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Underwater depth prediction plays an important role in underwater vision research.

Because of the complex underwater environment, it is extremely difficult and expensive to

obtain underwater datasets with reliable depth annotation. Thus, underwater depth map

estimation with a data-driven manner is still a challenging task. To tackle this problem,

we propose an end-to-end system including two different modules for underwater image

synthesis and underwater depth map estimation, respectively. The former module aims

to translate the hazy in-air RGB-D images to multi-style realistic synthetic underwater

images while retaining the objects and the structural information of the input images.

Then we construct a semi-real RGB-D underwater dataset using the synthesized

underwater images and the original corresponding depth maps. We conduct supervised

learning to perform depth estimation through the pseudo paired underwater RGB-D

images. Comprehensive experiments have demonstrated that the proposed method

can generate multiple realistic underwater images with high fidelity, which can be

applied to enhance the performance of monocular underwater image depth estimation.

Furthermore, the trained depth estimationmodel can be applied to real underwater image

depth map estimation. We will release our codes and experimental setting in https://

github.com/ZHAOQIII/UW_depth.

Keywords: underwater vision, underwater depth map estimation, underwater image translation, generative

adversarial network, image-to-image translation

1. INTRODUCTION

As an important part of underwater robotics and 3D reconstruction, underwater depth prediction
is crucial for underwater vision research. However, the quality of collected images is restricted by
light refraction and absorption, suspended particles in the water, and color distortion, making it
difficult and challenging to obtain reliable underwater depth maps. Due to the influence of strong
absorption and scattering, some widely used devices designed to obtain in-air depth maps, such as
Kinect units (Dancu et al., 2014), lidar (Churnside et al., 2017), and binocular stereo cameras (Deris
et al., 2017), exhibit limited performance in underwater environments (Massot-Campos and
Oliver-Codina, 2015; Pérez et al., 2020). As quite a few underwater RGB-D datasets (Akkaynak
and Treibitz, 2019; Gomez Chavez et al., 2019; Berman et al., 2020) are currently available, many
researchers have sought to adopt image processing methods to estimate the depth from a single
monocular underwater image or a consecutive underwater image sequence. To perform single
monocular underwater depth prediction, several restoration-based methods have been developed
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(e.g., UDCP; Drews et al., 2016; Ueda et al., 2019). The
transmission map is regarded as an intermediate step for
obtaining depth maps and restoring underwater images. In
theory, the physical process is highly dependent on the
calibrated intrinsic parameters and the well-described structural
information of the scene. However, it is extremely laborious to
select and measure these parameters relevant to the physical
process (Abas et al., 2019), and limited to some special task.

Recently, deep learning methods have shown great potential
in image processing (Li et al., 2018) applications, such as image-
to-image translation (Isola et al., 2017; Zhu et al., 2017a; Choi
et al., 2018; Wang et al., 2018b; Zheng et al., 2020), image
restoration (Peng et al., 2015), and depth estimation (Gupta and
Mitra, 2019). Due to the lack of the underwater depth ground
truth to formulate full supervision, supervised learning models
cannot be directly adopted for underwater depth estimation.
Due to the introduction of cycle-consistency loss designed for
unpaired image-to-image translation, many researchers aim to
translate the in-air images to the desired underwater images and
preserve the original depth annotation (Li et al., 2017, 2018;
Gupta and Mitra, 2019). With the synthetic underwater images
from the original in-air images paired with the corresponding
depth annotation, we can obtain the pseudo underwater and
depth image pairs. Previous methods such as WaterGAN (Li
et al., 2017) and UMGAN (Li et al., 2018) adopted a two-
stage optimization framework for underwater depth estimation.
The former underwater image synthesis and the downstream
vision task (such as depth prediction or underwater image
restoration) are optimized separately. The two models have no
direct connection at the training stage. UW-Net (Gupta and
Mitra, 2019) has addressed this problem and aims to perform
underwater image synthesis and underwater depth estimation
parallel. However, two competitive tasks with cycle-consistent
learning lead to low training efficiency and inaccurate depth
estimation outputs. The leakage of texture is another challenge.
The depth value of a fish should be about equal. However, the
bright color and textures of a fish may lead to an incorrect depth
estimation result (Figures 1B–E).

To address these problems, we propose a novel joint-
training generative adversarial network for both multi-style
underwater image synthesis and depth estimation performed in
an end-to-end manner. For the former image synthetic task,
we aim to transfer the hazy in-air RGB-D images to multi-
style underwater images while retaining the objects and the
structural information of the in-air images and controlling
the underwater style through one conditional input message.
To take advantage of multi-task learning (Zhang and Yang,
2017) between underwater image synthetic and depth estimation
tasks, we design a joint-training generator to estimate the
depth from the synthesized underwater images through full
supervision. Overall, our system includes two consecutive
generators (responsible for the underwater image synthesis and
underwater depth estimation, separately), which are trained
simultaneously. To ensure that the generated underwater images
retain the objects and the structural information of the in-
air images, we consider perceptual loss (Johnson et al., 2016)
computed at the selected layers as a structural loss along with the

adversarial loss to optimize the whole network. Furthermore, we
develop a depth loss to alleviate the texture leakage phenomenon
as shown in Figure 1. Finally, we evaluate the effectiveness of
our proposed method to synthesize underwater images and
estimate the depth map of real underwater images, and the
comprehensive experimental results demonstrate the superiority
of the proposed method. Overall, our main contributions of this
paper are summarized as follows:

• We propose a novel joint-training generative adversarial
network, which can simultaneously handle the controllable
translation from the hazy RGB-D images to the multi-style
realistic underwater images by combining one additional label,
and the depth prediction from both the synthetic and real
underwater images.

• To construct a semi-real underwater RGB-D dataset, we take
the hazy in-air RGB-D image pairs and conditional labels as
inputs to synthesize multi-style underwater images. During
the training process, we introduce perceptual loss to preserve
the objects and structural information of the in-air images
during the image-to-image translation process.

• To improve the results of underwater depth estimation, we
design the depth loss to make better use of high-level and low-
level information. We verify the effectiveness of our proposed
method on a real underwater dataset.

2. RELATED WORK

2.1. Image-to-Image Translation
In the past several years, a series of image-to-image
translation methods based on generative adversarial networks
(GANs) (Mirza and Osindero, 2014; Odena et al., 2017) have
been proposed. These approaches can mainly be divided into
two categories of paired training and unpaired training methods.
Pix2pix (Isola et al., 2017) is a typical powerful paired model
and first proposes cGAN (Mirza and Osindero, 2014) learns
the one-side mapping function from the input images to
target images. To achieve the image-to-image translation of
unpaired datasets, CycleGAN (Zhu et al., 2017a) translates
images into two domains using two generators and two
discriminators and proposes the cycle-consistent loss to tackle
the mode collapse of unpaired image translation. To address
the multimodal problem, methods including BicycleGAN (Zhu
et al., 2017b), MUNIT (Huang et al., 2018), DRIT (Lee et al.,
2018), StarGAN (Choi et al., 2018), etc. have been proposed.
The BicycleGAN (Zhu et al., 2017b) learns to transfer the given
input with a low-dimensional latent code to more diverse results.
It takes advantage of the bijective consistency between the
latent and target spaces to avoid the mode collapse problem.
MUNIT (Huang et al., 2018) achieves multidomain translation
by assuming two latent representations that present style and
content, respectively and combining different representations of
content and style. StarGAN (Choi et al., 2018) learns multiple
mapping functions between multiple domains. It only uses a
single generator and a discriminator to transfers the source
images to the target domain. Then to avoid mode collapse,
the generator takes the generated images and the original
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FIGURE 1 | Examples of texture leakage during the underwater depth map estimation process using different methods. (A) Real underwater images. (B) DCP (He

et al., 2010), (C) UDCP (Drews et al., 2016), (D) Berman et al. (2017), (E) UW-Net (Gupta and Mitra, 2019), (F) ours.

FIGURE 2 | The network framework of our proposed model is designed to synthesize multi-style underwater images and estimate underwater depth maps. The

generator Gs and the discriminator Ds are used to synthesize multi-style underwater images, and the generator Gd and discriminator Dd learn to estimate underwater

depth map based on the synthesized underwater RGB-D dataset.

labels as input and transfers them to the original domain. The
subsequently developed image-to-image translation methods,
such as pix2pixHD (Wang et al., 2018b), GauGAN (Park et al.,
2019), vid2vid (Wang et al., 2018a), FUNIT (Liu et al., 2019),
NICE-GAN (Chen et al., 2020), and StarGAN v2 (Choi et al.,
2020) pay more attention to generate higher visual quality,
multiple outputs and have been applied in video and small
sample studies.

To synthesize underwater images, due to the lack of a large
paired underwater image dataset, studies have mainly focused on
unsupervised learning. In a pioneering approach of underwater
image synthesis, WaterGAN (Li et al., 2017) synthesized the
underwater images from the in-air image and the paired depth
map for real-time color correction of monocular underwater
images. To achieve multidomain translation, UMGAN (Li
et al., 2018) proposes an unsupervised method that combines
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CycleGAN (Zhu et al., 2017a) and cGAN (Mirza and Osindero,
2014) with an additional style classifier to synthesize multi-style
underwater images. UW-Net developed by Gupta and Mitra
(2019) learns the mapping functions between unpaired hazy
RGB-D images and arbitrary underwater images to synthesize
underwater images and estimate the underwater depth map.
This method translates the hazy RGB-D image to underwater
images while it learns to convert underwater images to the
hazy RGB-D images. However, WaterGAN (Li et al., 2017)
and UW-Net (Gupta and Mitra, 2019) only provide a solution
for single domain underwater image generation. UMGAN (Li
et al., 2018) does not consider the transmission map as an
extra clue to generate underwater images. Moreover, all of
the synthesized underwater images using these methods still
lack the characteristics of real underwater images and clear
structural information.

2.2. Underwater Depth Map Estimation
Underwater depth map estimation has mainly been studied in
the field of traditional image processing. Since, He et al. (2010)
first proposed a dark channel prior (DCP) for dehazing, many
methods based on DCP (He et al., 2010) have been proposed
for underwater depth map estimation in recent years. Drews
et al. (2016) proposed a method based on a physical model
of light propagation and the statistical priors of the scene to
obtain the medium transmission and scene depth in typical
underwater scenarios. Peng et al. (2015) proposed a three-step
approach consisting of pixel blurriness estimation, rough depth
map generation, and depth map refinement for depth map
estimation. Berman et al. (2017) took different optical underwater
types into account and proposed a more comprehensive physical
image formation model to recover the distance maps and object
colors. They mainly considered transmission map estimation as
an intermediate step to obtain a depth map. Due to the unknown
scattering parameters and multiple possible solutions, the results
of these methods are most likely to be incorrect (Gupta and
Mitra, 2019).

Recently, many deep learning-based methods have been
proposed for depth estimation. However, most of these
approaches focus on depth estimation from in-air RGB images
with full supervision, which are not suitable for underwater
depth map estimation due to the lack of the paired RGB-D data.
The above mentioned UW-Net developed by Gupta and Mitra
(2019) proposed an unsupervised method to learn depth map
estimation. It considers an in-air transmission map as a cue to
synthesize underwater images and obtains the required depth
map from the synthesized underwater images. However, this
method cannot estimate the depth map from underwater images
of multiple water types. Because two competitive tasks (hazy
in-air image reconstruction and depth estimation) are assigned
to one generator, the depth prediction results of UW-Net lack
sharp outlines. Ye et al. (2019) proposed another unsupervised
adaptation networks. They developed a joint learning framework
which can handle underwater depth estimation and color
correction tasks simultaneously. Unlike their work, in which
the two networks (style adaptation network and task network)
should be trained separately, our model is more simple and can

be trained simultaneously. The depth loss and a fine-tune strategy
make our model more efficient in practice for underwater depth
map prediction.

3. MATERIALS AND METHODS

3.1. Overall Framework
In this paper, we aim to estimate the depth map from real
underwater images. Because there are no paired underwater
RGB-D images, we cannot perform supervised learning directly.
Therefore, we choose to translate the original in-air images with
corresponding depth to underwater images and obtain pseudo-
paired images. To perform this task, we design an end-to-end
system with two joint-training modules: multi-style underwater
image synthesis and underwater depth estimation based on the
synthetic paired samples. The former module is trained through
unpaired training, while the latter adopts supervised training
to achieve precise underwater depth estimation. The overall
framework is shown in Figure 2 and consists of two generators,

namely, Gs: x → ỹ and Gd: ỹ → d̃, where x and ỹ are
the original in-air image and the synthesized underwater image

with specific underwater style. d̃ is the estimated depth output.
For discrimination, we also design two discriminators Ds and
Dd to perform adversarial training to boost the underwater
image synthesis and depth estimation, respectively. Ds aims
to distinguish between real and fake images and identify the
domains from which both the real images and the generated
images originate. The discriminatorDd only learns to distinguish
between the real and fake depth maps.

3.1.1. Multi-Style Underwater Image Synthesis
As shown in Figure 2, we refer to the training of StarGAN (Choi
et al., 2018) to generate multi-style underwater images. To
synthesize specified underwater style images, we adopt an
additional one-hot vector c to represent domain attributes. To
make the generator Gs depth-aware and preserve the original
depth representation after translation, we concatenate the three
inputs, namely, the in-air image (x), the target underwater style
(cy), and the corresponding in-air depth (d) to synthesize an
underwater image ỹ = Gs[C(x, d, cy)] with the required style
(cy), where C denotes depthwise concatenation. To guarantee that
the synthetic image ỹ has the target underwater style, we include
an adversarial domain classifier Ds with two branches (one for
domain classification and another for real/fake discrimination).
The classification branch with the domain classification loss
Lcls aims to recognize the underwater style (cy) of both the
synthesized image ỹ and the real underwater image y. Noted
that y does not have the corresponding depth annotation due
to the lack of underwater ground truth. The adversarial loss
L
s
adv

is computed to promote the naturalness of the synthetic
images. The generatorGs from CycleGAN (Zhu et al., 2017a) and
StarGAN (Choi et al., 2018) is one symmetric encoder-decoder
architecture with 6 residual blocks.

3.1.2. Underwater Depth Estimation
In the training stage, we perform underwater estimation on the
above-mentioned synthetic underwater images ỹ by adopting
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a generator Gd with dense-block architectures. The output of
generator Gs (ỹ) is the input of generator Gd used to estimate its
depth mapGd(ỹ). Considering that we have the depth annotation
d of the in-air images, we can obtain pseudo pairs to compute the

Ldepth between d and d̃. The discriminatorDd is also designed and
has only one discrimination output. Furthermore, the adversarial
loss Ld

adv
in the depth space is conducted. For underwater depth

map estimation, we use DenseNet (Jégou et al., 2017) as the
generator. In UW-Net (Gupta and Mitra, 2019), the authors
proved the importance of using hazy above-water images and
compared the results of underwater depth maps estimation with
different generator networks, including ResNet (He et al., 2016),
Unet (Ronneberger et al., 2015), DenseNet (Jégou et al., 2017),
and so on. In their work, DenseNet is proved to be the best choice.

3.2. Loss Functions
3.2.1. Multi-Style Underwater Image Synthesis

3.2.1.1. Adversarial Loss
Regular GANs use sigmoid activation output and the cross-
entropy loss function (Goodfellow et al., 2014), which may cause
a vanishing gradient during the learning process. To stabilize
the training process and generate underwater images with higher
quality, we adapt the least-squares loss (Mao et al., 2017) in our
method. Ls

adv
can be expressed as follows:

L
s
adv = min

G
max
D

{Ex, y ∼ Pdta(x, y)[(Ds(y)− 1)2]

+ Ex∼Pdata(x)[(Ds(ỹ)
2]},

where ỹ = Gs(C(x, d, cy))),

(1)

where Gs targets the transfer of a hazy in-air RGB-D image
x by concatenating an underwater condition label cy to
synthesize image Gs[C(x, d, cy)]. The discriminator Ds attempts
to distinguish the real underwater image y and the synthesized
underwater image ỹ.

3.2.1.2. Domain Classification Loss
For the given hazy in-air image x and an underwater domain
style cy, Gs translates x into an underwater image ỹ, which
can be properly classified to the desired target domain by Ds.
To achieve this goal, the classification branch of Ds imposes
the domain classification. For the real underwater image y, the
domain classification loss Lr

cls
is computed as:

L
r
cls = Ey,cy [− logDs(cy|y)]. (2)

where the term Ds(cy|y) denotes a probability distribution
over the underwater domain labels (cy) computed by Ds. By
minimizing this objective, Ds learns to classify an underwater
image y to its original domain cy. We assume that the underwater
image and domain label pair (y, cy) is given by the training data.
For generator Gs, the loss function for the domain classification
of synthetic underwater images is defined as:

L
f

cls
= Eỹ,cy [− logDs(cy|ỹ)]. (3)

During the training, Gs tries to synthesize underwater image ỹ
that can fool the classification branch of Ds.

3.2.1.3. Feature-Level Loss
Beyond the pixel-level loss, we design feature-level loss functions
between the feature representations extracted from a pre-trained
VGG19 network. The hybrid feature-level loss can effectively
preserve the similarity of the object between the hazy in-air
images and the synthesized underwater images. For the multi-
style underwater image synthesis, we introduce a perceptual loss,
namely, Lsyn. Lsyn is designed to preserve the object content
and loosen the restrictions on the color and textile changes after
translation. Lsyn is expressed as follows:

Lsyn = [||8(i)(x)− 8(i)(Gs(x|cy))||1]. (4)

where 8(i) denotes the parameters at the i-th layer of a pre-
trained VGG19 network. Following the work by Kupyn et al.
(2019), we compute the 1-norm distance at the same selected
i = 14 layer of the VGG19 network between the hazy in-air
images and the synthesized underwater images.

3.2.1.4. Reconstruction Loss
To perform unpaired training between in-air and underwater
images, we include the cycle consistency loss (Zhu et al., 2017a)
in our framework. The reconstruction loss Lrec between x̂ and x
is defined as follows:

Lrec = Ex,cy ,cx [||x− x̂||1],

x̂ = Gs(C(Gs(C(x, d, cy)), d, cx)),
(5)

where cx and cy indicate the original hazy in-air domain label
and the target underwater domain style, respectively.Gs takes the
counterpart Gs(x|cy), its corresponding depth, and the original
domain label cx as input and tries to reconstruct the original hazy
in-air image. We adapt the L1 loss as our reconstruction loss.
Note that we use the generator Gs twice, first to translate the
hazy in-air RGB-D images into an underwater image in the target
domain and then to reconstruct the hazy in-air RGB images from
the translated images.

3.2.2. Underwater Depth Estimation

3.2.2.1. Adversarial Loss
For the second underwater depth estimation procedure, the
adversarial loss Ld

adv
is described as:

L
d
adv = min

G
max
D

{EGs(ỹ),d∼Pdata(ỹ,d)[(Dd(d)− 1)2]

+ Eỹ∼Pdata(ỹ)[(Dd(d̃))
2]},

where d̃ = Gd(Gs(C(x, d, cy))),

(6)

where Gd learns the mapping function from the synthesized
underwater images ỹ to the in-air depth d as Gd(ỹ) → d. Dd is
responsible to recognize the fake ingredient from the synthesized

depth output d̃.

3.2.2.2. Depth Loss
For underwater depth estimation, the pixel-level distance
between the estimated value and the ground truth, such as 1-
norm and 2-norm, is generally adopted to favor less blurring.
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FIGURE 3 | Comparison of the visual quality of synthesized underwater images obtained by different methods. From left to right, (A) are original in-air images, (B–G)

are the results of the WaterGAN (Li et al., 2017), CycleGAN (Zhu et al., 2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta and Mitra, 2019), StarGAN v2 (Choi et al.,

2020), and our method.

FIGURE 4 | Comparison of our method with other underwater depth estimation methods. From left to right, (A) are real underwater images from the dataset of

Berman et al. (2017), (B–F) are the results of DCP (He et al., 2010), UDCP (Drews et al., 2016), Berman et al. (2017), Gupta and Mitra (2019), and our method, and

(G) are the ground truths.
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FIGURE 5 | The results of our model for depth map estimation. Every two rows from top to bottom are real underwater images with different illumination and

scattering conditions and the results of our model for depth map estimation.

However, we find that only the pixel-level loss between the
predicted depth map and the ground truth often leads to poor
performance due to the influences of noise, water with various
turbidity, etc (Please refer to section 4.3 for more details).
To force the model to pay more attention to the objects, we
make use of the feature representations extracted from a pre-
trained VGG19 network for multi-level information. We also
introduce pixel-level distance for low-level details. Finally, to
obtain improved results, we combine 1-norm loss and the multi-

layer feature constraint between d̃ and d and define the depth loss,
namely Ldepth:

Ldepth = [||d − Gd(Gs(x|cy))||1]

+

N∑

i=0

[||8(i)(d)− 8(i)(Gd(Gs(x|cy)))||1]. (7)

Similarly, 8(i) represents the pre-trained parameter of the i-th
layer. Here, following the work of Wang et al. (2018b) and Wang
C. et al. (2018), we compute the L1 distance at the same selected
six layers: i = 1, 6, 11, 20, 29.

3.3. Full Objective
Finally, the objective functions can be written, respectively, as:

LDs = L
s
adv + αLr

cls (8)

LGs = L
s
adv + γLrec + αL

f

cls
+ λLsyn (9)

LDd
= L

d
adv (10)

LGd
= L

d
adv + ηLdepth (11)

where α, γ , λ, and η are the hyperparameters that control
the effect of each loss in the final objective function. We set
α = 5, γ = 10, λ = 0.1, η = 50 in all of our
experiments, and we optimize the objective function with the
Adam optimizer (Kingma and Ba, 2015). To choose appropriate
weights, we design ablation studies for each hyperparameter
except for γ . We follow StarGAN (Choi et al., 2018) to set γ =
10. For the choice of the rest of hyperparameters, please refer to
section 4.3 for more details.
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TABLE 1 | Quantitative comparison of our method and other methods for underwater image synthesis.

WaterGAN (FT) CycleGAN (FT) StarGAN (FT) UW-Net (FT) StarGAN v2 (FT) Our (FT)

SI-MSE 0.5994 0.3514 0.4597 0.3594 0.5454 0.2709

ρ 0.5031 0.6024 0.5339 0.5795 0.4561 0.6917

We evaluate all models for underwater depth map estimation using the generated RGB-D datasets. FT represents a fine-tuned (FT) underwater model on the dataset of Berman et al.

(2017). Higher ρ-values and lower SI-MSE (Eigen et al., 2014) values represent a better result. The bold values indicate the best result among different methods.

TABLE 2 | Quantitative comparison of our method and other methods on the

dataset of Berman et al. (2017).

DCP UDCP Berman et al. UW-Net(FT) Ours(FT)

SI-MSE 1.3618 0.6966 0.6755 0.3708 0.1771

ρ 0.2968 0.4894 0.6448 0.6451 0.7796

FT represents a fine-tuned (FT) underwater model. Higher ρ-values and lower SI-

MSE (Eigen et al., 2014) values represent a better result. The bold values indicate the

best result among different methods.

4. RESULTS

4.1. Datasets and Implementation Details
In our experiments, we translate the hazy in-air images to
two underwater domains (green and blue). We also choose the
hazy in-air D-Hazy dataset (Ancuti et al., 2016) as the input
images; this dataset contains the indoor scenes. For the two
underwater domains, we adapt the real underwater images from
the SUN (Xiao et al., 2010), URPC,1 EUVP (Islam et al., 2020),
UIEB (Li et al., 2019), and Fish datasets.2 We collect 1,031 blue
and 1,004 green underwater images from these datasets and
the Google website, respectively. The D-Hazy dataset (Ancuti
et al., 2016) includes 1,449 images. We randomly choose 1,300
images as the in-air images x to train the model. The remaining
149 images of the dataset are selected for evaluation. We use
random-crop to obtain 128 × 128 patches for training. For the
evaluation stage, we take complete images of 256 × 256. The
entire network is trained on one Nvidia GeForce GTX 1070 using
the Pytorch framework. To avoid the mode collapse problem, we
apply spectral normalization (Miyato et al., 2018) in both the
discriminators and the generators. Because of the introduction
of spectral normalization (Miyato et al., 2018), we use a two-
timescale update rule (TTUR) based on BigGAN (Brock et al.,
2019) and SAGAN (Zhang et al., 2018). The Adam algorithm is
applied with a learning rate of 0.0002 for the discriminators while
0.00005 for the generators. Because of the limited computing
resources, we set the batch size to 10 and perform 100,000
training iterations in our experiments.

4.2. Comparison Methods
Our method achieves underwater depth map estimation using
multi-style synthesized underwater images. In this section, we
first evaluate the performance of WaterGAN (Li et al., 2017),

1http://www.cnurpc.org/
2http://www.fishdb.co.uk/

TABLE 3 | Comparison of Floating Point Operations (FLOPs) and total number of

parameters among different generators with a size of 256× 256.

Methods FLOPs Params

StarGAN (Choi et al., 2018) 52.32 8.417

CycleGAN (Zhu et al., 2017a) 56.83 11.38

StarGANv2 (Choi et al., 2020) 198.0 33.89

WaterGAN (Li et al., 2017) 132.7 24.18

Ours (Gs) 52.93 8.426

Ours (Gd ) 12.98 1.348

CycleGAN (Zhu et al., 2017a), StarGAN (Choi et al., 2018),
UW-Net (Gupta and Mitra, 2019), StarGAN v2 (Choi et al.,
2020), and our method on multiple synthetic underwater images.
Additionally, to evaluate the effectiveness of underwater depth
map estimation, we compare the results obtained using DCP (He
et al., 2010), UDCP (Drews et al., 2016), Berman et al. (2017),
Gupta and Mitra (2019), and our method.

4.2.1. Qualitative Evaluation
To evaluate the effectiveness of the proposedmethod, we perform
underwater image synthesis on the NYUv2 (Silberman et al.,
2012) and D-Hazy (Ancuti et al., 2016) datasets. Figure 3

shows a visual comparison of the synthesized underwater
images generated by different methods. WaterGAN (Li et al.,
2017) takes advantage of in-air RGB-D images to synthesize
underwater images. As shown in Figure 3B, the results are
somewhat single-hued and lack water characteristics. Although
WaterGAN supports multi-style image generation, the two
styles (blue and green) obtained by WaterGAN in Figure 3B

are difficult to distinguish. The results of CycleGAN (Zhu
et al., 2017a) retain most of the contents and structures of the
original images. Compared to WaterGAN, they are similar to
the natural underwater scenes shown in Figure 3C. By contrast,
the outputs of CycleGAN (Zhu et al., 2017a) include serious
distortions of the details of the image with incorrect depth
information. StarGAN (Choi et al., 2018) can simultaneously
translate in-air images into multiple underwater styles. However,
the results lack the characteristics of real underwater images,
such as depth information, and clear structural information of
the objects. Besides, many artifacts are observed in Figure 3D.
UW-Net (Gupta and Mitra, 2019) also takes hazy in-air RGB-
D images as input, the results are presented in Figure 3E and
show fuzzy structures for the objects. The results of StarGAN
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FIGURE 6 | Sample results of our method for synthesizing underwater images using different losses. Lssim, Lmsssim and Lsyn, respectively represent SSIM loss,

MS-SSIM loss, and perceptual loss. (A) Are in-air images, (B) are the results without any structural loss (Baseline), (C–E) are the results with Lssim, Lmsssim, and Lsyn,

respectively.

TABLE 4 | Comparison of our method for the synthesis of underwater images

with different combinations.

Baseline w/ Lssim w/ Lmsssim w/ LDd
w/ Lsyn

SI-MSE 0.3538 0.2308 0.3331 0.2864 0.1771

ρ 0.6986 0.7547 0.7111 0.7355 0.7796

ResNet (He et al., 2016) represents a basic network for the synthesis of underwater

images (Baseline). Our synthesized underwater images are mainly used to estimate depth

maps. We show the results of depth maps estimation using ResNet (He et al., 2016) and

ResNet (He et al., 2016) with extra losses. The bold values indicate the best result among

different methods.

v2 (Choi et al., 2020) are shown in Figure 3F. There is no denying
that StarGAN v2 (Choi et al., 2020) possesses a powerful style
network to extract style codes from reference images. However,
the underwater images provided by StarGAN v2 fail to help
the depth estimation tasks. As shown in Figure 3F, StarGAN
v2 removed some objects and structural information during the
image synthetic process, which makes the synthetic underwater
images and their corresponding in-air depth maps unmatched.
The quantitative results in section 4.2.2 further confirm
this point.

Our model is optimized to synthesize underwater images with
multiple styles based on the unpaired datasets. The results of our
method (Figure 3G), in which the structural information is well
preserved, are better than those obtained from other methods in
terms of visual quality.

TABLE 5 | Comparison of weights used in the objective function of our model,

including α and λ.

SI-MSE/ρ α = 1 α = 3 α = 5 α = 7

λ = 0.05 0.2586/0.7438 0.2676/0.7502 0.2325/0.7593 0.2957/0.7402

λ = 0.1 0.2291/0.7513 0.2020/0.7844 0.1771/0.7796 0.2321/0.7717

λ = 0.2 0.2955/0.7331 0.2164/0.7688 0.2548/0.7524 0.2535/0.7331

λ = 0.4 0.2966/0.7236 0.2882/0.7306 0.2929/0.7499 0.2577/0.7577

We separately set α = 1, 3, 5, 7, and λ = 0.05, 0.1, 0.2, 0.4. We discover that α = 5 and

λ = 0.1 perform better. The bold values indicate the best result among different methods.

For underwater depth map estimation, Figure 4 shows the
results of our method and other methods developed by He
et al. (2010) (DCP), (Drews et al., 2016) (UDCP), Berman et al.
(2017), and Gupta and Mitra (2019) based on the underwater
images obtained by Berman et al. (2017). In Figures 4B–D, these
methods fail to capture relative depth of the scene with respect
to the camera. Moreover, these methods mainly obtain the
transmissionmaps of the scene and have excessive texture leakage
in the results. Gupta and Mitra (2019) used an unsupervised
method to estimate the depth map, obtaining the results shown
in Figure 4E, and this method appears to be better than the other
methods, whose results are presented in Figures 4B–D. However,
this method still suffers from excessive texture leakage and only
estimates the depth map for single-domain underwater images.
Our results have a much more reasonable appearance with a
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FIGURE 7 | Effectiveness evaluation of the L1, L2, Lssim, Lmsssim, and Ldepth. From left to right, respectively, (A) are real underwater images, (B–H) are the results of

depth map estimation with L1 loss, L2 loss, Lssim, Lmsssim, Lpan, Ldepth, and their corresponding ground truths.

linear depth variation. On the other hand, we observe that our
network successfully captures the depth information frommulti-
style underwater images. More results for real underwater images
with different underwater characteristics are seen in Figure 5.
Furthermore, the UW-Net (Gupta and Mitra, 2019) and our
method synthesize underwater images using the underwater
dataset provided by Berman et al. (2017) to fine-tune the models
of the depth map estimation. We fine-tune our model for
10,000 iterations on Berman et al.’s dataset for better depth
map estimation.

4.2.2. Quantitative Evaluation
The dataset of Berman et al. (2017) consists of 114 paired
underwater RGB-D images from Katzaa, Michmoret,

TABLE 6 | Results with different η values.

η = 40 η = 50 η = 60 η = 70

SI-MSE 0.2657 0.1771 0.2620 0.2405

ρ 0.7266 0.7796 0.7315 0.7635

Higher ρ and lower SI-MSE (Eigen et al., 2014) values are better. The bold values indicate

the best result among different methods.

Nachsholim, and Satil. We use 71 images belonging to
the three regions Katzaa, Nachsholim, and Satil. Because
the Michmoret region has very few natural objects and
is of the same scene. Following UW-Net (Gupta and
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TABLE 7 | Quantitative comparison of our method with different losses on the

dataset of Berman et al. (2017).

L1 L2 Lssim Lmsssim Lpan Ldepth

SI-MSE 0.3103 0.2896 0.3983 0.2598 0.2856 0.1771

ine ρ 0.7279 0.7419 0.6515 0.7655 0.7397 0.7796

Higher ρ values and lower SI-MSE (Eigen et al., 2014) values indicate better results. The

bold values indicate the best result among different methods.

Mitra, 2019), we use two metrics for comparison, namely,
log scale-invariant mean squared error (SI-MSE) (Eigen
et al., 2014) and the Pearson correlation coefficient (ρ).
Considering the fact that the depth map provided by the
stereo camera is not complete (e.g., the ground truth of
the white regions in Figure 7H are not provided), we only
calculate the pixels with a defined depth-value in the ground
truth (GT).

The underwater image synthesis assists to estimate depth
maps from real underwater images. Thus, how much the
synthetic underwater images can be used to boost the
performance of underwater image-based depth prediction is
the key evaluation index. We evaluate performance on depth
prediction tasks with a series of the state-of-the-art methods,
which consist of WaterGAN (Li et al., 2017), CycleGAN (Zhu
et al., 2017a), StarGAN (Choi et al., 2018), UW-Net (Gupta
and Mitra, 2019), and StarGAN v2 (Choi et al., 2020). We
aim to calculate the depth map estimation results on a semi-
real underwater RGB-D dataset. UW-Net suggests that fine-
tuning the models with a few unlabeled images from the
target underwater environment could further boost the depth
prediction performance. During the fine-tuning process, we
only use the RGB underwater images without considering
the depth ground truth of the data from Berman et al.
to show the ability that our model can adapt itself to a
new environment well. To make it fair, we fine-tune all
models to generate a similar underwater style of the dataset
of Berman et al..

Although our model already provides a solution for a depth
estimation task, we choose a typical independent supervised
image-to-image model, pix2pix (Isola et al., 2017), to fairly
evaluate the potential of synthetic underwater images on the
application of depth prediction. We use identical pix2pix models
to learn the mapping function between the generate underwater
images of different underwater image synthetic methods and
their corresponding in-air depth maps. Finally, we test and
evaluate all models on the dataset of Berman et al.. Table 1
shows the results, and our model obtains higher ρ values and
lower SI-MSE.

For the underwater depth estimation task, Table 2 shows the
quantitative results. Our method obtains the least scale-invariant
error (SI-MSE) (Eigen et al., 2014) and the highest Pearson
correlation coefficient (ρ).

We also investigate the parameters and Floating Point
Operations (Tan and Le, 2019) (FLOPs) among different
generators in Table 3. In the case of CycleGAN, we only count

the FLOPs and parameters of a single generator. We can find that
the proposed method can achieve better performance with fewer
network parameters and computational cost. Benefiting from the
dense blocks, the Gd of our model has fewer parameters and
FLOPs than Gs. Please note that Gs is only used in training stage.
In testing phase, we only need Gd to estimate the depth map.

4.3. Ablation Study
4.3.1. Loss Selection of Underwater Image Synthesis
To preserve clear structural information, we consider the
perceptual loss Lsyn, structural similarity index (SSIM) Lssim,
and multiscale structural similarity index (MS-SSIM) Lmsssim

as the structural loss. We evaluate the efficiency of each loss,
including Lsyn, Lssim, and Lmsssim, and based on the visual effect
of the synthesized underwater images and the results of depth
map estimation, we choose the perceptual loss. To verify the
effectiveness of the extra losses in our network, we design ablation
experiments and perform a comparison on D-Hazy (Ancuti et al.,
2016) which consists of 1,449 images. Figure 6 shows that each
loss affects the quality of the generated underwater images. It is
observed from Figure 6B, that the generated underwater images
using ResNet without any extra loss have more color blocks
and artifacts. Additionally, during the training, it is extremely
unstable and tends to produce color inversions and serious
distortions situations. In Figures 6C,D, many artifacts are still
retained for ResNet with Lssim or Lmsssim. Table 4 shows the
results of depth map estimation based on different synthetic
underwater image datasets, which are generated by ResNet and
ResNet with extra losses, separately. Using Lsyn, we obtain the
best results of underwater depth map estimation. Based on the
experiments mentioned above, we introduce a perceptual loss
Lsyn to preserve the details and restrain the artifacts in Figure 6E.
To minimize the negative effects of the synthesized images, we
design experiments to determine the proper weight of α and λ.
In Table 5, we show the results of different weights, including α

and λ. We note that both UW-Net and our model can be fine-
tuned on the dataset of Berman et al. to obtain better results
of underwater depth map estimation. Fine-tuning processing
provides a flexible approach for adjusting our model and the
estimation of depth maps from unexplored underwater regions
within a relatively short period.

4.3.2. The Design of Underwater Depth Map

Estimation
With the support of synthetic paired RGB-D data, we consider
L1 loss, L2 loss, Lssim loss, or Lmsssim loss to learn the mapping
functions for supervised depth map prediction. During the
training, we observe the all above-mentioned losses are not
enough to generate more correct depth maps. The results in
Figures 7B–E show that depth prediction based on the above-
mentioned losses are easily affected by the shape, noise, etc.
As mentioned in section 3.2.2, we design depth loss Ldepth to
make better use of low-level and high-level feature information
and avoid the risk of texture leakage. We take advantage of a
pre-trained VGG19 network to extract feature maps between
the generated depth maps and the ground truths. We assume
the feature maps between the generated depth map and its
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FIGURE 8 | Sample results for the synthesis of underwater images. (A) Show in-air images. (B–E) Represent blue style, green style, white style and yellow style,

respectively.
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FIGURE 9 | Multi-style underwater depth map estimation. The rows from top to bottom are real underwater images with four different water types and the results of

our model for depth map estimation. Every two rows are real underwater images and their predicted depth maps of our method.

corresponding ground truth in each layer from a pre-trained
VGG19 network should be equal. The loss Ldepth makes our
model pay more attention to the objects and the relative distance
in the underwater images. Inspired by Wang et al.’s work (Wang

C. et al., 2018), we also attempt to extract feature maps from
the discriminator Dd, namely Lpan, rather than a pre-trained
VGG19 network. In Figure 7F, we can see that our model with
Lpan are often overwhelmed with incorrect boundary prediction
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due to the insufficient layers of our discriminator Dd to extract
high-level feature maps comparing with Ldepth. Furthermore, we
investigate the optimal parameter setting of η with a greedily
searching strategy (Table 6), and we discover that η = 50 is the
best choice among all the parameters.

Based on Figure 7 and Table 7, we can easily conclude
that the results of depth map estimation using Ldepth loss
are more accurate and continuous. The results show sharper
outlines. We can clearly distinguish the relative distance and
the objects.

5. DISCUSSIONS AND CONCLUSION

To further explore the potential of our model on depth
prediction, we considered the work by Li et al. (2018) and
prepared a more complex underwater image dataset including
four different styles. In this experiment, we still consider the
depth map as a conditional input to synthesize a corresponding
underwater image. But we did not utilize the physical parameters
(e.g., the water turbidity or any optical parameters) for
the unpaired image-to-image translation. Instead, we roughly
divide the images with different water turbidity into four
groups and follow the manner of StarGAN (Choi et al.,
2018) to perform conditional image translation. Some synthetic
examples of four different styles are shown in Figure 8. Due
to the lack of ground truth of the depth map, we cannot
quantitatively evaluate the effectiveness of our model for multi-
style underwater depth map estimation. Instead, we prepared
several qualitative evaluation results, as shown in Figure 9.
Intuitively, we find that the depth estimation of a side-view
underwater image is better than that from a vertical view.
This result is caused by the lack of vertical view in-air
images from the in-air D-Hazy dataset required to produce
sufficient synthetic underwater vertical view images. We plan to
improve the performance on this point by data augmentation in
the future.

In this paper, we proposed an end-to-end system that
can synthesize multi-style underwater images using one-hot
encoding and estimate underwater depth maps. The system
can convert the in-air RGB-D images into more realistic
underwater images with multiple watercolor styles. Then we use
the synthesized underwater RGB images to construct a semi-real
underwater RGB-D dataset. With the synthetic underwater RGB-
D dataset, our model can learn to estimate underwater depth
maps using supervised learning. Finally, we compare our method
with existing state-of-the-art methods to synthesize underwater
images and estimate underwater depth maps, and we verify that
our method outperforms these methods both qualitatively and
quantitatively. Furthermore, our model can be fine-tuned on
the untrained datasets to synthesize a similar underwater style.
It effectively makes our model to be applied for depth map
estimation on new underwater datasets.
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APPENDIX

Generator Architectures
In our experiments, the generator Gs from CycleGAN (Zhu

et al., 2017a) and StarGAN (Choi et al., 2018) can be

described as Figure A1. Here, Convolution denotes a 7 × 7

Convolution-InstanceNorm-ReLU layer with 64 filters and
stride 1. Convolution/down denotes a 4 × 4 Convolution-

InstanceNorm-ReLU layer and stride 2. Residual block denotes
a residual block that contains two 3 × 3 Convolution-
InstanceNorm-ReLU layers with the same number of filters
on both layers. Deconvolution denotes a 4 × 4 fractional-
strided-Convolution-InstanceNorm-ReLU layer and stride 2.

FIGURE A1 | The network architecture of the generator Gs. It is a general ResNet (He et al., 2016) network for image-to-image translation.

The generator Gd from Jégou et al. (2017) is based on
dense-block (DB), as Figure A2. Convolution denotes a 3 × 3
Convolution-BatchNorm-ReLU layer with 32 filters and stride
1. Transition down is a maxpool2d operation with the same

number of filters and a 1 × 1 Convolution-BatchNorm-ReLU
layer with the same number of filters and stride 1. Transition up
denotes a 4 × 4 deconvolution layer with the same number of
filters and stride 2. Dense block denotes four 3 × 3 BatchNorm-
ReLU-Convolution layers with 12 filters and stride 1. The output
channel number of the dense block is the concatenation from the
output of four layers and the input. The encoder and the decoder
concatenate with skip connection.

Discriminator Architectures
For discriminator networks, we use 70 × 70 PatchGANs (Isola
et al., 2017; Zhu et al., 2017a). Similarly, we do not use
InstanceNorm or BatchNorm in any layer and use leaky
ReLUs with a slope of 0.2. The discriminator Ds has two
outputs from the discrimination branch and the classification
branch. Differently, the discriminator Dd only has one
discrimination output.
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FIGURE A2 | The network architecture of the generator Gd. Following the work of UW-Net (Gupta and Mitra, 2019), we choose DenseNet (Jégou et al., 2017) as the

generator Gd.
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