common derived ITS2 secondary
structure of the eolid nudibranchs is organised in five domains
(D1–5) (Figure 2 and Supplementary Figure 1) and conforms
to the general folding observed in several other molluscan

FIGURE 2 | Comparison of the ITS2 secondary structures of species among the families Calmidae, Trinchesiidae, and Flabellinidae.
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(Oliverio et al., 2002; Coleman, 2007; Salvi et al., 2010, 2014; Salvi
and Mariottini, 2012, 2017).

The ITS2 D1 and D2 helix-loop regions are always identifiable
in terms of sequence/structure and position (Figure 3). In fact,
the basal double-strand RNA portion of D1 consisting of the very
conserved triplet 5′-CGC/GCG-3′ is preceded by the triplet 5′-
CGU-3′ and followed by the conserved single-strand sequence
that separates D1 and D2 domains 5′-CUUC-3′. In D1 stem,
another conserved base pairing is 5′-G/C-3′ positioned next to
the triplet 5′-CGC/GCG-3′, present in all the families except for
the Flabellinidae (substituted by the CBC 5′-A/U-3′) and the
Facelinidae (substituted by the CBC C/G). The basal double-
strand helix of D2 displays the consensus base pairing 5′-GG/CC-
3′ (Calmidae, Coryphellidae, Flabellinidae, and Trinchesiidae),
but in some families, this paired sequence is substituted by
5′-GA/UC-3′ (Fionidae) and 5′-GC/GC-3′ or 5′-GU/GC-3′

(Facelinidae) where CBCs and semi-CBCs maintain the initial
stem base-pairing folding of D2. The ITS2 3′ region containing
D3–D5 shows a moderate to high divergence structural folding
between congeneric species (Figure 2 and Supplementary
Figure 1) and the correct multiple sequence alignments were
obtained only considering the derived 2D structures.

In all species examined, there is a very high conserved
sequence motif located in the apical double helix-loop region
of D5 and identified as the Apical STEM, described in other
marine molluscs (Salvi et al., 2010; Salvi and Mariottini, 2012).
The consensus Apical STEM of the eolid nudibranchs includes
up to nine base pairs: there are five invariant nucleotide positions
in the 5′-strand (nnnGCUCGn) out of nine and two invariant
ones (nnGnGnnnnn) out of 10 in the 3′-strand (Supplementary
Figure 2). The base-pairing between the two strands does
not perfectly match the entire sequences of the double helix.
Within the eolid families analysed, the Apical STEM consists
of nine base pairs with a single U conserved in all families
(Supplementary Figure 2). Caloria elegans (Facelinidae) shows a
quite different sequence due to insertions of nucleotide stretches
between the stem regions (Supplementary Figure 2). The
Apical STEMs of the families Coryphellidae and Flabellinidae
are very similar with semi-CBCs that preserve nine base pairs
(Supplementary Figure 2).

The number of ITS2 CBCs observed between species of six
eolid families is reported in Supplementary Table 3. Calma
spp. does not show any diagnostic CBC, whereas the number
of CBCs in Flabellinidae species ranges from one (Flabellina
affinis/Flabellina ischitana) to six (F. gabinierei/F. ischitana).

The 16S rRNA dataset consisted of 41 sequences, obtained
from the same species (Supplementary Table 1), with 391
positions, among which 152 segregating sites. The 16S
rRNA sequence length ranged from 384 to 391 nucleotides.
The 16S secondary structures (Supplementary Table 1 and
Supplementary Figure 1) correspond to the domain D5 of the
3′ half portion of the gene (Horovitz and Meyer, 1995; Lydeard
et al., 2000).

The sequence-structure of 16S (D5) is highly conserved
between congeneric species, except for the L7, L10, and
L11 stem-loops (Horovitz and Meyer, 1995), which contain
diagnostic nucleotides and can be considered as barcoding

regions (Furfaro et al., 2016a,b) (Supplementary Figure 1).
In the D5 region, a few diagnostic nucleotides distinguish
C. gobioophaga/Calma glaucoides when compared to Flabellina
spp. and Trinchesia caerulea/Trinchesia morrowae.

DISCUSSION

Our inventory of Mediterranean nudibranchs is rapidly growing
as new species are continuously added, including cryptic species
within historically accepted species (Furfaro and Trainito,
2017; Korshunova et al., 2019; Chimienti et al., 2020; Furfaro
and Mariottini, 2020). Nowadays, the integrative approach
combining morphological and molecular characters is commonly
used in nudibranch taxonomy. Ideally, this approach is more
robust as more genes and characters are considered. The most

FIGURE 3 | The ITS2 conserved secondary models of D1 (first domain) and
D2 (second domain) of six eolid nudibranch families. Red stars indicate the
conserved nucleotide pair of nucleotides (G/C) on D1. Blue stars indicate the
conserved nucleotide pair of nucleotides (A/U) on D1. Green stars indicate the
conserved nucleotide pair of nucleotides (C/G) on D1. Red arrows indicate the
basal conserved nucleotide pair of nucleotides on D2. Blue arrows indicate
CBCs of the basal nucleotide pair of nucleotides on D2 of Fionidae. Black
arrows indicate CBCs of the basal nucleotide pair of nucleotides on D2 of
Facelinidae.
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used markers in nudibranch systematics are the mitochondrial
COI and 16S and the nuclear H3. However, the latter is
known to be poorly informative at lower taxonomic levels and
for this reason, an additional nuclear “fast-evolving” marker
would be extremely valuable. The nuclear ITS2 assessed in
this study has revealed a promising marker for nudibranch
species identification. The analyses of the ITS2 primary sequence
indicate that ITS2 holds a high variability that is comparable
with, or higher than, the one of the COI. Species delimitation
analyses based on both genetic distances (ABGD, ASAP, and
Species Identifier) and on phylogenetic trees (bPTP) (Figure 1)
demonstrate the ability of the ITS2 to distinguish nudibranch
species. Species identified based on ITS2 are consistent with
the a priori species identification (based on morphology and
COI data), even for cryptic species such as Trinchesia spp.
or closely related species such as Calma spp. which show
the lowest divergence values (Table 1). Moreover, phylogenetic
trees based on ITS2 sequence data confirm two distinct clades
within F. lineata (Lovén, 1846) previously reported in Furfaro
et al. (2018) based on COI data and will need further
taxonomic assessment. While the combined analysis of the ITS2
sequence-structure is crucial to establish positional homology
in multiple alignments, it also provides conserved sequence-
structure elements, such as CBCs, that can have diagnostic value
at different taxonomic levels up to the species level (Figure 3
and Supplementary Table 3; see Salvi and Mariottini, 2012
for examples on bivalves). This result indicates that also in
nudibranchs the presence of CBCs in the RNA folding correlates
with distinct species, thus they are very useful for species
delimitation, as previously observed in other eukaryotic groups
(Müller et al., 2007; Wolf et al., 2013). On a less positive note,
the ITS2 amplification revealed difficult for some nudibranch
species (e.g., Furfaro et al., 2021). In fact, in the case of the two
Mediterranean sibling species Flabellina cavolini (Vérany, 1846)
and Flabellina gaditana (Cervera et al., 1987), it exhibited poor
sequencing trace quality and for this reason could not be used
in that study. The variability in the efficiency of sequencing the
ITS2 must be considered and tested while planning the study
to perform. Except for these specific cases, however, there is no
doubt on the great utility of the ITS2 in the study of animal
diversity (Müller et al., 2007; Dong et al., 2011). This study
represents the first assessment of the ITS2 in nudibranchs and

constitutes a starting point for future works focused on other
nudibranch groups.
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