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Coral reefs are of undeniable importance to the environment, yet little is known of them
on a global scale. Assessments rely on laborious, local in-water surveys. In recent years
remote sensing has been useful on larger scales for certain aspects of reef science such
as benthic functional type discrimination. However, remote sensing only gives indirect
information about reef condition. Only through combination of remote sensing and in situ
data can we achieve coverage to understand reef condition and monitor worldwide
condition. This work presents an approach to global mapping of coral reef condition that
intelligently selects local, in situ measurements that refine the accuracy and resolution of
global remote sensing. To this end, we apply new techniques in remote sensing analysis,
probabilistic modeling for coral reef mapping, and decision theory for sample selection.
Our strategy represents a fundamental change in how we study coral reefs and assess
their condition on a global scale. We demonstrate feasibility and performance of our
approach in a proof of concept using spaceborne remote sensing together with high-
quality airborne data from the NASA Earth Venture Suborbital-2 (EVS-2) Coral Reef
Airborne Laboratory (CORAL) mission as a proxy for in situ samples. Results indicate
that our method is capable of extrapolating in situ features and refining information from
remote sensing with increasing accuracy. Furthermore, the results confirm that decision
theory is a powerful tool for sample selection.

Keywords: coral reef, remote sensing, experimental design, deep neural network, Bayesian statistics

INTRODUCTION

In addition to their significance in the marine biome, coral reefs are important to the cultural
and economic lives of hundreds of millions of people around the world (Moberg and Folke,
1999; Costanza et al., 2014). It is incontrovertible that many coral reefs are in various stages of
decline and may be unable to withstand the consequences of global climate change (Smith and
Buddemeier, 1992; Hoegh-Guldberg et al., 2007, 2017; Pandolfi et al., 2011; Gattuso et al., 2015).
Yet a small fraction of the world’s reef area has been studied quantitatively (i.e., 0.01–0.1%) as most
reef assessments largely rely on local in-water surveys (Hochberg and Atkinson, 2003). Therefore,
our current understanding may not be representative of the reef under study, nor the regional and
global reef ecosystem given existing data constraints (Hochberg and Gierach, 2021).
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Remote sensing from airborne and spaceborne platforms
have proven to be a useful tool for aspects of reef science
(Hedley et al., 2016). Early applications of remote sensing to
coral reef environments focused on mapping reef geomorphology
and ecological zonation (Kuchler et al., 1988; Green et al.,
1996; Mumby et al., 2004). In the past few decades, much of
remote sensing has focused on mapping habitats using qualitative
descriptors comprising various combinations of substrate (e.g.,
sand, limestone, rubble), benthic functional type (e.g., coral,
algae, seagrass), reef type (e.g., fringing, patch, barrier), and/or
location within the reef system (e.g., slope, flat) (Hedley et al.,
2016). The recent NASA Earth Venture Suborbital-2 (EVS-
2) COral Reef Airborne Laboratory (CORAL) mission focused
on reef benthic functional type discrimination (Hochberg and
Gierach, 2021). CORAL remote spectroscopic mapping was
shown to be informative but lacked global and temporal coverage.
Moreover, current remote sensing methods give only indirect
information about reef condition, making in situ data critical.

Only through combination of remote sensing and in situ
data can we achieve complete coverage of remote areas
while capturing relevant features of reef condition to monitor
worldwide change. For instance, high-quality seafloor mapping
has been achieved through the collection of in situ hyperspectral
measurements and stereo imagery (Bongiorno et al., 2018), but
only at local scales through dense sampling. Information from
remote sensing data can be a powerful tool for extrapolation
and wide-scale coverage. Candela et al. (2020) efficiently
combine spaceborne and in situ infrared spectroscopy for
geologic mapping. Fossum et al. (2020) use remote sea-surface
temperature images to infer spatial patterns in the evolution of
oceanographic conditions. Other approaches combine remote
bathymetry with in situ imagery for benthic habitat mapping
(Rao et al., 2017; Shields et al., 2020).

Furthermore, we seek to improve global mapping of coral reef
condition by intelligently selecting sparse, in situ measurements.
Specifically, samples that refine the accuracy and resolution
of global remote sensing by adapting to the current state of
knowledge of the environment. Currently most works regarding
adaptive sampling for marine surveys fail to exploit the power of
remote sensing; consequently, they only map simple quantities
such as salinity, temperature, altimetry, or dissolved oxygen
measurements (Binney et al., 2010; Flaspohler et al., 2019;
Stankiewicz et al., 2021). Rao et al. (2017) use a deep learning
architecture that does not allow for adaptive sampling. Shields
et al. (2020) use a somewhat similar approach, but they have
recently taken some first steps toward enabling adaptive sampling
through numerical approximations. Fossum et al. (2020) present
a framework with potential, but it has yet to be used for adaptive
sampling. Candela et al. (2020) present an adaptive sampling
method that has been tested in simulations and the field, although
focused on geologic applications.

The motivation of this work is to enable global mapping
and optimal sampling of coral reefs. To this end, we apply
new techniques in orbital data analysis, probabilistic modeling
for mapping, and decision theory for sample selection. We
apply machine learning to interpretation of imaging spectroscopy
data from the CORAL mission to extract features related to

physical properties of the underwater environment indicative of
coral condition. We also develop automatic mission and path
planning that could be executed by human divers or autonomous
underwater vehicles to refine and validate the coral geographical
map. Our strategy represents a fundamental change in how
we understand coral reefs and assess their condition. Instead
of small, infrequent, uncorrelated studies of isolated locations,
we begin to measure coral reefs globally, updating often,
and seeing worldwide patterns. The methodology and results
presented have direct applicability and benefit to future NASA
imaging spectroscopic missions, including the Surface Biology
and Geology Designated Observable (National Academies of
Sciences, Engineering, and Medicine (NASEM)., 2018).

MATERIALS AND METHODS

We start by portraying the data products we utilize in this study.
We then explain our probabilistic machine learning model for
coral reef mapping. Finally, we review various state-of-the-art
strategies that quantify and leverage the information contained
in our probabilistic model to enable intelligent sample selection.

Remote Sensing Data
Here we use the term “remote sensing” to refer to spaceborne
or airborne sensors; we do not consider in-water remote
sensing methods. We use high-resolution airborne data from
the CORAL mission as a proxy for in situ measurements.
CORAL mapped portions of the Great Barrier Reef, main
Hawaiian Islands, Marianas Islands, and Palau in 2016–2017.
Herein we analyze two flight lines from Heron Island, Australia
on 17 September 2016 and Kaneohe Bay in Oahu, Hawaii
on 6 March 2017 (Figure 1). Data is from the NASA/JPL
Portable Remote Imaging SpectroMeter (PRISM) flown on the
Tempus Applied Solutions Gulfstream-IV at 8.5 km altitude.
PRISM provided water-leaving reflectance from 350 to 1050 nm
(246 bands) at approximately 3 nm spectral resolution and
approximately 8 m spatial resolution from which benthic
reflectance and benthic functional type were derived. The
benthic reflectance calculation used the shallow-water reflectance
described by Maritorena et al. (1994). It was modeled using
a linear non-negative combination of a set of one or more
basis endmembers from a library of bottom reflectances (see
Thompson et al., 2017 for more details). Here we evaluate
benthic reflectance products since they provide invariance to
water column properties. These products have a 420–680 nm
spectral range and consist of 92 bands.

Benthic functional type corresponds to probabilities
associated with coral, algae, and sand for each seafloor pixel, and
was determined by logistic regression using mean reflectance
spectra from an existing spectral library (Hochberg and
Atkinson, 2003; Hochberg et al., 2003). We acknowledge that
additional benthic functional types could be distinguished
from the PRISM dataset with utilization of other spectral
libraries, but the focus of CORAL – and thus this work –
was on coral, algae, and sand. Examples of PRISM-derived
benthic composition from the CORAL mission are shown in
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FIGURE 1 | Remote sensing data used for this study. Landsat 8 data provides global-scale coverage but at coarse spatial and spectral resolutions that are often
insufficient for benthic cover analysis. PRISM is an airborne imaging spectrometer with finer spatial and spectral resolution that was used by the CORAL mission to
discriminate benthic functional types. The CORAL mission focused on three benthic functional types – coral, algae, and sand – and thus only these three types are
considered herein (as shown). Coral (red), algae (green), and sand (blue) abundance maps were estimated by Thompson et al. (2017) and validated by the CORAL
mission with photomosaics collected in the field.

Figure 1, with each pixel representing the primary benthic
functional type (i.e., greatest percentage of one type per pixel,
wherein all types sum to one per pixel). Herein we evaluate
PRISM-derived benthic reflectance since it provides invariance
to water column properties. Utilization of in situ measurements
of benthic reflectance are preferred; however, there were no
coincident collections of such measurements with overflights
under cloud-free conditions. Maps of PRISM-derived benthic
composition (i.e., coral, algae, and sand) are used to validate
our mapping/sampling results, serving as “ground truth.” Note
that PRISM-derived products were validated by an extensive
field collection as part of the CORAL mission and is not
the focus herein (e.g., Thompson et al., 2017). For example,
PRISM-derived benthic composition maps were validated by
10 m × 10 m photomosaics collected in the field at random.
In each 10 m × 10 m plot approximately 500–1000 digital
photographs were taken, mosaicked using structure-from-
motion techniques (Agisoft Metashape) to provide a single
orthomosaic, and then analyzed using coral reef science
standard point-count methods to provide proportional benthic
composition for benthic functional types.

We also use Level 2 surface reflectance products from
the orbital instrument Landsat-8 (Figure 1). Landsat-
8 provides global-scale coverage, but at coarser spatial
(30 m) and spectral resolution, serving as our source
of remote data. We use the first four bands, which
provide limited information in the visible wavelengths as
compared to PRISM data. For Kaneohe Bay, we use image
LC08_L2SP_064045_20170306_20200905_02_T1, which was
collected on the same day as the corresponding CORAL
flight line (6 March 2017). For Heron Island, we use image
LC08_L2SP_091076_20161026_20200905_02_T1; due to cloud

coverage issues, we had to use an image that was collected on a
different day (26 October 2016).

Probabilistic Machine Learning for Coral
Reef Mapping
This work adapts and extends the method by Candela et al.
(2020), which combines remote sensing and in situ data for
wide-area geologic mapping, to coral reefs. Here our focus is to
construct benthic cover maps.

Problem Formulation
Each material reflects, emits, or absorbs light in unique ways
throughout the electromagnetic spectrum. The measured signals
are called spectra and contain recognizable features or patterns
that can be used for composition analysis. The CORAL mission
focused on coral, algae, and sand as the most common,
widespread, and important types of benthic cover. We preserve
that taxonomy in this study for simplicity. Figure 2 shows benthic
functional type derived from spectra of coral, algae, and sand
collected by PRISM during the CORAL mission.

In this paper, we develop a method for mapping the
abundances of different endmembers in a coral reef over
a large area. We combine two different types of spectral
measurements: low-resolution (or multispectral) remote data
−→x ∈ X ⊂ Rm, and high-resolution (or hyperspectral) in situ data
−→y ∈ Y ⊂ Rn. Remote spectra are available beforehand for many
spatial locations

−→
l ∈ L ⊂ R2 (latitude and longitude), but in

general their spectral resolution does not permit endmember
identification. In contrast, in situ spectra tend to have a
spectral resolution that is sufficient for composition analysis, but
unfortunately only a scarce number of samples can be collected
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FIGURE 2 | Benthic reflectance of coral (left), algae (center), and sand (right) as estimated using the approach by Thompson et al. (2017) applied to PRISM data.

FIGURE 3 | Example of our active process for coral reef mapping applied in Kaneohe Bay, Hawaii. The CORAL mission focused on shallow water areas, and thus a
mask (as shown in black areas) is applied for depths greater than 5 m within the subsetted scenes. Experience with the CORAL data suggests that the accuracy of
the standard coral, algae, and sand estimation degrades below 5 m depth. For the purposes of this paper, we focus on shallow water areas with plenty of signal.
The mapping process starts with poor predictions (left). Just a few in situ samples are extrapolated throughout large areas with the assistance of remote sensing
(center). The predicted coral reef map improves as more samples are collected (right).

by an agent such as a scuba diver or an AUV. Our objective is
not only to extrapolate in situ samples over large areas with the
assistance of remote sensing, but also to build coral reef maps that
can easily adapt and improve with new information. We refer to
this problem as active coral reef mapping; an illustration is shown
in Figure 3.

Overall, our approach consists of two steps: spectral mapping
and endmember mapping. First, we use remote sensing as a prior
to extrapolate high-resolution in situ spectral measurements over
large areas (Figure 4). Then, we utilize the predicted high-
resolution spectra to estimate endmember abundance via spectral
unmixing. We decouple these steps to allow for alternative
spectral unmixing techniques. Specifically, both spectral and
endmember mapping are achieved by combining different
probabilistic machine learning algorithms. Gaussian process
(GP) regression has been widely used in spatial statistics (Cressie,
1993; Rasmussen and Williams, 2006), adaptive sampling
(Krause et al., 2008), and autonomous robotic exploration
(Thompson, 2008; Kumar et al., 2019). However, most work
regarding GPs (especially for AUVs) involves mapping scalar
fields such as salinity, temperature, altimetry, or dissolved
oxygen measurements (Binney et al., 2010; Flaspohler et al.,
2019; Stankiewicz et al., 2021). In contrast, our goal is to
learn and map non-scalar data, i.e., high-resolution spectra.
We tackle this problem with feature extraction techniques,

which reduce the dimensionality of spectra by deriving a
subset of non-redundant features. Feature extraction approaches
have been used for (non-scalar) benthic habitat mapping
(Rao et al., 2017; Shields et al., 2020). Nonetheless, they use
deep learning architectures instead of GPs for spatial modeling,
thus complicating the implementation of true adaptive sampling
for real time applications. Once our model predicts spectra
from features, we utilize learning-based spectral unmixing
algorithms to estimate endmember abundances from spectra.
Figure 5 shows a summary diagram of our approach. The rest
of this section describes spectral feature extraction, Gaussian
process regression, and learning-based spectral unmixing in
more detail.

Extraction of Spectral Features
Many channels and wavelengths in hyperspectral measurements
are strongly correlated, especially adjacent bands. This
allows for dimensionality reduction techniques that
learn a set of representative features that efficiently
compress and capture most of the information in spectra.
Hence, dimensionality reduction is also known as feature
extraction. Formally, they convert a set of high-resolution
observations −→y ∈ Y ⊂ Rn into a set of lower dimensional
features −→z ∈ Z ⊂ Rd, where d << n. In this work we
apply and compare two feature extraction methods:
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FIGURE 4 | Prediction of coral (top row) and sand (bottom row) spectra at two locations that are never actually sampled. Here we use PRISM as the ground truth.
At first, the model’s predictions have a low accuracy and a high uncertainty (left column). After collecting more samples, the model refines its spectral predictions
(right column).

Principal Component Analysis (PCA) and the Variational
Autoencoder (VAE).

Principal component analysis is a linear dimensionality
reduction method that produces a sequence of orthogonal
vectors, known as components, that best fit the data. Components
allow individual dimensions to be linearly uncorrelated and
enable the linear projection of data to a lower dimensional
space. The first feature of the lower dimensional space is the
one that learns most of the useful information. The next features
monotonically capture less information and more noise, until the
last features essentially learns pure noise.

Variational autoencoder (Kingma et al., 2013) is a neural
network that performs non-linear dimensionality reduction. It
produces a feature representation that resembles a standard
multivariate normal distribution, i.e., −→z ∼ N(

−→
0 , Id). This

operation effectively decorrelates and normalizes features.
Moreover, VAEs tend to spread information evenly across the
latent dimensions while filtering noise. The VAE is composed
of two networks: an encoder that extracts the features, and
a decoder that reconstructs high-resolution observations using
the learned features. In this work, we use the architecture
described in Candela et al. (2018).

We stress that both PCA and VAE are unsupervised methods
since they learn features without the need of labeled data.
They offer a significant advantage over approaches that rely on
manually engineered features, which tend to be domain-specific,
arbitrary, and laborious.

It is worth noting that automated feature extraction requires
the exact same input size. Nonetheless, it is possible to generalize

and scale these algorithms to data from similar spectrometers
via resampling or interpolation. This idea has been used in a
similar study by Candela et al. (2020), where infrared spectra
(2000–2500 nm) is used for mineral identification. First, a VAE
is pretrained using data from the Airborne Visible InfraRed
Imaging Spectrometer Next Generation (AVIRIS-NG), which has
approximately 90 bands in the 2000–25000 nm spectral range.
This VAE is then used to process resampled spectra from an
Analytical Spectral Devices (ASD) FieldSpec spectrometer, which
has about 400 bands in a similar spectral range. However, a
substantial difference in spectral resolution or spectral range
(e.g., visible vs. thermal infrared wavelengths) would most likely
require a retraining process.

It is important to underscore that in our method, feature
extraction ignores spatial information and neighboring context;
it only considers individual spectra. It is worth noting
that the recent Location Guided Autoencoder (LGA) by
Yamada et al. (2021) considers spatial autocorrelations by
making a simple modification to regular VAEs, potentially
improving performance. For generalization purposes, we assume
that spectral features are learned from spectral libraries
that may not necessarily contain the corresponding spatial
information. We next explain how our approach models and
learns spatial autocorrelation between spectra in an adaptive
manner using GPs.

Spatial Regression of Spectral Features
We use GPs for spatial regression, that is, to learn the spatial
distribution of spectra throughout the scene. GPs are a powerful
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FIGURE 5 | Active coral reef mapping process.

technique for extrapolation, as well as for the refinement of
mapping as new data is collected.

Gaussian process are typically used for mapping scalar values,
for example ocean temperature, salinity, altimetry, or dissolved
oxygen measurements (Binney et al., 2010; Flaspohler et al.,
2019; Stankiewicz et al., 2021). However, our coral reef mapping
problem involves multivariate data (i.e., high-resolution spectra).
We overcome this challenge by using GP regression to learn the
distribution of low-dimensional features Z instead. Moreover,
dimensionality reduction with either PCA or VAE uncorrelates
the learned feature representation. This trick simplifies the
problem substantially by allowing for the utilization of a small
number of i=1, 2,...,d independent GPs.

We next provide a brief explanation regarding the elements
of our specific GP regression model. If needed, extensive GP
documentation can be found in Rasmussen and Williams (2006).
Formally, we define an input vector that concatenates spatial
coordinates and remote spectra as −→v = [

−→
l ,−→x ] ∈ V ⊂ R2+m,

similarly as Thompson (2008). We assume there exists a latent
function f i

: V → R that maps an input−→v to each feature zi:

zi
= f i(−→v )+ ∈i.

In other words, the goal of a GP is to learn a distribution over the
values that f i(−→v ) can take in order to predict a spectral feature
zi for many locations over large areas. A GP assumes that for any
set of inputs, the vector of outputs is distributed as a multivariate
Gaussian, which is parametrized as follows:

zi∗
1
...

zi∗
q

f i(−→v1 )
...

f i(−→vp )


∼

N





µi(
−→
v∗1 )
...

µi(
−→
v∗q )

µi(−→v1 )
...

µi(−→vp )


,

[
Ki

00 + (σ
i
noise)

2I
Ki

UO

Ki
OU

Ki
UU + (σ

i
noise)

2I

]

.

A GP combines observed (or training) data
0 = {(−→v ∗1, zi∗

1 ), ..., (
−→v ∗q, zi∗

q )} with a finite set of unseen points

U = {(−→v1 , f i(−→v 1)), ..., (
−→v p, f i(

→
v ))}. This allows observed data

to be used to predict unseen data. The prediction also follows a
Gaussian distribution: f i(−→v 1)

...

f i(−→v p)

 ∼ N(µ̂i(U|O), 6̂i(U|O))

where µ̂i is the predicted or posterior mean, and 6̂i is the
predicted or posterior covariance matrix. These are computed
using the standard formulas for conditional multivariate
Gaussians (Eaton, 1983):

µ̂i(U|O) =


µi(−→v 1)

.

.

.

µi(−→v p)

+ Ki
UO(K

i
oo + (σ

i
noise)

2I)−1


zi∗

1 − µi(−→v ∗
1
)

.

.

.

zi∗
1 − µi(−→v ∗

q
)

 ,

6̂i(U|O) = Ki
UU + (σ

i
noise)

2I + Ki
UO(K

i
OO + (σ

i
noise)

2I)−1Ki
OU .

When using GPs, one most specify a prior mean function µi
:

V → R, as well as a covariance function ki
: V × V → R. The

covariance function ki is used to construct covariance matrices
ki, for instance:

Ki
OU =


ki(
−→
v∗1 , v→1 ) . . . ki(

−→
v∗1 , v→p )

. . .

. . .

. . .

ki(
−→
v∗q , v→1 ) . . . ki(

−→
v∗q , v→p )


Here we assume that the mean function is always zero
(i.e.,µi(

→
v ) = 0,∀−→v ∈ V) because of the way features are

normalized by both PCA and VAE. For the covariance function,
we rely on the widely used squared exponential kernel.
Specifically, we use a kernel that distinguishes between spatial and
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spectral dimensions as follows:

ki(Ev, Ev′) = θi
0 exp

(
−
||El− El′||22

2(θi
l)
−
||Ex− Ex′||22

2(θi
x)

)

where [θi
0, θ

i
l, θ

i
x] are the kernel hyperparameters. Additionally,

we utilize the GP variant for noisy observations, and thus use
an additional hyperparameter for the noise standard deviation
σ i

noise The hyperparameters [θi
0, θ

i
l, θ

i
x, σ

i
noise] are learned using

the process in Rasmussen and Williams (2006).

Learning-Based Spectral Unmixing
Spectral unmixing is a procedure by which a measured spectrum
is decomposed into a collection of constituent endmembers. The
main characteristic of this procedure is that it estimates the
proportions or abundances for at least K ≥ 2 components in
each spectrum (e.g., 40% coral, 30% algae, and 30% sand in
one pixel). Spectral unmixing is especially useful for scenarios in
which components are highly mixed; as opposed to conventional
classification, which assumes that one endmember is strongly
dominant over the rest. Let us denote these endmembers’ spectra
as−→e1 ,

−→e2 , ...,
−→ek ∈ Y , and their respective fractional abundances,

or mixing ratios, as−→r = [r1, r1, ..., rk], such that:

K∑
j=1

rj = 1, rj ∈ [0, 1]

In general, there are two different models for spectral unmixing:
linear and non-linear (Lein, 2012). We explore and compare both
in this work. Linear models assume that a spectrum −→y can be
represented as a linear combination of its endmembers:

−→y = E−→r,

where E = [−→e 1,
−→e 2, ...

−→e k] corresponds to the endmember
matrix and

→
r is the variable to solve in the previous linear

equation. We compare three different linear models:

• Unconstrained least squares (ULS): solves the equation for
→
r using normal least squares without any constraints.

• Non-negative least squares (NNLS): solves the equation for
→
r withrj ≥ 0∀ rj .

• Fully constrained least squared (FCLS): solves the
equation for

→
r with

∑K
j=1 rj = 1, rj ∈ [0, 1] using the

method by Heinz and Chang (2001).

Non-linear models use more complex and varied functions.
Here we focus on a learning-based method for spectral unmixing.
In particular, a neural network (NN) that learns how to predict
fractional abundances from spectra:

−→r = NNw(
−→y )

where NN is the spectral unmixing function learned by the
neural network with hyperparameters or weights w. We train this
network using a data set that consists of pairs of high-resolution
PRISM spectra −→y and their associated ground-truth fractional
abundances

→∗
r . For purposes of this work, we assume that

ground truth values are given by the PRISM-derived products
that were generated by Thompson et al. (2017) (see Section
“Remote Sensing Data”).

The neural network we use is a multilayer perceptron. For
reproducibility purposes, we next explain the used architecture.
The network is implemented in the deep learning framework
Keras (Chollet, 2015). The size of the input layer isdim(Y) = n.
The output of the network consists of a softmax layer of size 3
that ensures both constraints are not violated, i.e., that it always
predicts non-negative fractional abundances that sum to 1. We
use the popular Adam optimizer (Kingma and Ba, 2014). The
detailed architecture of the network is shown in Table 1.

We use the Kullback–Leibler divergence (KLD) as the
loss function. The Kullback–Leibler divergence is a more
suitable score for mixtures of endmembers when compared
to conventional classification accuracy. Regular classification
assumes that mixtures are negligible. In contrast, the Kullback–
Leibler divergence measures the difference between two
probability distributions (Cover and Thomas, 2006). We treat
the real

→∗
r and predicted −→r mixing ratios as probability

distributions, which is a valid assumption since mixing ratios are
non-negative and sum to 1. Hence, we use the Kullback–Leibler
divergence as a loss function that measures unmixing accuracy.
It is defined as follows:

KLD(
→∗
r ||

→
r ) =

K∑
j=1

r∗j log
r∗j
rj
,

Decision Theory for Sample Selection
The agent executing the coral reef mapping mission aims to
collect the most informative in situ samples. Quantitatively
speaking, these are the samples that better explain and
reconstruct the explored coral reef. In general, we can formulate

TABLE 1 | Architecture of the multilayer perceptron network for spectral unmixing.

Layer Fully Connected Activation Function Number of Units

Input – – 92

Hidden 1 Yes Rectified linear unit 69

Hidden 2 Yes Rectified linear unit 47

Hidden 3 Yes Rectified linear unit 25

Output Yes Softmax 3
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FIGURE 6 | Four sampling strategies for coral reef mapping: random sampling, Bayesian experimental design, Monte Carlo tree search, and ergodic optimal control.
Random sampling is the simplest approach since it ignores how useful future samples might be. Bayesian experimental design provides a probabilistic framework for
identifying the most informative samples and planning paths accordingly. Monte Carlo tree search combines random sampling with a tree search that focuses on the
most promising actions. Ergodic optimal control not only selects informative samples, but also generates smooth trajectories that can be suitable for boats or AUVs.

this notion in terms of the following optimization problem:

max
p

Info(M|P) subject to Cost(P) ≤ Budget,

where M = {−→v1 ,
−→v2 , ...,

−→vp } is the set of pixels in the model
that are to be extrapolated from remote sensing data, and P =
{
−→
S1 ,
−→
S1 , ...,

−→
Sq , } is the set of in situ samples−→s = [

−→
l ,−→y ], given

by pairs of spatial coordinates and high-resolution spectra. Here
we assume there is a much larger number of pixels in the remote
data than number of in situ samples, i.e.,p >> q. Info(M|P) is the
information of the model given a set of in situ samples. We also
include a sampling budget that can represent a quantity such as a
maximum number of samples, a time constraint, etc.

In order to quantify and optimize the information of the
model Info(M|P), we rely on principles of information theory and
statistical learning, as well as on various algorithms for optimal
sample selection. We describe and later compare four different
strategies (Figure 6): random sampling, Bayesian experimental
design, Monte Carlo Tree Search, and ergodic optimal control.

Random Sampling
Random sampling serves as a baseline that does not quantify
nor use information from the model whatsoever, hence poorer
performance is to be expected. In order to generate trajectories
that are somewhat smooth, random sampling occurs inside a
fixed radius at each step. We employ two different random
strategies. One samples from a uniform distribution inside the
circular region, and one samples from a uniform distribution
along the perimeter of the region. Figure 7 shows an illustration
of both random sampling methods, which we call random
uniform (RU) and random edge (RE).

FIGURE 7 | Visualization of the random sampling strategies. Random uniform
selects any point inside a local region defined by a fixed radius r. Random
edge selects any point along the region’s perimeter, potentially increasing
traversed distance and coverage.

Bayesian Experimental Design
Bayesian experimental design is a framework for decision
making, specifically for designing experiments that are optimal
with respect to a Bayesian probabilistic criterion (Chaloner and
Verdinelli, 1995). In this case, the experimental design consists of
in situ samples that are to be collected in the water that will be
optimally informative. Such design is derived by optimizing the
expected value of a utility function that quantifies information in
a probabilistic model. Here we focus on Shannon entropy H(A),
which measures the average level of information or uncertainty
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in a random variable A (Cover and Thomas, 2006; Krause et al.,
2008). It is defined as follows:

H(A) = −
∑
a∈A

p(a) log(p(a)).

The posterior Shannon entropy H(A|B) measures the average
uncertainty of A after collecting new information B. It is given by:

H(A|B) = −
∑
b∈B

p(b)
∑
a∈A

p(a|b) log(p(a|b)).

As explained earlier, our probabilistic model relies on a GP-based
formulation. The posterior entropy of a GP is given by Krause
et al. (2008):

H(A|B) =
1
2

log{(2πe)dim(A) det (
∧∑
(A|B))}

In our coral reef mapping problem, the random variable of
interest is the spatial distribution of spectral features throughout
the remote sensing image M. Ultimately, we want to quantify
the uncertainty of our coral reef mapping model given new
in situ samplesP. Since our probabilistic model consists of d
independent GPs, the posterior entropy of the map is additive
across features; a property further explained by Cover and
Thomas (2006). Then the posterior entropy of our model is given
by the following expression:

H(M|P) =
d∑

i=1

1
2

log{(2πe)dim(M) det(
∧i∑
(M|P))}

Shannon entropy quantifies the uncertainty of the model
M and decreases as more samples are collected (Figure 8).
Consequently, an optimal sampling strategy P* would
minimize entropy:

P∗ = arg min
P

H(M|P)

Unfortunately, this optimization problem has been shown
to be NP-hard (Ko et al., 1995), in other words, impossible
to solve for a computer in a reasonable amount of time.
The reason is that the complexity of the problem rapidly
increases when evaluating each combination of possible samples.
Therefore, we use and later compare two greedy heuristics that
achieve near-optimal results (Krause et al., 2008). Both rely
on a local-region sampling approach, similarly to our random
sampling method.

Maximum entropy (ME) sampling selects one sample at a
time. The next in situ sample is collected at the remote sensing
pixel
−→
v∗ with the largest individual uncertainty:

−→
v∗ = arg max

−→v
H(−→v ) .

ME sampling is relatively simple to execute, but it tends to
select outliers.

An improved strategy is maximum information gain (MIG)
sampling. It also selects one sample at a time. The next sample
is collected at the pixel with the largest information gain, that is,
with the greatest expected reduction in entropy:

−→
v∗ = arg max

−→v
H(−→v ) − E−→y [H(

−→v +−→s )]

MIG sampling is more expensive since it requires computation
of an expectation, but it tends to outperform maximum entropy
sampling by selecting more representative samples.

Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a heuristic search
strategy that uses random trials for decision processes that
are too difficult to solve. It constructs a search tree that
is explored and expanded based on a random sampling
process that focuses on the most promising decisions so far.
MCTS integrates closely with GP models (Flaspohler et al.,
2019; Candela et al., 2020). We specifically use information
gain as its objective function. The main advantage against
maximum information gain sampling is that MCTS is not

FIGURE 8 | Visualization of the uncertainty of the model in Kaneohe Bay in terms of Shannon entropy. Light/yellow tones indicate high uncertainty areas, whereas
dark blue tones denote low uncertainty. The mapping process starts with high uncertainty throughout the map (left). Uncertainty decreases as more samples are
collected (center). Uncertainty is propagated throughout the scene as a function of spectral and spatial similarity in remote sensing data. Eventually there is little
uncertainty left in most of the map due to the efficient extrapolation of representative samples (right).
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greedy; specifically, it can look ahead multiple steps to maximize
over a series of decisions. The algorithm expands branches
to simulate the total information gain after multiple steps
and returns the first step of the branch with the maximum
total information gain. With each execution of a single step,
the GPs are updated with the new sample before the next
step is planned. MCTS is similar to the rapidly exploring
information gathering (RIG) algorithms by Hollinger and
Sukhatme (2014). They are both sampling-based approaches.
However, the formulation of MCTS does rely on discretization
of the environment, whereas RIG methods can operate in
continuous spaces at the cost of potentially ignoring valuable
samples. The algorithm we use here, developed by Kodgule
et al. (2019), utilizes an 8-connected grid. It is important to
note that MCTS has no conception of its total path length
during execution, just a look-ahead depth. Computation time
is often significantly larger when compared to other sampling
planners. Nevertheless, MCTS is non-myopic and provides a high
performance bound.

Ergodic Optimal Control
Ergodic theory is a mathematical framework for studying
the statistical properties of dynamical systems and stochastic
processes (Petersen, 1984). Ergodic optimal control leverages
such concepts to derive sampling trajectories that are both
smooth and informative. Regarding smoothness, our GP-based
formulation is a continuous model with the inherent benefit
of allowing samples anywhere, not only from discretized
locations, such as a grid. Regarding informativeness, the
key idea behind ergodic optimal control is to compute
trajectories such that the amount of time spent in a region
is proportional to the expected information gain in that region.
Much research focuses on designing ergodic trajectories,
often framed as coverage problems (Hussein and Stipanovic,
2007; Mathew and Mezić, 2011). We examine two algorithms
specifically designed for information gathering, Spectral
Multi-scale Coverage (SMC) and Projection-based Trajectory
Optimization (PTO).

SMC, proposed by Mathew and Mezić (2011), provides
distinct benefit of balancing exploration and exploitation
(seeking new information versus confirming expectations).
Additionally, it produces very smooth trajectories. Formally, the
objective function is designed to maximize the rate of decay of
an ergodicity metric that measures the difference between the
time-averaged behavior of the trajectory and the uncertainty of
the model in terms of entropy. An informative trajectory will
visit high-entropy regions frequently and low-entropy regions
occasionally. The model is updated after collecting a sample
and a new trajectory is computed at every step to produce
a path.

The PTO trajectory planning algorithm, proposed by Miller
and Murphey (2013), directly optimizes ergodicity over the entire
trajectory. SMC, on the other hand, improves the rate of change
of ergodicity over a single step. PTO tends to generate trajectories
that collect even more informative samples than SMC, but at the
expense of less smoothness, more total traversed distance, and
little control on step size.

Experiments
We conduct three different experiments in this work. For the
first two experiments, we address automated spectral analysis.
The first experiment evaluates the performance of PCA and VAE
in terms of spectral feature extraction. The second experiment
compares the forementioned linear and learning-based unmixing
algorithms. The third experiment is the most important since it
consists of a simulation study that combines and extends ideas
from the previous methods and experiments. It involves active
coral reef mapping and sampling in Heron Island and Kaneohe
Bay using the data described in Section “Remote Sensing Data.”
All experiments, training, and simulation are performed using a
laptop computer with an Intel i7 processor (2.9 GHz quad-core)
and 16 GB of memory.

For the first two experiments, we employ a data set
that consists of 3000 spectra sampled from both PRISM
flight lines. Thousand spectra are used for the training set,
1000 for the validation set, and 1000 for the test set. All
these spectra are withheld from the final experiments. The
3000 spectra are sampled using the k-means++ approach
(Arthur and Vassilvitskii, 2007) to ensure that their both spectra
and fractional abundances are diverse and representative. To
avoid overfitting, we employ early stopping during training,
which is a popular approach in deep learning (Goodfellow et al.,
2016). It consists in selecting the neural network weights that
minimize the loss of the validation set while training (using the
training set). Other approaches, such as k-fold cross-validation,
are excellent to avoid overfitting, but are typically too expensive
to use with neural networks.

RESULTS AND DISCUSSION

Spectral Feature Extraction
We compare the feature extraction algorithms described in
Section “Extraction of Spectral Features”: PCA and VAE. Each of
these two models learns how to convert high-resolution PRISM
spectra (92 bands in 420–680 nm) into a set of features, or
dimensions in the latent space. Afterwards, the models are used
to reconstruct spectra from features. In this experiment we
observe how error changes as a function of number of features
ranging from 1 to 6. Figure 9 shows the reconstruction error
of the training, validation, and test sets. First, we notice that
reconstruction errors are similar for the three sets, suggesting a
good generalization. We observe that VAE, the non-linear model,
can compress data better than linear PCA in all cases since the
reconstruction error is smaller and has a smaller variance. As one
would expect, average error (for both PCA and VAE) tends to
decrease as more features are used since less information is lost
in the compression process. Consequently, the difference between
PCA and VAE is less clear for 5 or 6 dimensions. In those cases,
PCA may be more appealing since it is much faster to train and
apply, at least from an implementation standpoint. However, a
disadvantage of PCA is that the first dimensions (features) learn
most of the information while the last dimensions essentially
learn just noise. In contrast, VAE tends to spread information
evenly across the latent dimensions while filtering noise.
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FIGURE 9 | Reconstruction error as a function of feature dimension. Results show the average error plus-minus one standard deviation for 1000 samples in each of
the three sets: training (left), validation (center), and test (right). The variational autoencoder (VAE) performs better than principal component analysis (PCA) since
its reconstruction error has a smaller mean and variance. Reconstruction errors are similar for the three sets, suggesting a good generalization.

Spectral Unmixing
We compare the spectral unmixing performance of ULS,
NNLS, FCLS, and NN. We use the same data set and
evaluate performance in terms of two metrics that measure
the difference between the predicted and real endmember
abundances. These are the root mean squared error (RMSE)
and the Kullback–Leibler divergence (KLD); the latter is a
smooth function that measures the difference between the real
and the predicted endmember abundances by treating them
as probability distributions. We assume that the ground truth
values are the ones estimated by Thompson et al. (2017). The
associated results are shown in Table 2. We observe that linear
unmixing improves as more constraints are enforced, but at
the cost of losing physical meaning (e.g., negative fractional
abundances are impossible in practice). Our neural network
not only outperforms the linear methods, but also provides
valid and consistent solutions because of its softmax output
layer. The neural network is a method that is not constrained
to linear representations. Another possible explanation for
this result is that linear methods are very susceptible to the
quality of the endmember extraction process, as well as to
variability within classes.

Mapping and Sampling
This is the most important experiment in the study. It tests
the ability of our approach to carry out large-scale coral reef
mapping and sampling through the combination of remote
sensing and in situ data. Remote sensing data comes from Landsat
8 surface reflectance products, whereas PRISM spectra are proxy
for in situ samples due to high quality and resolution (both
spectral and spatial).

In this experiment, we use VAE for feature extraction and the
neural network for spectral unmixing because of their superior
results. The data set that is used for training is withheld from
this experiment. Min-max normalization is applied to both
Landsat and PRISM spectra to allow the model to focus on
spectral features rather than albedo values. The VAE extracts
features from PRISM spectra and encodes them into a space with

dimensionality d = 3. We select this value because: (1) is an
intermediate value in our previous experiments, (2) VAE with
d = 3 has a similar error than PCA with d = 3, and (3) false
color images can be easily generated for the learned features. The
overall model consists of three independent GPs that are pre-
trained with the same data set, and later fine-tuned online to
better adapt to incoming data.

Hundreds of sampling traverses were simulated at each of
the two sites. For Heron Island, we focus on a 6 × 3 km
subregion that is diverse in terms of benthic cover; for
Kaneohe Bay, we focus on a smaller subregion of size
1.5 × 1.5 km (Figure 10). Forty-nine different starting locations
were evenly spaced throughout each subregion; end goals were
not specified. Consequently, we simulated and generated 49
traverses using each sampling algorithm, 343 traverses in total
at each site. Additionally, we impose a constraint of 20 samples
per traverse.

An example of a simulated traverse at Kaneohe Bay together
with its corresponding coral reef mapping process is shown in
Figure 3. Signatures are successfully identified and extrapolated
throughout the scene. The map is refined as more samples are
collected. We observe that just a few samples (20) are sufficient to
map the benthic cover of most of the 1.5× 1.5 km area.

We analyze the performance of the seven sampling strategies
discussed in subsection “Decision Theory for Sample Selection”:
RU, RE, ME, MIG, MCTS, SMC, and PTO. Furthermore, we
compare them with two additional approaches: a bound in which
every pixel in the scene is sampled (ultimately thousands of
points), and a sampling strategy that consists of the coordinates
from which actual samples were collected by scuba divers during
the CORAL field campaign (Figure 10). We use three metrics
to evaluate the performance of the different sampling strategies
in terms of mapping accuracy. For normalization purposes, we
compute the averages with respect to the total number of points
in the map. The first metric is the posterior entropy (Equation 3),
which is directly minimized by most planners and is calculated
without a ground truth. The second metric is the reconstruction
error of spectra throughout the scene in terms of RMSE. It should
be indirectly minimized by the planners since it always requires a
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TABLE 2 | Unmixing algorithms and their performance in terms of Kullback–Leibler divergence (KLD) and root mean squared error (RMSE).

Metric ULS NNLS FCLS NN

KLD 0.16 ± 0.19 0.24 ± 0.30 0.96 ± 0.79 0.03 ± 0.05

RMSE 0.35 ± 0.51 0.46 ± 0.63 0.52 ± 0.87 0.16 ± 0.14

Four unmixing algorithms are evaluated: unconstrained least squares (ULS), non-negative least squares (NNLS), fully constrained least squares (FCLS), and our neural
network (NN). Results show the average performance plus-minus one standard deviation for 1000 samples in the test set. The neural network performs best overall. Bold
values indicate that a method had the best performance with respect to an evaluation metric.

FIGURE 10 | Experimental setting for the simulation study. A subregion of 6 × 3 km in Heron Island is shown on the left, whereas a region of 1.5 × 1.5 km in
Kaneohe Bay appears on the right. Top row: abundance maps estimated by Thompson et al. (2017) and validated by the CORAL mission, serving as the ground
truth in this study. Middle row: predicted abundances using the sampling strategy followed during the CORAL mission. Bottom row: predicted abundances using
paths generated by two optimal sampling strategies, Maximum Information Gain (left) and Spectral Multi-scale Coverage (right). White asterisks indicate sampling
locations. In this example, the optimal sampling strategies produce more accurate maps both as a function of spectral reconstruction error, in terms of Root Mean
Squared Error (RMSE), and unmixing accuracy, in terms of the Kullback–Leibler Divergence (KLD).
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basis for comparison, which is PRISM data in this case. The third
metric is KLD, which measures unmixing accuracy. Furthermore,
we report results with respect to three cost variables: total
computation time, total traversed distance, and roughness of the
traverse. The latter two are directly related to energy and time
consumption. The roughness cost quantifies sudden turns along
the trajectory, where perfectly straight paths receive a score of 0
degrees. Roughness is based on the smoothness scores proposed
by Hidalgo-Paniagua et al. (2017) and Guillén Ruiz et al. (2020).

We use Pearson’s correlation coefficient to measure
correlation between metrics throughout the simulations.
Pearson’s coefficient is a measure of the strength of the linear
relationship between two variables that is defined as the
covariance of the variables divided by the product of their
standard deviations. This is the best-known and most used
type of correlation coefficient. Reconstruction error (RMSE) vs.
model uncertainty (entropy) scatter plots for Heron Island and
Kaneohe Bay have Pearson’s correlation coefficients of 0.881 and

0.948, respectively, 7 sampling strategies× 49 simulated traverses
per sampling strategy × 20 samples per traverse. These values
indicate a positive correlation between Landsat and PRISM data;
they also confirm that entropy is a suitable objective function for
spectral mapping. We observe a similar result when comparing
KLD with entropy. The Pearson correlation coefficients are 0.937
and 0.836, demonstrating that entropy is also very useful for
building accurate abundance maps. These results are also shown
in Figure 11.

To evaluate the performance of the various sampling strategies
discussed in section “Decision Theory for Sample Selection,” the
corresponding accuracy plots are shown in Figure 12, whereas
the associated costs appear in Table 3. Note that Table 3
does not include cost results for the scuba diving strategy.
The optimal sampling strategies generate paths, whereas the
scuba diving samples were collected throughout multiple days,
sometimes by more than one person; hence comparisons may
not be fair. In all cases, entropy, reconstruction error, and

FIGURE 11 | Top row: Spectral reconstruction error (RMSE) vs. model uncertainty (entropy). Both variables are strongly correlated according to Pearson’s
correlation coefficient. Bottom row: Unmixing accuracy (KLD) vs. model uncertainty (entropy). Both variables are strongly correlated according to Pearson’s
correlation coefficient.
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FIGURE 12 | Average model uncertainty (Shannon entropy, top row), spectral reconstruction error (RMSE, middle row), and unmixing accuracy (KLD, bottom
row) as a function of samples.

KLD show decreasing trends that approach the optimal bound
as more samples are collected. Random sampling strategies
perform worst overall since they do not identify the most
informative samples. Random edge is better than random
uniform, apparently because it covers more distance. However,
long traverses are not enough to achieve good performance

since random edge is outperformed by the rest of the sampling
algorithms. The greedy strategies, maximum entropy and
maximum information gain, do better than random sampling.
As expected, information gain is a more useful reward than bare
entropy. Non-greedy approaches perform best since they look
farther. PTO has the best performance scores, but at the cost
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TABLE 3 | Associated costs for each sampling algorithm in terms of computation time, traversed distance, and smoothness.

Metric Site RU RE ME MIG MCTS SMC PTO

Time (seconds) Heron Island 36.58 ± 1.24 33.35 ± 2.14 30.16 ± 3.61 40.38 ± 1.24 454.6 ± 35.4 38.45 ± 0.59 43.63 ± 0.34

Kaneohe Bay 22.07 ± 0.71 21.45 ± 0.09 19.56 ± 1.31 25.29 ± 0.85 350.0 ± 29.1 23.38 ± 0.44 27.51 ± 0.05

Distance (km) Heron Island 7.12 ± 0.65 10.62 ± 0.03 8.70 ± 0.39 9.68 ± 0.46 10.18 ± 0.33 9.25 ± 0.11 12.96 ± 1.46

Kaneohe Bay 2.47 ± 0.19 3.69 ± 0.10 2.95 ± 0.47 3.31 ± 0.32 3.51 ± 0.08 3.2 ± 0.02 4.95 ± 0.46

Roughness (degrees) Heron Island 56.0 ± 13.5 55.4 ± 12.3 25.4 ± 8.7 24.7 ± 9.1 15.9 ± 6.3 7.7 ± 1.8 21.9 ± 7.8

Kaneohe Bay 55.3 ± 10.5 53.6 ± 10.5 35.7 ± 11.7 29.3 ± 12.1 31.3 ± 9.0 8.6 ± 1.7 21.7 ± 4.7

Seven sampling strategies are evaluated: random uniform (RU), random edge (RE), maximum entropy (ME), maximum information gain (MIG), Monte Carlo tree search
(MCTS), Spectral Multi-scale Coverage (SMC), and Projection-based Trajectory Optimization (PTO). Results show the average performance plus-minus one standard
deviation for 49 simulated traverses per strategy per site. Bold values indicate that a method had the best performance with respect to an evaluation metric.

of significantly longer traverses that cannot be controlled nor
bounded. MCTS has similar performance scores with much more
reasonable traverses, but with expensive computation times.
SMC seems like an intermediate alternative with the appeal
of having the smallest roughness scores overall. Interestingly,
the divers’ strategy tends to score somewhere in between the
random methods and the intelligent algorithms in terms of
mapping accuracy (Figure 12). This seems reasonable since
the divers did not formulate sample selection in terms of
Shannon entropy, let alone optimized it directly; nonetheless,
they were certainly executing a more intelligent strategy than
mere random sampling.

CONCLUSION

This paper presents an approach to map coral reefs over
large areas and improve the efficiency of in situ sampling.
Through combination of remote sensing and in situ data,
our method achieves wide-scale coverage by extrapolating
relevant spectral features and by adapting to new information.
This is done through a probabilistic machine learning model
that fuses spectral feature extraction, spatio-spectral Gaussian
process regression, and learning-based spectral unmixing.
Furthermore, our approach identifies and quantifies the most
valuable samples by utilizing well-defined principles of decision
theory, information theory, and experimental design for sample
selection. We then apply and compare various optimization
techniques designed for information gathering tasks; specifically,
greedy heuristics for Bayesian experimental design, Monte Carlo
tree search, and ergodic optimal control.

Our simulation study using Landsat 8 and PRISM revealed
key insights in the application of learning-based methods for
spectral analysis and endmember mapping. We observe that
hyperspectral data can be effectively compressed using linear
methods like PCA, and even more accurately with non-linear
methods such as VAE. Similarly, we also confirm that neural
networks are powerful tools for non-linear spectral unmixing.
And more importantly, we demonstrate that the combination
of these methods, together with remote sensing, allows for
the extrapolation of just a few in situ signatures to many
locations in large areas. Ultimately the spectral reconstruction
and mapping techniques presented herein lay the groundwork

for application to multispectral satellite data (e.g., Landsat
series, WorldView-2/3, etc.) to provide global estimates of coral
reef benthic composition over time. This would represent an
enormous leap in understanding the trajectory of global coral reef
condition. Further, it directly improves management of coral reef
ecosystems given (1) its potential to fill gaps among sparse in situ
observations, especially in remote, unpopulated, or inaccessible
areas, and (2) its ability to aid in design and refinement of a
monitoring program – informing key locations for in situ surveys.

Regarding decision theory for informative sample selection,
our results indicate that probabilistic modeling leads to
substantial benefits. Concretely, we observe that Shannon
entropy is strongly correlated to both spectral reconstruction
error and unmixing accuracy, showing that entropy is a
suitable objective function for efficient endmember mapping. We
evaluate various state-of-the-art sampling strategies and conclude
that they can accommodate diverse needs and constraints.
PTO has the best mapping accuracy, but at the expense of
very long traverses that are hard to bound. We recommend
MCTS if computation time is not a critical issue. SMC
appears to be a well-balanced method: it has a competitive
performance with fast computation times, its traversal distances
are straightforward to control, and it generates the smoothest
trajectories overall, potentially resulting in significant energy and
time savings.

Future investigations will improve, extend, and further
validate our current model for coral reef mapping. Our results
on benthic functional type mapping encourage us to pursue
more complex endeavors such as coral diversity and health
studies. We plan to address reef evolution over time, a thing
that was not possible due to limited temporal sampling during
PRISM data collection. In addition to spatial and spectral
information, temporal measurements could be easily integrated
into the Gaussian processes comprising our model; for instance,
Gaussian processes are commonly used for time series analysis.
Furthermore, we would like our model to incorporate data from
other instruments. Spectrometers, despite their rich information
and undeniable utility, are currently expensive to acquire and
difficult to deploy in the field, especially on board AUVs. Also,
spectral analysis usually requires a certain degree of expert
knowledge together with access to special spectral libraries.
Hence, we would like to adapt our models to instruments that
may be easier to deploy for scuba divers and AUVs, such as
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cameras. For instance, normal images are easier for people to
understand and label; besides, widely available computer vision
and deep learning models could be used for automatic analysis.
Finally, we intend to demonstrate the potential of our approach
in the field and conduct experiments in actual coral reefs with
the objective of helping divers or AUVs collect informative
samples in real time.
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