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A New Operational Seasonal Thermal
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Seasonal forecasts of sea surface temperature (SST) have become increasingly
important tools in recent years for reef managers to help inform and coordinate
management responses to mass coral bleaching events. This manuscript presents
new operational thermal stress forecast products for prediction of coral bleaching risk,
based on the seasonal ensemble prediction system ACCESS-S1 (Australian Community
Climate and Earth System Simulator–Seasonal Version 1). These accumulated thermal
stress products form critical tools for reef management, providing advance warning of
high thermal stress, and increased risk of coral bleaching in the coming season. Degree
Heating Months (DHM) consider both the magnitude and duration of thermal stress,
both of which are important in determining reef impacts. Both hindcast and operational
realtime DHM forecasts are assessed for past bleaching events across Australia, and the
impacts of different drivers and local forcings between regions compared. Generally, the
model has the highest skill when forecasting events driven by large scale climate drivers
such as the El Niño Southern Oscillation (ENSO) which impacts coral reefs on all sides of
Australia. ACCESS-S1 hindcasts indicate higher skill on the west Australian coast than
the Great Barrier Reef for summer months, except for the North West Shelf. Realtime
forecasts of the 2020 Great Barrier Reef coral bleaching event, used operationally
by reef managers throughout this event, are also presented. This work advances our
understanding of the 2020 event, provides skill assessments for the new DHM products,
and discusses the use of a stationary baseline in a changing climate. High DHM values
can indicate an increased risk of marine heatwaves, which are likely to have increasing
impacts on Australia’s reef systems in the future under a warming climate.

Keywords: ACCESS-S, marine heatwave, coral bleaching, Great Barrier Reef, seasonal prediction, sea surface
temperature, Degree Heating Months

INTRODUCTION

Rising ocean temperatures combined with more extreme events such as marine heatwaves under
climate change pose a very serious threat to the world’s coral reefs (IPCC, 2019). Ocean heat events
have significantly impacted coral reef ecosystems around the world in recent decades, causing
widespread coral bleaching and reef degradation (Baker et al., 2008; Hughes T. P. et al., 2017; Lough
and Wilkinson, 2017). Coral bleaching is a stress response and refers to the expulsion of symbiotic
algae (zooxanthellae) from coral tissues (Glynn, 1996; Brown, 1997). Critical factors in determining
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the severity of bleaching are the magnitude and duration of
thermal stress. Coral mortality can occur where thermal stress
is severe, prolonged or where frequency of occurrence does
not allow sufficient recovery time between events (Baker et al.,
2008). Elevated ocean temperatures can also increase risk of
coral disease outbreaks (Bruno et al., 2007), marine invasive
species population explosions, and shifts in ecosystem species
composition (Coles et al., 2006; Oliver et al., 2018; Babcock et al.,
2019) degrading reefs further.

In Australian waters, the Great Barrier Reef (GBR; Figure 1)
has experienced eight significant mass coral bleaching events
since 1981, with three events in 5 years since 2016. Bleaching
events in 1983, 1998, and 2016 were all associated with strong
El Niño events, which often cause warming in the GBR during
the summer following onset (Hughes T. P. et al., 2017). In 2002,
2006, 2017, and 2020, mass bleaching occurred on the GBR due
to a combination of warming oceans and regional weather events,
primarily low winds and/or high insolation (Done et al., 2002;
Maynard et al., 2007; Smith, 2020). Conversely, coral reefs in
northern and Western Australia (WA) (Figure 1) are regarded
as relatively thermally resistant, due to higher tidal ranges,
diurnal sea surface temperature (SST) variability and seasonal
SST variability (Kim et al., 2010; Thomas, 2016; Le Nohaïc et al.,
2017). However, despite higher thermal tolerances, reefs in these
regions have also experienced bleaching events due to thermal
stress in recent years. Scott Reef bleached during the 1998, 2010,
and 2016 El Niño Southern Oscillation (ENSO) events (Gilmour
et al., 2013, 2019), along with Christmas Island, Seringapatam
Reefs, inshore Kimberly Reef, and Rottnest Island during the 2016
El Niño (Hughes L. et al., 2017). The “Ningaloo Niño” event of
2010/2011 (Feng et al., 2013) caused bleaching at Ningaloo Reef
and Houtman Abrolhos Islands, and caused a devastating loss of
seagrass at Shark Bay (Arias-Ortiz et al., 2018).

Seasonal forecasts of ocean temperatures and coral bleaching
risk are critical tools for proactive reef management. They
provide advance warning of thermal stress events and thus a
window for response by reef managers to pre-emptively activate
monitoring programs and mitigation options (Spillman, 2011;
Spillman et al., 2012; Griesser and Spillman, 2016). Seasonal
forecast tools are an integral part of Great Barrier Reef Marine
Park Authority’s (GBRMPA) Early Warning System in the
Coral Bleaching Response Plan (Maynard et al., 2009; Great
Barrier Reef Marine Park Authority, 2013). When increased
coral bleaching risk is predicted, an incident response framework
is initiated, with a coordinated multi-agency assessment and
monitoring program implemented in the case of severe or
widespread bleaching (Smith and Spillman, 2019). Seasonal
forecast information is used by expert scientific advisory panels
as well as to brief reef stakeholders, government, and the public
prior to and throughout a mass bleaching event.

The Australian Bureau of Meteorology has been providing
operational seasonal SST forecast products out to 6 months for
the Great Barrier Reef since 2009 (Spillman et al., 2009; Spillman,
2011). In 2019, this service was upgraded to the new higher
resolution (approx 25 km resolution) coupled climate-ocean
seasonal prediction system ACCESS-S1 (Australian Community
Climate and Earth System Simulator - Seasonal Version 1;
Hudson et al., 2017) and expanded to cover all Australian waters.

Realtime forecasts of SST anomalies (SSTA), bias corrected SST
and new operational thermal stress metrics are provided several
times a week online1 (Smith and Spillman, 2019, 2020).

The new ACCESS-S1 operational thermal stress outlooks for
Australia are based on two metrics; monthly Hotspots (HS)
and Degree Heating Months (DHM) (Spillman et al., 2011,
2012). These metrics both use a reference threshold called
the maximum monthly mean (MMM), defined as the warmest
monthly climatological value for each pixel over a certain period
(Strong et al., 2006). This method is based on the premise that
corals are generally acclimatized to a certain local temperature
range and when this is exceeded, bleaching can occur. Around
tropical Australia, MMM typically occurs in January or February
on the GBR, March-April in north western Australia, and
December around northern Australia, but can also peak in
April due to the bimodal nature of the region (Gilmour et al.,
2019; Figure 2A). Monthly Hotspots are defined as positive-only
monthly SSTA referenced to the MMM and indicate locations
where monthly SST values are warmer than the warmest long-
term monthly average (typical warmest summer month).

Degree Heating Months are then generated by accumulating
monthly HS > 0 oC over a 3 month window (Eakin et al.,
2009; Spillman et al., 2012). DHM combine both magnitude
and duration of thermal stress, with a DHM value of 1.0
defined as the threshold for a likely bleaching event (Logan
and Dunne, 2012). DHM values of 1 and 2 approximately
correspond to NOAA Coral Reef Watch Degree Heating Week
(DHW) values of 4 and 8 (Spillman et al., 2012), which are
the typical thresholds for likely coral bleaching and mortality
(Liu et al., 2018). DHWs are calculated by accumulating weekly
HS ≥ 1◦C values over 12 weeks, as weekly HS < 1 values are
not considered sufficient to cause visible stress in corals (Liu
et al., 2003, 2005). However, Barton and Casey (2005) found
that accumulating monthly HS > 0◦C for DHM, rather than
HS ≥ 1◦C as in DHW calculations, was necessary to capture
event signals on monthly timescales. Whilst HS and DHM have
been developed as indicators of coral bleaching risk, they have
potential applications in fisheries and aquaculture management
(Hobday et al., 2016), and can be used as an indicator of marine
heatwaves (Benthuysen et al., 2021).

A new operational suite of marine thermal stress products,
incorporating HS and DHM metrics and based on ACCESS-S1,
are now available for Australian waters. Here, we describe the
development, methodology and validation of the new thermal
stress products and their application in reef management.

MATERIALS AND METHODS

ACCESS-S1 details, together with hindcast (retrospective
forecast) and realtime configurations, are presented below.
Thermal stress forecasts are assessed by comparing a hindcast set
for 1990–2012 against satellite SST observations. The NOAA 1/4◦
Optimal Interpolation SST version 2 (OISSTv2) satellite dataset
was used to both validate model forecasts (version 2.1 for 2020

1http://www.bom.gov.au/oceanography/oceantemp/sst-outlook-map.shtml
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FIGURE 1 | Coral reef regions around Australia included in the thermal stress assessment. Blue grouping denotes reefs on the west coast of WA, green denotes
those on the Northwest (NW) Shelf, and red shading encompasses the GBR Marine Park. Reef location data from Tupper et al. (2011).

case study) and bias correct forecast SST values (Reynolds et al.,
2007; Banzon et al., 2016).

Model Description
ACCESS-S1 is based on the United Kingdom Met Office global
seasonal prediction system version five, referred to as GloSea5
(Maclachlan et al., 2015), which includes the latest atmospheric
Global Coupled (GC2) model (Williams et al., 2015) coupled with
the latest Nucleus for European Modeling of the Ocean (NEMO)
community model (Madec and NEMO Team, 2011). Ocean data
assimilation uses Forecast Ocean Assimilation Model (FOAM)
analyses (Blockley et al., 2014). The ACCESS-S1 ocean grid is
tripolar with approximately 25 km× 25 km horizontal resolution
in the Australian region (“eddy permitting”, Marsh et al., 2009),
with 75 vertical levels with a surface layer thickness of 1 meter.
For more details of the ACCESS-S1 set up, see Lim et al. (2016)
and Hudson et al. (2017).

Hindcasts were run for the period 1990–2012 for the purpose
of forecast verification and bias correction. In the hindcast
system, 11 forecasts were run out to 6 months for four start dates
(1st, 9th, 17th, and 25th) per month in the hindcast period, using
an initial condition perturbation scheme (Hudson et al., 2017).
Monthly ocean climatologies were generated by start date and
lead time, where lead time is defined as the time between model
start date and forecast month (Smith and Spillman, 2019). For
example, for a forecast started on 1st January, monthly forecasts
at lead times 0, 1, and 2 months are for January, February, and
March, respectively. Only forecasts starting on the 1st of the

month are considered here. However, to increase the hindcast
ensemble size and closer approximate the larger realtime forecast
ensemble system, hindcasts starting on the 25th of the prior
month were combined with those starting on the 1st of the month
to produce a 22-member ensemble (Smith and Spillman, 2019).

The operational realtime forecast system has been running
since October 2018 and produces forecasts every day. For
monthly forecasts, 11 forecasts out to 6 months are produced
daily via perturbation of initial conditions and collated over
the previous 9 days to give a 99-member time lagged ensemble
(Hudson et al., 2017). An ensemble mean forecast is calculated
by averaging all 99 (or 11 in the hindcast set) ensemble members.
For a summary of the hindcast and realtime forecast systems, see
Table 1.

Monthly forecast SSTA were derived by subtracting their
respective lead time dependent model SST climatology for 1990–
2012 from SST for all ensemble members (Smith and Spillman,
2019). This process accounts for any model bias with lead
time (Stockdale, 1997). Observed monthly SST climatologies
for 1990–2012 were derived from the NOAA OISSTv2 dataset
and regridded to the model ocean grid. These were then
added to model SSTA to provide bias-corrected full field
monthly SST forecasts.

Thermal Stress Products
Monthly SSTA form the basis of the thermal stress products
presented here, with the important difference that the
reference baseline is the MMM, rather than a typical monthly
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FIGURE 2 | (A) The warmest climatological month for the period 1990–2012 around Australia, based on Reynolds OISSTv2.0 data. (B) Maximum monthly mean
(MMM) minus observed OISSTv2.0 monthly SST climatologies for November to April 1990–2012. Negative values indicate where the MMM is cooler than the
observed monthly SST climatology, due to detrending of the MMM to November 1988 (see section “Materials and Methods”).

climatology. The MMM dataset utilized here was provided
by the United States. National Oceanic and Atmospheric
Administration (NOAA) Coral Reef Watch (CRW), and derived
from Optimum Interpolation SST version 2 (OISSTv2) data (Liu
et al., 2018). The original MMM used in relating temperature
stress and bleaching responses was based on the period 1985–
1993 (excluding 1991 and 1992 due to Mt Pinatubo eruptions)
(Liu et al., 2003). The MMM includes data for the period
1985–2006, omitting 1991 and 1992, and detrended to November
1988 (middle date of the original MMM) to maintain consistency
with earlier MMM versions (Heron et al., 2014b; Liu et al.,
2014). Note that the OISSTv2-based MMM used in this study
is a different product to the Pathfinder-based MMM (Casey
et al., 2010; Heron et al., 2014a) currently used in the operational
ACCESS-S1 DHM forecasts (Smith and Spillman, 2020). Future
upgrades of the operational system will also include a migration
to the OISSTv2 based MMM.

Detrending of the MMM to November 1988, however, means
that it is possible for monthly observed climatologies for 1990–
2012 to be warmer than the MMM in summer in some regions.
This can be seen in Figure 2B, where January and February
observed SST climatologies are actually 0.4oC warmer than the
MMM in the Coral Sea, and similarly in March and April
on the west coast.

Hotspots were calculated for all ensemble members and
ensemble mean by finding the difference between the full field
bias-corrected monthly SST forecast values and MMM with all
negative values set to zero:

HSt,lt = SSTt,lt −MMM where
{

HSt,lt ≥ 0
}

(1)

where, lt is lead time from 0 to 5 months and t is model start
date. HS values were generated for all ensemble members and
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TABLE 1 | Summary of the ACCESS-S1 realtime and hindcast systems in terms
of monthly ocean forecasts.

Hindcast Realtime

Model start
dates

1st, 9th, 17th, and 25th of
each month

Daily

Period 1990–2012 From October 2018

Forecast period 6 months 5 or 6 months (5 months for
model start dates 1st to 10th of
each month, 6 months from the
11th of the month onwards)

Ensemble
members

11 perturbed members,
combined with 11 perturbed
members from 1 previous start
date = 22 members

11 perturbed members,
combined with 11 perturbed
members from previous 9 daily
start dates = 99 members

Ocean data
assimilated

In situ (Woodruff et al., 2011)
and satellite AVHRR and
AMSR-E SST (Casey et al.,
2010; Maclachlan et al., 2015)
sea level altimetry satellite data
(Maclachlan et al., 2015),
EUMETSAT reanalysis and
realtime sea ice concentration
data (Maclachlan et al., 2015,
http://www.osi-saf.org/) EN3
profile dataset for subsurface
temperature and salinity data
(Ingleby and Huddleston, 2007)

Realtime equivalent of the
hindcast inputs including
ARGO, TRITON-TAO array and
other moored buoys,
expendable
bathythermographs (XBTs) and
conductivity-temperature-depth
(CTD) sensors (Maclachlan
et al., 2015)

Climatology 1990–2012 Choose closest hindcast start
date

Atmospheric
Assimilation
(Rawlins et al.,
2007)

ERA-Interim (Dee et al., 2009) Operational Global NWP
analysis (Hudson et al., 2017)

For further details of the hindcast and realtime forecast systems, see Hudson et al.
(2017) and Smith and Spillman (2020).

the ensemble mean. Monthly HS values were also calculated for
observations using monthly OISSTv2.0 SST and MMM.

Degree Heating Months were calculated by summing HS
values over consecutive 3 months period (Spillman et al., 2012)
for each location:

DHMt,lt =

i=lt+2∑
i=lt

HSt,i (2)

where, lt is lead time 0 to 3 months and t is model start date.
For example, at lead time 0 months DHM is the accumulation
of HS at lead times 0, 1, and 2 months (Spillman et al., 2012;
Smith and Spillman, 2020). DHM values were calculated for
all ensemble members and the ensemble mean. However, it is
important to note that only forecasts for full calendar months
are used in HS and DHM calculations. Operationally, realtime
DHM forecasts produced after the 1st of the month are an
accumulation of HS forecasts for the next three full months,
i.e., a DHM forecast produced on February 02, accumulates the
monthly HS forecasts for March, April, and May. Observed DHM
were calculated by summing three consecutive monthly HS in the
period (Smith and Spillman, 2020).

Reference forecasts were also calculated to provide a skill
benchmark (see Spillman and Alves, 2009). The two most

commonly used reference forecasts, climatology and persistence
are both relatively easy to beat since a positive DHM can be
deemed as an extreme or rare event in certain regions and
therefore difficult to predict by persisting a previous month that
is most likely warmer or cooler seasonally, or climatology which
averages out the extremes. A more difficult reference forecast to
beat, and the one chosen for this assessment, is a combination
of persistence and climatology. They were created by persisting
the observed SST anomaly from the month prior to the start date
(i.e., December for a start date of January 01) out to 6 months
into the future. The relevant observed monthly climatologies
were added before the MMM was removed to create HS, which
were then summed over a 3 months window to give quasi DHM
persistence forecasts.

Validation of Thermal Stress
To evaluate forecast skill, hindcast DHM values were compared
to those derived from the NOAA 1/4◦ OISST dataset for 1990–
2012 using a range of metrics. Pearson correlation coefficients
of SSTA for the hindcast period at lead times 0 to 5 months
during November to April in the Australian region is presented
as a baseline assessment of skill. Root mean square error (RMSE)
values were also calculated. All thermal stress metrics are derived
from SSTA and therefore can only be skilful if there is good skill
in the underlying parameters on which they are based. It is also
important to note that the skill of the hindcast set is assumed to
approximate that of the operational realtime system, despite the
different ensemble generation schemes, as there is not sufficient
realtime forecasts to undertake a skill assessment.

Hotspots are more likely to occur in summer months as the
MMM baseline is based on the warmest climatological month.
The frequency distribution is skewed as HS values of zero are
much more common over the course of a year than positive HS
values. As HS are most likely to occur during the warmer summer
months, thermal stress forecasts were assessed for November to
April (Figure 3). To assess whether the model correctly predicted
an observed DHM > 0 value, if more than 50% of ensemble
forecasts indicated DHM > 0 then this was termed a “hit.”
Conversely if less than 50% of members correctly predicted
DHM > 0 then this was termed a “miss.” These “hit” and “miss”
counts can be combined to calculate the hit rate as follows:

Hit rate(x,y,lt) =
6tHit(t,x,y,lt)

6tHit(t,x,y,lt) +6tMiss(t,x,y,lt)
(3)

where, x,y is the grid point location, lt is lead time, and t is model
start dates for all November to February forecasts in the hindcast
period (note that a DHM forecast issued on February 01 includes
HS forecasts from February 01 for February, March, and April).
DHM forecasts starting March 01 (i.e., March to May) and April
01 (i.e., April to June) were not included as they fell outside the
November to April window. Hit rates remove any skill bias by not
incorporating correct negatives (i.e., model correctly predicting
no DHM > 0) into the calculation.

The term reliability is a attribute of probabilistic skill that
refers to the ability of the model to match forecast probabilities
with the observed frequencies (Wilks, 1995), and is assessed by
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FIGURE 3 | (A) Observed frequency of DHM > 0 events for November to April 1990–2012, together with (B) model hit rates for DHM > 0 for the same period for
lead times 0–2 months (total number of months = 138). Note that an event is considered to have been forecast if more than 50% of ensembles have indicated
DHM > 0 at a location.

using a reliability diagram which gives an indication of how
well forecast probabilities and observed frequencies adhere to a
1:1 relationship. Reliability diagrams also provide information
on model resolution, which is the probabilistic skill of model
forecasts over climatology. Resolution is indicated on the
reliability diagram by a shaded region, with points falling within
contributing positively to the Brier Skill Score (BSS), equation 5.

The Brier score (BS) gives a measure of overall probabilistic
model skill against observations (Brier, 1950):

BS =
1
N

N∑
i=1

(pi − oi)
2 (4)

where, N is the number of samples, pi is the forecast probability,
and oi is the observed occurrence (either 0 or 1). The range of BS
values is 0 to 1, with 0 being a perfect score. For rare events, it
becomes easier to get a good BS without having any real skill. The

BSS gives an indication of the skill of the probabilistic forecast
compared to the reference forecast (Wilks, 2006);

BSS = 1−
BS

BSref
(5)

where, BSref is the Brier score of the reference forecast. The
reference forecast used here is persistence (see section “Thermal
Stress Products”). A value of 0 or less suggests no skill compared
to using our chosen reference forecast, as defined in the previous
section, with 1 a perfect score.

All probabilistic skill assessments outlined above defined
events using the thresholds DHM > 0, DHM > 1, and DHM > 2.
Hit rates, reliability diagrams, and BSS values were calculated
for all grid cells across tropical Australia (north of 28 ◦S) for
November to April 1990–2012 at lead times 0 to 2 months.

To assess the model’s ability to predict the spatial extent of
a DHM event, the number of grid cells within certain regions
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where the model predicted DHM > 1 in the ensemble mean
(with ensemble range included i.e., minimum/maximum) was
compared to that observed for each start month in 1990–2012
at lead 0 months (Figure 4). The percentage region calculation is
as follows:

Percentage of Region

DHM > 1(t,lt=0) =
6(x,y)>1DHM(x,y,t,lt+0)

6x,yTotal(x,y,t,lt+0)
(6)

where, t is model start date. The total number of grid cells in
the percentage equation refers to the number of ocean grid cells
within the box regions shown in Figure 1. Grid cells within the
regions were all very similar in size (approximately 0.25 degrees).

Additionally, two case studies highlighting the most
significant coral bleaching events in the Australian region
during the hindcast period are presented: in 1998 on the Great
Barrier Reef and the North West (NW) Shelf (i.e., Scott Reef;

Case Study 1), and in 2011 on the west coast of Australia
(i.e., Ningaloo Reef, Shark Bay, Abrolhos Island; Case Study 2).
Additionally, a third case study looking at the 2020 Great Barrier
Reef coral bleaching event, using realtime operational forecasts,
is also presented (Case Study 3).

RESULTS

Correlations between model and observed SSTA are shown in
Figure 5A for November-April 1990–2012 for leads 0–5 months.
Correlations are highest at lead 0 months and decline with lead
time. At lead 0 model skill is highest on the central and southern
coast of Western Australia, the east coast and Coral Sea, whereas
skill is lowest on the NW Shelf and in the Gulf of Carpentaria
(Figure 5). Skill rapidly decays for the two latter regions with
lead and is less than 0.3 inshore by lead 3 months. Conversely,
skill remains above 0.5 out to lead 5 months for most of the Coral
Sea and the southern WA coast. When the 6 months assessed are

FIGURE 4 | Percentage of each region where DHM > 1 were observed and predicted for the (A) Coral Sea, (B) NW Shelf, and (C) Ningaloo to Shark Bay for
1990–2012 at lead time 0 month. Yellow shading indicates timing of El Niño events and purple shading La Niña events, as per Bureau of Meteorology definitions
(http://www.bom.gov.au/climate/enso/enlist/). Gray shading shows the ensemble range. See Figure 1 for locations of regions.
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FIGURE 5 | (A) Correlations and (B) root mean square errors (RMSE) for comparisons of forecast and observed monthly SSTA values for November to April
1990–2012 at lead times 0–5 months. Correlations > 0.2 are statistically significant and shaded (N = 23 years × 6 months, p = 0.05).

considered individually, skill tends to be higher for most regions
around Australia for November and April, with lowest skill for
February, especially at longer lead times (not shown). RMSE
values are also shown in Figure 5B, with lowest values (more
skilful) across northern Australia and the Coral Sea, and higher
values (less skilful) on the southern WA coast, where variability
is higher. RMSE values are lowest for lead 0 months, with higher
and similar values across leads 1–5 months.

Model hit rates for DHM > 0 in November to April 1990–2012
for lead times 0–2 months are shown in Figure 3. A score of 100%
indicates that the model correctly predicted all occurrences of
DHM > 0 observed. At lead time 0, hit rates for DHM > 0 exceed
60% for most of the domain with hit rates above 80% in the Coral
Sea and small regions north of the Kimberley including Scott
and Ashmore Reefs (Figure 3B). The exceptions are north west
WA and the Gulf of Carpentaria, where hit rates are low for all
leads. This is most likely due to a comparatively low occurrence

of DHM > 0 in both these regions (Figure 3A), as well as low skill
at most lead times (Figure 5). Hit rates remain above 60% in the
Coral Sea, northern GBR and the west and southern WA coast
out to 2 months lead.

Reliability diagrams with Brier Skill Scores are shown for
DHM > 0, DHM > 1 and DHM > 2 for November-April
1990–2012 in Figure 6. Possible BSS skill values range from
0 (poor skill c.f. reference forecast) to 1 (perfect skill). All
reliability curves shown here largely fall within the shaded region,
which indicates positive contributions to the BSS. As the DHM
threshold increases from 0 to 2, the reliability curves flatten out
though remain in the shaded region, resulting in BSS values
of 0.45 to 0.55. Perfectly reliable forecasts would lie along the
1:1 line, however, here values drift below this line as the DHM
threshold increases. This indicates that the model is under-
dispersive and is over-forecasting i.e., model probabilities are
consistently higher than observed frequencies and as such, the
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FIGURE 6 | Reliability diagram for (A) DHM > 0, (B) DHM > 1, and
(C) DHM > 2 for November to April 1990–2012 for lead times 0–2 months,
using a 22 member ensemble. Domain is the whole of northern Australia as
shown Figure 1. Brier Skill Scores (BSS) and bar charts showing observed
occurrences for each 0.2 frequency bin are also included. Reference forecast
used is DHM quasi-persistence for the same period (see section “Materials
and Methods” for calculation).

model is overconfident. The BSS is stable with lead time for
all thresholds, showing that the model DHM probabilistic skill
beats that of the reference DHM persistence forecasts (see section
“Materials and Methods” for calculation).

Figure 4 shows the proportion of grid cells within each region
where DHM > 1 is observed and predicted for the Coral Sea,
NW Shelf and Ningaloo Reef to Shark Bay for 1990–2012 at lead
time 0 months (see Figure 1 for regional outlines). In bleaching
years 2002 and 2006 in the Coral Sea, the proportion of grid cells
where DHM > 1 was predicted was close to that observed, i.e., 85
and 95%, respectively (Figure 4A). However, in 1998 the extent of
DHM > 1 was underpredicted by the model by more than 50% as
the start date moved into January. Later in the period, the extent
of the Coral Sea where DHM > 1 was instead overpredicted
by 5 to 20 % for non-bleaching event years 2009 to 2011. The
timing of peak extent in the Coral Sea was predicted later than
observed in several years, particularly 2002 and 2004. On the west
coast, the predicted timing of peak extent was more consistent
with observed on both the NW Shelf and at Ningaloo/Shark
Bay (Figures 4B,C). The bimodal peak in temperatures on the
NW Shelf can be observed in summers of 1998/1999, 2009/2010,
and 2010/2011. ACCESS-S1 forecasted the second peak in spatial
extent later in the summer in the region but consistently struggled
to forecast the first peak in early summer in these years. For
summers in 2007 to 2011 the model overpredicted the area on
the NW Shelf where DHM > 1 (Figure 4B), as was seen for
the Coral Sea. Six of the 23 summers in the Ningaloo/Shark Bay
region recorded peaks of more than 60% of the area with values
of DHM > 1 (Figure 4C). The model captured the timing and
magnitude of the four largest peaks in 1999, 2000, 2008, 2011 and
2012, all of which occurred during a La Niña. The model did,
however, overpredict the spatial extent in 1996, 1997, and 2001,
all ENSO neutral summers.

Two hindcast case studies are presented for bleaching events
on the GBR and Scott Reef in 1998 (Case Study 1; Figure 7)
and Ningaloo Reef in 2011 (Case Study 2; Figure 8). Warming
was observed on both the west and east coasts of Australia
in February-March-April (FMA) 1998 during the 1997/1998 El
Niño (Figure 7, bottom row). On the east coast, elevated DHM
values were forecast in the southern GBR for all lead times shown,
although the peak magnitudes were not captured by the ensemble
mean even at lead time 0. In the probabilistic forecasts, however,
50% or more of ensemble members indicated DHM > 1 in the
southern GBR for all lead times shown (Figure 7, right column).
The thermal stress observed to the north of the GBR was not
predicted at any lead time.

In the west, the model better captured observed DHM
values in both Case Study 1 (Figure 7) and Case Study 2
(Figure 8). DHM values observed on the NW Shelf in February
to April 1998 were generally well forecast in terms of magnitude,
location and timing at all lead times (Figure 7, left column).
Conditions at Rowley Shoals and Scott Reef were well captured,
however, ensemble mean DHM values did not quite reach
observed magnitudes at Ashmore Reef. Probabilistic forecasts
of DHM > 1 (Figure 7, right column) indicated at least 80%
of ensemble members exceeded 1 DHM at Scott Reef for all
start dates. In Case Study 2 during the 2011 marine heat
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FIGURE 7 | Case Study 1: Hindcast DHM forecasts for Northern Australia for February to April 1998 for model start dates 1 December 1997, 1 January 1998, and 1
February 1998. Left column is ensemble mean DHM, right column is probability of DHM > 1, using 22 ensemble members. Observed DHM values for February to
April 1998 are shown in the bottom row.

FIGURE 8 | Case Study 2: Hindcast DHM forecasts for Ningaloo for February to April 2011 for model start dates 1 December 2010, 1 January 2011, and 1 February
2011. Top row is ensemble mean DHM, bottom row is probability of DHM > 1, using 22 ensemble members. Observed DHM values for February to April 2011 are
shown in the far-right column.
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event from Ningaloo to Abrolhos Islands, a maximum of 3.6
DHM was observed in the Ningaloo region, with even higher
DHM values up to 10 observed near Shark Bay and Abrolhos
Islands. ACCESS-S1 did an excellent job in capturing both the
magnitude and spatial extent of DHM values at all lead times
(Figure 8; Case Study 2).

Operational realtime forecasts are presented in Case Study
3 for the 2020 GBR coral bleaching event in Figure 9. When
compared to observations, the predicted peak of the 2020 event
matches well in terms of extent in the central and northern
GBR. Probabilistic forecasts indicated a 60% or higher chance of
DHM > 1 values occurring in the central and northern GBR at
all lead times. The forecast probability of DHM > 1 occurring
in January-March 2020 increased to above 80% for December 01
and January 01 start dates, with lead time 0 forecasting ensemble
mean DHM of up to 2 in the GBR Marine Park. However, the
magnitude of observed DHM values were underpredicted by
approximately 50% (in the order of 1.75 DHM).

DISCUSSION

Coral reefs around Australia have experienced heat induced
mass coral bleaching in recent years, due to the large-scale
climate drivers such as ENSO, regional mesoscale weather
patterns and warming ocean temperatures due to climate change.
Spatial extent, duration, and timing of marine heat events
in reef regions vary around Australia and are influenced by
oceanography, local weather and teleconnections with larger
scale climate drivers. Forecasting thermal stress events on
seasonal timescales is an important tool for reef managers to
effectively implement monitoring and management initiatives in
these vulnerable regions. The Australian Bureau of Meteorology
has been providing operational thermal stress outlooks for coral

bleaching risk, based on the new higher resolution ACCESS-
S1, since 2018.

Model thermal stress forecasts were most skilful in the
Coral Sea, northern GBR and the central and southern coast
of WA for November to April over the hindcast period
1990–2012. Conversely lowest DHM skill was seen for the
NW Shelf and Gulf of Carpentaria. In this study, during the
hindcast period thermal stress predictability was highest when
regions have strong ENSO teleconnections with strong heat
advection (e.g., 2011 Ningaloo Niño), moderate with ENSO
teleconnections with primarily air-sea flux mechanisms (e.g.,
GBR during 1998 El Niño), and poorest with neither strong
ENSO teleconnections nor heat advection (e.g., GBR in ENSO
neutral years). In terms of probabilistic skill, tropical northern
Australia showed improved skill over the reference DHM
persistence forecast for DHM > 0, 1 and 2 events. BSS values
were in the range deemed good to very good for all lead times
and thresholds. Forecasts also exhibited similar probabilities to
the observational occurrences providing evidence of forecast
reliability, although the forecast became more overconfident
at higher thresholds, a similar finding to that for higher
SSTA thresholds in Smith and Spillman (2019). These DHM
thresholds are useful for reef managers as DHM values of 1
and 2 approximately correspond to NOAA Coral Reef Watch
DHW values of 4 and 8 (Spillman et al., 2012) which are
the typical thresholds for likely coral bleaching and mortality
(Liu et al., 2018).

The model captured the GBR marine heat events of 1998 and
2020, though tended to underestimate the peak magnitude and
extent of both events. Smith and Spillman (2019) showed that
SST skill was highest in the GBR when forecasting larger warm
anomalies in the GBR associated with longer lived climate drivers
(e.g., ENSO events), rather than regional weather. Historically,
mass bleaching events on the GBR have typically associated with

FIGURE 9 | Case Study 3: Realtime DHM forecasts for the GBR for January to March 2020 for model start dates 1 November 2019, 1 December 2019, and 1
January 2020. Top row is ensemble mean DHM, bottom row is probability of DHM > 1, using 99 ensemble members. Observed DHM values for January to March
2020 are shown in the far-right column.
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El Niño events, however, 2020 was an ENSO neutral year, as was
2017 which also saw mass coral bleaching (Hughes and Kerry,
2017). Despite the lack of large climate drivers, the model still
captured warming in the GBR in 2020 though not at observed
magnitudes. ACCESS-S1 forecasts were used operationally in
2020 by the GBRMPA to coordinate and inform their responses
to the bleaching event, including ministerial and stakeholder
briefings and multi-agency coordination of surveys.

The thermal stress associated with the Ningaloo Niño of 2011
(Feng et al., 2013) was well captured by the model off the west
coast of WA (Figure 8). DHMs reached a maximum of 3.6 DHM
in the Ningaloo region, which is of a similar magnitude as the
GBR event in 2020. Further south much higher DHMs of up
to 10 were observed, which was also identified as one of few
observed category 5 marine heatwave (MHW) events (Holbrook
et al., 2020). This event led to mass coral bleaching, fish kills,
and sea grass die off (Caputi et al., 2014). Bleaching was also
reported in 2012 at Ningaloo, however, was far less severe than
2011 due to amount of coral mortality that had already occurred
the previous year (Babcock et al., 2017). The teleconnection
between thermal stress events at Ningaloo and La Niña events
in the Pacific is evident in Figure 4C. Six of the largest thermal
stress events occurred during moderate to strong La Niña years
(1998/1999, 1999/2000, 2007/2008, 2008/2009, 2010/2011, and
2011/2012). During a La Niña, warm water builds up in the
western Pacific, flows through the Indonesian throughflow and
down the WA coast. This results in a warmer, stronger Leeuwin
Current, modulated by associated wind anomalies inducing
coastal downwelling (Kataoka et al., 2014), and increasing the
likelihood of a Ningaloo Niño (Feng et al., 2008). The La Niña
of 2020/2021 resulted in high SSTs down the coast of WA during
the 2020/2021 summer, which were predicted by operational
ACCESS-S1 forecasts.

In contrast to Ningaloo and the southern WA coast, model
forecast skill for the NW Shelf was notably low by all measures
used here. Thermal stress at Scott Reef summer of 2001/2002,
2002/2003, and 2004/2005 was not well forecast in terms of the
ensemble mean. Zhang et al. (2017) assessed marine heat wave
(MHW) events at Scott Reef in terms of intensity and duration.
The years 2001 to 2005 were characterized by a series of shorter
duration (17 days) high intensity events over 2 to 3 months,
whereas most other MHW events occur closer to or over 1 month
durations during the December to April period. Shorter duration
events are more challenging for ACCESS-S1 to forecast. Although
they contribute to the monthly observation values, they are not
well represented in the forecast which performs better for events
that persist for 1 month or longer. Additionally, the peak SST
month of the year in the region, used to derive the MMM,
changes several times over the region (Figure 2A), and the
circulation in the region is relatively complex.

Ensemble mean forecasts are often used as a deterministic
forecast because they are relatively simple to interpret by a wide
range of users, though they contain no measures of uncertainty
or the likelihood of alternative outcomes and so are less useful
(Tommasi et al., 2017). The ensemble mean forecast does not
always predict observed events, as can be seen in this study.
However, observed DHM extent were almost always captured by
the model ensemble spread for the three selected locations in

Figure 4, including less skilful forecasts for the NW Shelf. The
full forecast ensemble was used to produce HS and DHM metrics
in order to assess the probability of exceedance for particular
thermal stress thresholds. The level of ensemble spread, as well as
the number of forecast ensemble members predicting a particular
event, give insight into model forecast confidence. Probabilistic
skill measures indicated the model had good reliability and skill
over quasi-persistence, and therefore useful skill.

Typical coral bleaching thresholds, such as MMM, used
to construct accumulated thermal stress metrics may not be
appropriate in future under a warming climate. In fact, the MMM
may already be no longer the best choice for regions where
significant warming has occurred. In areas such as the Coral Sea
and the west coast of WA, which show the highest positive SST
trends (Hobday and Pecl, 2014), it is possible for negative SSTA to
positively contribute to DHM values (Figure 2). This essentially
means that the monthly observed climatologies for the more
recent period of 1990–2012 are already significantly warmer than
the MMM, due to the detrending of the MMM to November 1988
It is also possible that the critical thresholds are changing due to
coral adaptation or species composition responses to warming
oceans (Császár et al., 2010; Kubicek et al., 2019). This baseline
was adopted to construct the ACCESS-S DHM product as reef
managers were already familiar with the reference baseline and
the products could be more easily compared with those produced
by NOAA Coral Reef Watch2. However, the predictive capacity of
the current DHM definition to indicate coral bleaching severity is
likely to vary around Australia and so future iterations may utilize
a different baseline. Preliminary research on seasonal prediction
of marine heatwaves, utilizing the Hobday et al. (2016) definition,
offers wider application and may be a more useful predictor of
coral bleaching risk, particularly in areas of high SST variability
such as the WA coast (Benthuysen et al., 2021).

The likelihood of a marine heat event as indicated by high
DHM values, together with forecast skill, can be utilized by
reef managers in risk-based management responses. An early
warning system for coral bleaching risk is useful for reef managers
as it allows a window of time to implement strategies and
allocate potential resources for adequate monitoring and reduce
additional stressors on affected reef regions. These products have
become integral parts of the GBRMPA Early Warning System
for coral bleaching. The product suite will be upgraded to the
next version of ACCESS-S (version 2) in 2021, which will have
the added benefit of a longer hindcast period (that will include
the 2016 and 2017 GBR bleaching events) and model system
improvements that are expected to improve model skill. Skilful
forecast of thermal stress for coral bleaching risk will increase in
their value and importance for proactive marine management in
a warming climate.
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