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A 56 day feeding trial was conducted to examine the effects of different levels of
dietary histamine on growth performance, immune response, and intestinal health
of grouper (Epinephelus coioides). Seven isonitrogenous (46%), isolipidic (10%) diets
were prepared with histamine supplement levels of 0 (T0), 0.05% (T1), 0.1%
(T2), 0.15% (T3), 0.2% (T4), 0.25% (T5), and 0.3% (T6), respectively. The results
showed that histamine supplementation had no significant effects on weight gain
rate (WGR), specific growth rate (SGR), feed conversion rate (FCR), hepatosomatic
index (HSI), and survival rate (SR) at the initial feeding period (day 0–28), but WGR
and SGR had negative linear responses to the dietary histamine level at the whole
feeding period (day 0–56), and a significant decrease was observed in groups T5
and T6 compared with T0 (P < 0.05). Supplementation of histamine decreased
antioxidant capacity, immune response, the contents of serum interleukin-1 beta (IL-
1β), intestinal-type fatty acid-binding protein (FABP2) and intestinal trefoil factor (ITF),
and caused serious damage of intestine with significantly decreased VH and MFH of
grouper, especially in fish fed with diets supplemented with high doses of histamine
(0.25 and 0.3%). The intestinal microbial communities in treatments were different
clearly with the control (T0), in terms of beta (β)-diversity boxplots and UPGMA
phylogenetic tree based on unweighted unifrac distance. At the phylum level, the
relative abundance of Fusobacteria was lower in group T0, while the abundance of
Firmicutes was significantly lower in groups T5 and T6 (P < 0.05). At the genus
level, the relative abundance of uncultured_bacterium_f_Bacteroidales_S24-7_group,
uncultured_bacterium_f_Lachnospiraceae, and Ruminiclostridium were significantly
higher in the control, while the abundance of Cetobacterium was significantly higher
in groups T5 and T6 (P < 0.05). In conclusion, the present study suggested that up to
0.2% of dietary histamine did not result in a remarkable reduction in growth, immune
response, and intestinal health; however, 0.25% or more dietary histamine could cause
significant negative effects on growth performance, immune response, and intestinal
health in E. coioides.
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INTRODUCTION

With the rapid development of aquaculture industry worldwide
in recently years, the quality of fish meal (FM), which served as
the most primary protein source in aquatic feeds, has received
more and more attention (Li et al., 2018; Wang et al., 2019;
Ye et al., 2020; Zhai et al., 2020). High levels of histamine
are usually presented in poor quality FM due to difference of
original fish species, suboptimal conditions of preparation and
transportation, improper storage, and so on (Higgs et al., 1995;
Anderson et al., 1997; Visciano et al., 2012), resulting in a series
of negative effects in aquatic animals, such as suppression of
growth performance, reduction of feed utilization, inflammatory
reaction, and intestinal diseases (Aksnes et al., 1997; Aksnes
and Mundheim, 1997; Caballero et al., 1999; Tapia-Salazar
et al., 2004). Therefore, histamine level is a useful and widely
recognized parameter to assess FM quality and also as a vital
safety indicator for food (Pike and Hardy, 1997; Tapia-Salazar
et al., 2001; Tao et al., 2011; Biji et al., 2016).

The effects of dietary histamine exhibited variation in humans
and different animal species. In humans, it was found that
high dose of histamine (exceed 0.75 mg/kg body weight) may
significantly enhance the risk of poisoning (Doeun et al., 2017).
The European Union set regulatory ensures of histamine level
below 0.2 g/kg in fresh fish and 0.4 g/kg in seafood products
(Visciano et al., 2014). Moreover, suppression of growth,
reduction of feed utilization and survival rate (Harry et al.,
1975; Zhao et al., 2012), and gizzard lesions (Harry and Tucker,
1976) have been reported in chickens suffering from high doses
of dietary histamine. The dietary histamine supplementation
exerts detrimental effects in mysis (Neomysis awatschensis and
Neomysis japonica Nakazawa) (Yang et al., 2010), rainbow
trout (Oncorhynchus mykiss) (Moghaddam et al., 2015), and
American eel (Anguilla rostrata) (Zhai et al., 2020). Li et al.
(2018) found digestive system damage and liver inflammation in
yellow catfish (Pelteobagrus fulvidraco) fed a diet supplemented
with 0.1% histamine. Zhao et al. (2016) reported that high
levels of histamine (4 g/kg) decreased the activity of digestive
enzymes and exerted great damage to the morphology of the
intestine and hepatopancreas in Chinese mitten crab (Eriocheir
sinensis); however, dietary histamine supplementation had no
significant effect on growth performance. In rainbow trout
(O. mykiss), digestive tract damage was observed in fish fed diet
containing 2 g/kg histamine (Watanabe et al., 1987; Fairgrieve
et al., 1994), and dietary supplementation of histamine (2 g/kg)
(Fairgrieve et al., 1994) or putrescine (13.3 g/kg) (Cowey and Cho,
1992) decreased feed consumption. Interestingly, Tapia-Salazar
et al. (2001) reported that diet supplemented with 1.2–2.4 g/kg
histamine/diet had a positive effect on weight gain in blue shrimp
(Litopenaeus stylirostris).

Groupers as typical marine carnivorous fish have been widely
cultured in several regions of China and Southeast Asia with
the development of the intensive aquaculture industry. In China,
annual production of groupers reached 183,127 tons in 2019
(China Fishery and Statistics Yearbook, 2020), for its fast growth,
rich nutrition, high economic value, and consumer demand.
To the best of our knowledge, study on the effects of dietary

histamine on the performance of grouper is lacking, and its
impact on intestinal health of fish is less reported (Zhao et al.,
2016). Therefore, the present study was conducted to evaluate
the effects of different doses of dietary histamine on growth
performance, immune response, and intestinal health of grouper
(Epinephelus coioides).

MATERIALS AND METHODS

Experimental Diets
A basal diet (T0; non-supplemented with histamine), served
as control, was formulated (Table 1) based on nutritional
requirements of grouper (E. coioides) as recommended by
Yang et al. (2019). The experimental diets were prepared by
supplementing the basal diet with 0.05% (T1), 0.1% (T2), 0.15%
(T3), 0.2% (T4), 0.25% (T5), and 0.3% (T6) histamine (S20188;
histamine [C5H9N3] ≥ 98.0%; 111.15 g/mol; Shanghai yuanye
Bio-Technology Co., Ltd., China). All the dietary ingredients
were crushed to powders and through 60 mesh sieve and
thoroughly mixed using the progressive enlargement method,
then added the premixed fish oil, soybean oil and lecithin;
subsequently, water with/without histamine was supplemented

TABLE 1 | Ingredients and proximate nutrient composition of the basal diet
(% dry matter).

Ingredients Content (%)

White fish meala 43.0

Shrimp head meal 3.0

Soybean meal 16.88

Vital wheat gluten 7.00

Fish oilb 2.5

Soybean oil 2.5

Lecithin 2.0

Wheat meal 20.0

Choline chloridec 0.5

Vitamin premixd 0.5

Mineral premixe 0.5

Ca(H2PO4)2 1.5

Antifungal agent 0.10

Antioxidant 0.02

Proximate nutrients composition

Crude protein 45.90

Crude fat 10.32

Crude ash 9.17

aWhite fish meal was obtained from Jiakang Feed Co., Ltd., Xiamen, China,
imported from Peru (crude protein 68.34%, crude lipid 9.06%).
bFish oil were obtained from Jiakang Feed Co., Ltd., Xiamen, China.
cCholesterol was produced by Baiwei Biotechnology Holdings Co., Ltd., Hebei,
China, which is extracted from pig, cattle, or sheep brain, and the minimum level is
higher than 95%.
dVitamin premix (mg kg−1 diet): vitamin A, 15; vitamin D3, 15; vitamin E, 75; vitamin
K3, 50; vitamin B1, 50; vitamin B2, 75; vitamin B6, 75; vitamin B12, 0.3; nicotinic
acid, 200; inositol, 350; D-calcium pantothenate, 200; folic acid, 9; D-biotin, 0.5.
eMineral premix (mg kg−1 diet): FeSO4·7H2O, 278; CuSO4·5H2O, 41;
ZnSO4·7H2O, 463; MnSO4·4H2O, 57; MgSO4·7H2O, 2009; CoSO4·7H2O, 3;
Na2SeO3 0.6, Ca (IO3)2, 5.
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slowly and kept stirring until forming a dough. After pelletized,
the diets were packed in plastic bags and stored at refrigerator
(−20◦C) until subsequent use. The histamine level in the basal
diet was determined to be 158.7 mg/kg.

Animals and Experimental Conditions
The procedures for care and use of animals were approved
by the Animal Care and Use Committee of Jimei University,
China. The feeding trial was conducted in a recirculating water
system and healthy grouper (E. coioides) were obtained from the
Haikang Aquaculture Research Base of Dabeilong Aquaculture
group. The whole study followed a strict series of rules and
regulations promulgated by animal care and use committee of
Jimei University, China. After acclimation (2 weeks), 30 fish
(29 ± 0.52g; mean ± SE) were randomly allocated to each tank
(containing 300 L seawater) and three tanks for each treatment
were served as replicate, and thus 21 tanks (seven groups, and
three repeats in each group) and 630 fish were used in the feed
trial. Fish were hand fed one of seven diets for 56 days to apparent
satiation two times daily at 08:30 and 18:30, respectively, and
approximately 60% seawater was replaced daily. During the trial
period, rearing water environment were monitored daily and
maintained in a suitable range (temperature: 20–26◦C; salinity:
30–32 g/L, pH: 7.5–8.2, dissolved oxygen [DO]: ≥7.5 mg/L; and
total ammonia concentration: <0.2 mg/L).

Sample Collection
To determine the growth performance, 10 fish were randomly
collected from each tank (three tanks for each treatment)
after starvation for 24 h at days 28 and 56 respectively,
thus 30 fish for each treatment were collected at each time
point, batchwise anesthetized by 2-phenoxyethanol, and single-
weighed for calculation of growth performance. Blood samples
were taken from the caudal vein of 10 fish in each tank,
immediately transferred into 1.5 mL Eppendorf tubes and
held at 4◦C overnight. Then, serum was collected and pooled
following centrifugation at 10,000 r/min at 4◦C for 10 min
and stored in 1.5 mL Eppendorf tubes at −80◦C for further
analysis. Liver and intestine samples were dissected, weighed,
and frozen immediately in liquid nitrogen and stored at −80◦C
for subsequent analysis. Foregut were randomly sampled from
four fish in each tank, fixed with Bouin’s fixative solution (75 ml
saturated aqueous solution of picric acid, 25 ml formalin, 5 ml
glacial acetic acid) for morphological determination. Intestine
samples were collected from one fish per tank for intestinal
microbiota analysis at day 56.

Measurement of Serum and Liver
Biochemical Parameters
The total antioxidant capacity (T-AOC) and activities of
alkaline phosphatase (AKP), acid phosphatase (ACP), and
superoxide dismutase (SOD) in serum were evaluated
spectrophotometrically using commercial kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according
to the manufacturer’s instructions as previously described (Hu
et al., 2019).

The liver sample was homogenized in ice-cold 0.86%
physiological saline (pH: 7.2–7.4; w: v = 1:9), centrifuged
at 3,000 rpm at 4◦C for 10 min and the supernatant
was collected. Protein concentration of the supernatant was
determined with Coomassie brilliant blue method described by
Hu et al. (2019). Malondialdehyde (MDA) level and activities of
glutamic oxaloacetic transaminase (GOT) and glutamic propylic
transaminase (GPT) of the supernatant were estimated using
commercial kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) following the manufacturer protocol.

Serum and Intestinal Inflammatory
Factors
Interleukin-1 beta (IL-1β), serum amyloid A (SAA), and
C-reactive protein (CRP) in serum were analyzed by enzyme-
linked immunosorbent assay (ELISA) kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China). An ELISA kit was
purchased from Shanghai Jianglai Biotechnology Co., Ltd.
(Shanghai, China) for determination of fatty acid-binding protein
2 (FABP2) in serum, according to the manufacturer’s instruction.

Intestinal samples were rinsed in 0.86% physiological saline
of precooling (pH: 7.2–7.4; w: v = 1:9), homogenized and
centrifuged (3,000 rpm, 4◦C for 10 min). Protein concentration
of the supernatant was measured by Coomassie brilliant blue
method. Intestinal trefoil factor (ITF) was estimated by ELISA Kit
provided by Shanghai Jianglai Biotechnology Co., Ltd. (Shanghai,
China). The content of ITF was expressed as “pg per mg of
protein.”

Intestinal Morphology
Analysis of intestinal morphology by making Hematoxylin and
Eosin (H&E)- stained sections as described in our previous study
(Zhang J. J. et al., 2020). Briefly, the pre-fixed anterior intestinal
samples with Bouin’s fixative solution were subsequently
dehydrated with a graded series of ethanol and cleared in xylene,
then embedded in paraffin, finally sectioned at 6 um thickness.
After that, sections were stained using Hematoxylin and Eosin
(H&E) and mounted on glass slides. The sections were observed
with positive fluorescence microscope (Leica TM 820, Nussloch,
Germany), and muscular thickness (MT) and mucosal fold height
(MFH) were measured using Image-Pro Plus 6.0 software (Media
Cybernetics, Silver Spring, MD, United States) as described in our
previous study (Zhang J. J. et al., 2020).

Intestinal Microbiota Analysis
Total DNA of intestinal samples was extracted using a
DNA extraction kit, and DNA integrity and quality were
measured by electrophoresis on a 1% agarose gel. Then,
the V3 + V4 regions of the 16S rRNA gene of intestinal
bacteria was amplified with the forward primer 338F (5′-
ACTCCTACGGGAGGCAGCA-3′) and the reverse primer 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) by Polymerase Chain
Reaction (PCR). The PCR product purity and concentration
were determined with Nano-Drop R©ND-1000 spectrophotometer
(Nano-Drop Technologies, Wilmington, DE, United States).
Subsequently, high-throughput sequencing was performed on an
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Illumina HiSeq platform (Beijing Biomarker Biotechnology Co.,
Ltd., Beijing, China). The sequencing data have been uploaded
to GenBank (Accession number, PRJNA718150). Analysis of
intestinal microbiota abundance and diversity was performed
using BMKCloud1. The detailed protocols were described in our
earlier study (Yang et al., 2019).

Calculations and Statistical Analysis
The following formulas were used to calculate growth
performances and feed utilization parameters: Weight gain rate
(WGR,%) = 100× (final body weight–initial body weight)/initial
body weight; Specific growth rate (SGR,%/d) = 100 × (ln final
body weight–ln initial body weight)/days of feeding trial; Feed
conversion rate (FCR) = feed intake/(final body weight–initial
body weight); Hepatosomatic index (HSI,%) = 100 × (liver
weight/body weight); Survival rate (SR,%) = 100 × number of
survived fish in sampling/initial number of fish allocated.

All data were subjected by one-way analysis of variance
(ANOVA) followed by Duncan’s multiple-range test, which was
conducted to examine significant differences among treatments
using SPSS statistical package version 22.0 (SPSS Inc., Chicago,
United States). The results are presented as mean values followed
by the standard error of the mean (Mean ± SE) and significance
was declared at the P < 0.05.

RESULTS

Growth Performance
The growth performance of grouper is presented in Table 2. With
increasing histamine level, WGR and SGR tend to decrease, while
FCR showed an increase trend, but no significant difference was
observed at the initial feed period (day 0–28). Compared with
group T0, significant increased FCR and decreased WGR and
SGR were observed in the groups T5 and T6 at the whole feeding
period (day 0–56) (P < 0.05). Neither HSI nor SR statistically
differed across dietary treatments at the initial feed period (day
0–28) and the whole feeding period (day 0–56) (P > 0.05), and
the SR were above 95.56% in all groups.

Serum Non-specific Immune Parameters
The serum non-specific immune parameters are presented in
Table 3. At days 28 and 56, the serum ACP activities in fish
fed the histamine supplemented diets were lower than those fed
the control diet (T0), and significant difference was observed
in fish fed the diet T6 (P < 0.05). Fish fed the diets T4,
T5, and T6 at days 28 and 56 showed significant decreased
AKP activities compared to those fed the diet T0 (P < 0.05),
while fish fed the diet T6 exhibited the lowest AKP activity.
Serum SOD activity decreased with the increment of dietary
histamine in experimental diets and a significant decrease was
observed in the treatment T6 compared with the T0 at days
28 and 56 (P < 0.05). The T-AOC activities in the histamine
treatments at day 28 was significantly lower than that in the
control (P < 0.05), with the exception of the group T2. T-AOC

1www.biocloud.net

activity was affected negatively by all histamine treatments at day
56, while significant decrease was only observed in fish fed the
diet T6 (P < 0.05).

Liver Biochemical Indices
The results of the liver biochemical parameters are displayed
in Table 4. The MDA contents of fish fed the histamine
supplemented diets (except for diet T1) at day 28 were
significantly higher than those fed the diet T0 (P < 0.05).
Meanwhile, compared with the group T0, significantly decreased
activities of GOT and GPT were observed in group T6 (P < 0.05).
At day 56, the MDA content in liver of fish fed diets T5 and
T6 increased statistically compared with the control (P < 0.05).
Moreover, GOT and GPT activities in groups T5 and T6 were
significantly lower than those in group T0 (P < 0.05).

Inflammation Markers in Serum and
Intestine
As can be seen from Table 5, serum amyloid A (SAA) and
C-reactive protein (CRP) contents did not vary statistically in all
dietary treatments at days 28 and 56. Compared with the control,
the serum IL-1β content of fish fed diet T6 increased significantly
at day 28 (P < 0.05). At day 56, serum IL-1β contents of fish fed
the histamine supplemented diets increased statistically compare
with those fed the diet T0 (P < 0.05), while the treatment T6
showed the highest value. In groups T4, T5, and T6, the contents
of serum fatty acid-binding protein 2 (FABP2) and intestinal
trefoil factor (ITF) increased significantly at day 28 as compared
to the control and the highest values exhibited in fish fed diet T6
(P < 0.05). At day 56, the contents of serum FABP2 and intestinal
ITF in group T6 were significantly higher than that in the control
(P < 0.05).

Intestinal Morphology
Intestinal morphometrical parameters of grouper fed different
diets at days 28 and 56 are shown in Table 6. There was a
significant reduction of muscular thickness (MT) in fish fed diets
T5 and T6 at days 28 and 56 compared with those fed the diet
T0 (P < 0.05). In addition, the mucosal fold height (MFH) in
groups T4, T5, and T6 at day 28 was lower significantly than
the control, while the significant decrease was only observed
in group T6 (P < 0.05). The intestine section of fish fed with
diet supplemented with histamine displayed an inflammation
and damage, characterized by a thin MT, reduced MFH, while
the most serious impairment was observed in fish fed diets
T5 and T6 with higher doses of histamine (0.25 and 0.3%)
(Figures 1, 2).

Intestinal Microbiota
The phylum level analysis demonstrated that Proteobacteria,
Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria,
Chloroflexi, and Acidobacteria constituted common predominant
bacterial phylum in all groups, and histamine supplemented
diets significantly reduced the relative abundance of Firmicutes
and Bacteroidetes, significantly increased the relative abundance
of Proteobacteria and Fusobacteria, especially in groups T5
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TABLE 2 | Effects of histamine on growth performance of grouper (Epinephelus coioides).

Groups

T0 T1 T2 T3 T4 T5 T6

0–28 d WGR (%) 138.59 ± 17.48 124.55 ± 3.90 122.56 ± 6.49 121.07 ± 8.27 120.24 ± 9.42 120.01 ± 8.60 119.05 ± 3.67

SGR (%) 3.09 ± 0.25 2.89 ± 0.06 2.85 ± 0.10 2.83 ± 0.13 2.81 ± 0.16 2.81 ± 0.14 2.80 ± 0.06

FCR 1.06 ± 0.08 1.13 ± 0.04 1.14 ± 0.06 1.20 ± 0.02 1.17 ± 0.10 1.18 ± 0.08 1.20 ± 0.04

HSI (%) 2.24 ± 0.24 1.92 ± 0.23 1.78 ± 0.12 2.15 ± 0.28 2.09 ± 0.24 2.07 ± 0.16 2.03 ± 0.18

SR (%) 98.89 ± 1.11 100.00 ± 0.00 96.67 ± 1.92 97.78 ± 2.22 97.78 ± 1.11 98.89 ± 1.11 97.78 ± 1.11

0–56 d WGR (%) 235.43 ± 9.40a 231.62 ± 8.41a 228.60 ± 15.57ab 217.59 ± 19.83ab 216.57 ± 7.52ab 214.08 ± 5.86b 210.51 ± 9.90b

SGR (%) 2.16 ± 0.05a 2.14 ± 0.04a 2.12 ± 0.09ab 2.06 ± 0.11ab 2.06 ± 0.04ab 2.04 ± 0.03b 2.02 ± 0.06b

FCR 1.01 ± 0.06a 1.10 ± 0.06ab 1.13 ± 0.03abc 1.13 ± 0.07abc 1.13 ± 0.02abc 1.19 ± 0.04bc 1.26 ± 0.01c

HSI (%) 2.44 ± 0.14 2.28 ± 0.17 2.00 ± 0.15 2.37 ± 0.12 2.02 ± 0.12 2.34 ± 0.14 2.06 ± 0.11

SR (%) 98.89 ± 1.11 95.56 ± 1.11 95.56 ± 2.22 96.67 ± 1.92 95.56 ± 1.11 95.56 ± 1.11 95.56 ± 1.11

Different characters in the same row data indicate significant differences (P < 0.05).

TABLE 3 | Effects of histamine on serum immune parameters of grouper (Epinephelus coioides).

Groups

T0 T1 T2 T3 T4 T5 T6

28 d ACP (U/100 mL) 7.34 ± 0.23a 7.16 ± 0.15a 7.03 ± 0.29a 7.11 ± 0.14a 6.80 ± 0.19ab 6.72 ± 0.24ab 6.19 ± 0.42b

AKP(U/100 mL) 30.50 ± 2.88a 26.44 ± 2.87ab 25.73 ± 1.84ab 25.18 ± 0.44ab 22.43 ± 1.26b 22.33 ± 1.88b 21.06 ± 1.20b

SOD (U/mL) 182.44 ± 3.38a 180.57 ± 4.10a 179.70 ± 3.69a 155.58 ± 5.80b 167.50 ± 9.46ab 157.66 ± 3.99b 131.83 ± 5.65c

T-AOC (mM) 1.56 ± 0.11a 1.25 ± 0.13b 1.29 ± 0.06ab 1.23 ± 0.04b 1.15 ± 0.03bc 0.87 ± 0.17c 1.12 ± 0.06bc

56 d ACP (U/100 mL) 7.15 ± 0.04a 7.09 ± 0.06a 7.15 ± 0.16a 6.98 ± 0.22a 6.88 ± 0.08ab 6.84 ± 0.09ab 6.60 ± 0.05b

AKP(U/100 mL) 27.21 ± 0.46a 25.39 ± 0.70ab 25.21 ± 1.44ab 24.43 ± 0.42b 22.08 ± 0.34c 21.13 ± 0.36c 20.56 ± 0.72c

SOD (U/mL) 155.14 ± 4.28a 153.68 ± 6.56a 149.19 ± 9.28ab 143.08 ± 12.03ab 142.79 ± 9.48ab 143.25 ± 9.17ab 123.26 ± 4.23b

T-AOC (mM) 1.66 ± 0.13a 1.60 ± 0.07a 1.59 ± 0.22a 1.44 ± 0.04ab 1.40 ± 0.20ab 1.19 ± 0.08ab 1.09 ± 0.18b

Different characters in the same row data indicate significant differences (P < 0.05). ACP, acid phosphatase; AKP, activities of alkaline phosphatase; SOD, superoxide
dismutase; T-AOC, total antioxidant capacity.

TABLE 4 | Effects of histamine on liver biochemical indices of grouper (Epinephelus coioides).

Groups

T0 T1 T2 T3 T4 T5 T6

28 d MDA (nmol/gprot) 2.37 ± 0.74a 3.39 ± 1.86a 8.83 ± 2.31b 8.59 ± 2.43b 9.66 ± 0.95b 11.01 ± 0.62b 11.13 ± 1.54b

GOT(U/gprot) 40.19 ± 0.87a 39.90 ± 2.42a 39.68 ± 1.20ab 34.35 ± 2.54ab 39.13 ± 1.62ab 37.32 ± 2.95ab 33.16 ± 1.15b

GPT(U/gprot) 97.04 ± 8.11a 96.49 ± 13.12a 85.78 ± 6.75ab 73.61 ± 3.73ab 75.09 ± 3.12ab 85.18 ± 8.41ab 62.55 ± 8.84b

56 d MDA (nmol/Gprot) 5.95 ± 1.11a 8.21 ± 1.87ab 8.22 ± 1.55ab 8.51 ± 0.49ab 8.78 ± 1.25ab 11.19 ± 1.78b 11.00 ± 1.73b

GOT(U/gprot) 39.57 ± 1.08a 37.04 ± 1.44ab 36.41 ± 1.64ab 37.38 ± 1.17ab 36.35 ± 0.91ab 34.74 ± 1.41b 35.19 ± 1.21b

GPT(U/gprot) 95.21 ± 7.11a 78.40 ± 6.39ab 87.18 ± 3.46ab 80.32 ± 5.36ab 80.11 ± 7.28ab 71.73 ± 3.05b 73.61 ± 4.56b

Different characters in the same row data indicate significant differences (P < 0.05). MDA, Malondialdehyde; GOT, glutamic oxaloacetic transaminase; GPT, glutamic
propylic transaminase.

and T6 (P < 0.05) (Figure 3A and Table 7). At the genus
level, enhanced abundance of Cetobacterium was observed in
all treatments (except T3) compared with the control (T0),
as well as decreased abundances of Ruminiclostridium and
uncultured Bacteroidales_S24-7_group and Lachnospiraceae,
while significant changes were observed in high histamine groups
(0.25 and 0.3%) (P < 0.05) (Figure 3B and Table 7).

The Beta (β)-diversity boxplots and UPGMA phylogenetic
tree based on binary_jaccard distance were used to analyze

the microbial similarities among different groups. From the
data in Figure 4A, a clear separation was observed between
histamine treated groups and the control (T0) at phylum
level, suggesting that supplementation of histamine changed
the intestinal microbial community in E. coioides, especially in
groups T5 and T6. However, no significant differences were found
for the intestinal microbial β-diversity in different treatments,
although apparent difference was observed in groups T5 and
T6 (Figure 4B).
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TABLE 5 | Effects of histamine on inflammation markers of grouper (Epinephelus coioides).

Groups

T0 T1 T2 T3 T4 T5 T6

28 d IL-1β (ng/L) 57.69 ± 8.45a 71.20 ± 0.62a 73.67 ± 4.32ab 79.99 ± 3.54ab 73.85 ± 1.51ab 80.20 ± 0.90ab 101.79 ± 9.50b

SAA (µg/mL) 8.12 ± 0.43 8.80 ± 1.04 9.15 ± 1.25 8.80 ± 0.67 9.11 ± 1.02 8.95 ± 0.63 9.51 ± 0.83

CRP (µg/mL) 7.61 ± 0.26 8.13 ± 0.40 8.12 ± 0.32 8.23 ± 0.21 8.27 ± 0.23 8.37 ± 0.15 8.40 ± 0.07

ITF (pg/mgprot) 175.08 ± 5.71a 204.53 ± 5.87abc 201.15 ± 8.63abc 194.40 ± 14.51ab 213.74 ± 2.92bc 225.38 ± 16.09c 231.18 ± 4.13c

FABP2 (ng/mL) 15.79 ± 1.06a 16.73 ± 1.98a 18.96 ± 0.16ab 19.25 ± 1.65ab 21.45 ± 0.38b 20.49 ± 1.13b 21.91 ± 0.19b

56 d IL-1β (ng/L) 49.96 ± 9.51a 77.62 ± 2.98b 76.50 ± 3.00b 78.92 ± 2.95b 81.20 ± 4.96b 74.92 ± 1.78b 82.57 ± 4.33b

SAA (µg/mL) 7.39 ± 0.52 8.83 ± 0.71 9.28 ± 0.91 9.26 ± 1.06 8.13 ± 1.00 9.82 ± 1.08 10.14 ± 0.89

CRP (µg/mL) 7.47 ± 0.40 7.72 ± 0.92 8.20 ± 0.51 7.95 ± 0.13 7.62 ± 1.10 8.25 ± 0.13 8.33 ± 0.88

ITF (pg/mgprot) 153.51 ± 4.15a 163.06 ± 9.67ab 166.04 ± 1.76ab 186.50 ± 7.44bc 175.19 ± 9.39abc 174.55 ± 10.87abc 190.87 ± 3.65c

FABP2 (ng/mL) 10.97 ± 0.98a 11.50 ± 0.79a 12.27 ± 1.09a 12.14 ± 0.83a 13.11 ± 0.91ab 13.81 ± 0.10ab 15.51 ± 1.28b

Different characters in the same row data indicate significant differences (P < 0.05). IL-1β, Interleukin-1 beta; SAA, serum amyloid A; CRP, C-reactive protein; ITF, intestinal
trefoil factor; FABP2, intestinal-type fatty acid-binding protein.

DISCUSSION

An initial objective of the present study was to evaluate the
effect of graded levels of dietary histamine on performance
of grouper (E. coioides). In the present study, the SR was
unaffected by dietary histamine, which is in line with the result
of previous studies (Watanabe et al., 1987; Fairgrieve et al.,
1994; Tapia-Salazar et al., 2001; Zhai et al., 2020). Furthermore,
we have demonstrated that the growth performance was
not statistically different among the dietary treatments at
initial feeding period (0–28 days), whereas dietary histamine
suppressed growth performance at the whole feeding period
(0–56 days), especially when histamine supplementary doses
were 0.25 and 0.3%. Similar results were reported in Nile tilapia
(Oreochromis niloticus) (Reyes-Sosa and Castellanos-Molina,
1995), Atlantic halibut (Hippoglossus hippoglossus) (Aksnes and
Mundheim, 1997), Atlantic salmon (Salmo salar L.) (Opstvedt
et al., 2000), Japanese seabass (Lateolabrax japonicus) (Hu
et al., 2013), and American eel (A. rostrata) (Zhai et al.,
2020). In Chinese mitten crab (E. sinensis), however, histamine
supplementation (1, 2, 4 g/kg) did not affect the growth
performance (Zhao et al., 2016). Tapia-Salazar et al. (2001)
studied the effect of dietary histamine supplementation in blue
shrimp Litopenaeus stylirostris and observed that a quadratic
effect between weight gain and histamine supplementation levels,
while the optimum dietary histamine supplementation levels
(1,200 and 2,400 mg/kg), had favorable effects on growth
performance. He et al. (2018) also reported that optimum
dietary histamine level (18 mg/kg) significantly improved
growth performance of yellow catfish (Pelteobagrus fulvidraco).
Diamine oxidase (DAO) is one of the crucial enzymes in
charge of the exogenous histamine metabolizing and scavenging
system in organisms (Smolinska et al., 2014). Several studies
suggested that DAO activity exists diversity in animals due to
different contents of histamine and histidine infeed (Waton,
1963; Yang et al., 2010), which is a major reason for the
difference in histamine intolerance. It is possible, therefore,
that the sensitivities of fish and shrimp to histamine are
highly species-specific, which partly explained the discrepancy

of growth performance, although the information is lacking in
aquatic animals.

Serum non-specific immune parameters served as important
indexes that reflect health status of animals (Yu et al., 2019;
Zhai et al., 2020). AKP and ACP, two important phosphatase
enzymes, play a key role in clearing extracellular invaders
and immune defense (Ellis et al., 2011; Matozzo et al., 2011;
Tripathi et al., 2012). In the current study, serum ACP and
AKP activities decreased significantly in fish fed 0.25 and
0.3% histamine containing diets, suggesting suppressed immune
response. In accord with our results, Zhai et al. (2020) noticed
the reduction of serum ACP and AKP activities in American
eel (A. rostrata) fed commercial diet (containing 217 mg/kg
histamine) supplemented 300 mg/kg histamine. Another study
in Chinese mitten crab (E. sinensis) had reported that after 6 h of
histamine injection, ACP and AKP activities in the 1 and 50 mg/g
(body weight) histamine treated groups were significantly lower
than those in the control (Zhao et al., 2012). However, contrary
results were reported that improvement of lysozyme activity in
histamine treated Tetrahymena (Kovacs and Csaba, 1990) and
increased AKP activities were observed in all histamine treated
groups (50, 100, and 200 µg/kg) in rabbits (Tripathi et al., 2012).
Phosphatase activity enhanced significantly during incubation
of Tetrahymena pyriformis in histamine-supplemented cultures,
and histamine was identified as a phagocytic stimulus affecting
phosphatase synthesis and phagocytosis of hemocytes (Kovacs
and Csaba, 1990; Ellis et al., 2011; Matozzo et al., 2011). These
inconsistent effects of histamine may be due to the different
administration regimes and species specificity. Generally, the
serum T-AOC and SOD activities can provide an indication of
the antioxidant status of organisms, while higher serum T-AOC
and SOD activities might indicate higher antioxidant capacity
(Reddy et al., 1991). In the present study, the significant reduction
of serum T-AOC and SOD activity might indicate a diminished
antioxidant capability by high dose of histamine (0.25 and 0.3%).
However, Zhao et al. (2012) reported that injected histamine
could increase SOD activity at 6–24 h in E. sinensis. In an
in vitro study, enhancement of peroxide activity and superoxide
anion production were observed in whole hemolymph of Sydney
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rock oysters (Saccostrea glomerata) after treatment for 30 min
with noradrenaline, another biogenic amine (Aladaileh et al.,
2008). These paradoxes may be explained in that short-term
histamine stress can rapidly improve the antioxidant capacity by
compensatory mechanism; however, long-term dietary histamine
damage the ability to respond to reactive oxygen intermediates,
which subsequently result in oxidative damage and cause the
noticed decline with T-AOC and SOD activities.

Liver biochemical indices provide generally effective
information about the function and health status of liver.
Malondialdehyde (MDA), an endogenous genotoxic product
of enzymatic and oxygen radical-induced lipid peroxidation,
is commonly used as a bioindicator of oxidative injury.
Additionally, the reduction of liver GPT and GOT activities
suggested probable liver damage or dysfunction (Zhang J. Z.
et al., 2020). In this study, histamine was noticed to cause higher
MDA level and lower activities of GPT and GOT in liver. In
accordance with our results, histamine-rich diets resulted in
liver injury with a significant improvement in plasma GOT and
GPT activities (Li et al., 2018; Zhai et al., 2020). Study done in
immunized rabbits observed that histamine may cause hepatic
damage at different dosage by determining the characteristic
ratios and changes in serum GPT and GOT activities (Tripathi
et al., 2012). However, different from the above studies, dietary
supplementation with 10 g/kg histamine did not significantly
affect the plasma GOT and GPT activities in rainbow trout
(Shiozaki et al., 2004). The reason for these controversial results
is unclear but it may have something to do with different degree
of histamine intolerance in rearing species. Interestingly, grouper
fed diets supplemented low dose histamine (0.1, 0.15, and 0.2%)
at day 28 showed significantly lower antioxidative capacity
(estimating by determining the activity of SOD, the T-AOC,
and the level of MDA) compared with those fed the control
diet (T0), but no significant differences were observed at day
56. This suggested that grouper had the capacity to adapt their
antioxidative physiology changes caused by a long-term exposure
to low dose of dietary histamine to some degree.

It has been evidenced extensively that the enhancement of
pro-inflammatory factors (e.g., IL-1β, ITF, and FABP2) sharpens
the inflammatory extent and results in intestinal and local tissue
injury in organisms (Andre et al., 2000; Sharma et al., 2004;
Levy et al., 2009; Overland et al., 2009; Skov et al., 2012; Venold
et al., 2012; Song et al., 2013; Couto et al., 2014; Lee et al., 2017;
Impellizzeri et al., 2018). The present study showed that dietary
histamine increased the intestinal ITF and serum IL-1β and
FABP2 levels at days 28 and 56, especially in the high dose group
(0.3% histamine), illustrating that supplementation of histamine
induced inflammation in grouper. In line with our results, Zhai
et al. (2020) reported that high level of dietary histamine resulted
in liver inflammation and oxidative damage in juvenile American
eel (A. rostrata). These results confirmed that histamine is
biologically active in fish with regulating the inflammatory
response (Mulero et al., 2007). Interestingly, the contents of
intestinal ITF and serum IL-1β and FABP2 at day 56 were lower
than those at day 28, indicating that grouper adapted to dietary
histamine gradually during the long-term feeding period. CRP
and SAA are two key acute phase proteins associated with an
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FIGURE 1 | The foregut morphological images from H&E-stained section of E. coioides fed the experimental diets for 28 days (100×).

FIGURE 2 | H&E stained anterior intestine morphological sections of E. coioides fed the experimental diets for 56 days (100×).

FIGURE 3 | Taxonomy classification of reads from 16 S rRNA V3–V4 regions at the phylum (A) and genus (B) taxonomic levels in intestinal microbiota of grouper
E. coioides at day 56. Only top 15 most abundant (based on relative abundance) bacteria phylum and genus were exhibited in (A,B), and other phylum and genus
were all classified as “others.”
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TABLE 7 | MetaStat analysis of the abundance of intestinal bacterial phyla and genera (× 10−4) of grouper at day 56.

Groups

T0 T1 T2 T3 T4 T5 T6

Phylum

Proteobacteria 2040.69 ± 57.82c 3130.35 ± 403.20bc 2886.99 ± 91.96abc 2251.97 ± 350.30ab 3351.02 ± 150.71a 3326.06 ± 133.75a 3761.60 ± 644.49a

Firmicutes 3700.38 ± 58.19a 1961.52 ± 734.61bc 1766.59 ± 757.48bc 2805.52 ± 150.27ab 994.64 ± 192.88c 1409.50 ± 182.22c 705.21 ± 182.13c

Bacteroidetes 1847.51 ± 400.61a 1738.90 ± 86.25a 1576.15 ± 296.27ab 1724.92 ± 154.73a 1191.04 ± 135.70ab 1600.42 ± 124.50ab 986.52 ± 159.10b

Actinobacteria 525.29 ± 5.24 552.38 ± 28.50 700.10 ± 176.10 526.15 ± 45.14 897.58 ± 229.03 464.96 ± 4.42 703.75 ± 430.76

Fusobacteria 313.50 ± 164.16b 410.21 ± 196.24b 1100.79 ± 479.88b 256.0 ± 132.49b 618.42 ± 31.93b 542.80 ± 51.75b 2067.00 ± 380.63a

Genus

Cetobacterium 21.73 ± 1.80b 385.95 ± 184.59b 739.99 ± 584.86b 250.28 ± 130.14b 460.92 ± 128.02b 432.86 ± 109.06b 2060.84 ± 379.77a

uncultured_bacterium_f
_Bacteroidales_S24-
7_group

561.79 ± 181.85ab 402.64 ± 104.45abc 360.75 ± 191.52abc 613.14 ± 31.71a 177.56 ± 89.43bc 255.64 ± 78.10abc 95.32 ± 34.33c

uncultured_bacterium_f
_Anaerolineaceae

224.24 ± 87.73 128.02 ± 64.75 145.84 ± 28.56 361.63 ± 58.64 255.06 ± 172.24 92.03 ± 15.37 175.60 ± 67.39

Bacteroides 229.35 ± 42.64 217.53 ± 25.86 283.48 ± 158.23 162.93 ± 13.33 89.13 ± 38.18 304.73 ± 76.47 69.01 ± 23.18

uncultured_bacterium_f
_Lachnospiraceae

368.89 ± 8.84a 184.39 ± 97.95ab 153.00 ± 97.84ab 364.77 ± 105.68a 52.77 ± 16.05b 98.91 ± 27.92b 49.87 ± 9.64b

Desulfovibrio 259.41 ± 124.74ab 152.03 ± 103.67ab 136.93 ± 79.53ab 331.51 ± 38.64a 36.54 ± 14.25b 86.27 ± 49.10b 46.22 ± 15.91b

Ruminiclostridium_9 233.07 ± 107.88ab 121.92 ± 90.05ab 160.40 ± 93.50ab 264.29 ± 36.80a 32.87 ± 13.49b 42.70 ± 11.07b 33.69 ± 1.35b

Blautia 169.80 ± 80.76ab 109.18 ± 68.33b 105.18 ± 71.42b 374.90 ± 175.21a 22.85 ± 13.58b 55.73 ± 20.30b 29.77 ± 7.38b

uncultured_bacterium_c
_S0134_terrestrial_group

132.51 ± 60.92ab 59.73 ± 44.25b 49.68 ± 10.66b 411.16 ± 218.66a 116.70 ± 82.22ab 26.90 ± 14.61b 12.21 ± 4.20b

Sphingomonas 131.44 ± 66.12 84.96 ± 17.95 168.32 ± 82.38 75.30 ± 18.66 149.41 ± 38.94 69.58 ± 1.89 30.13 ± 9.64

Ruminiclostridium 280.56 ± 2.83a 110.24 ± 76.35bc 111.06 ± 69.88bc 218.30 ± 12.36ab 17.46 ± 9.36c 70.66 ± 26.14c 26.85 ± 6.28c

Bradyrhizobium 21.77 ± 8.28b 55.43 ± 5.41b 140.10 ± 84.68b 30.20 ± 8.15b 336.43 ± 131.07a 108.38 ± 45.62b 28.93 ± 9.39b

Different characters in the same row data indicate significant differences (P < 0.05).
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FIGURE 4 | Beta diversity of intestinal microbiota based on binary_jaccard distance of grouper E. coioides at day 56. (A) UPGMA-clustering trees at genus level. (B)
Beta (β)-diversity boxplots based on phylum. A1, A2, and A3 refer to triplicates of group T0; B1, B2, and B3 refer to triplicates of group T1; C1, C2, and C3 refer to
triplicates of group T2; D1, D2, and D3 refer to triplicates of group T3; E1, E2, and E3 refer to triplicates of group T4; F1, F2, and F3 refer to triplicates of group T5;
G1, G2, and G3 refer to triplicates of group T6.

acute inflammatory response, with a significant enhancement of
serum CRP and SAA levels following organism inflammation,
injury, or infection (Pepys et al., 1978; Lindhorst et al., 1997;
Pepys and Hirschfield, 2003; MacCarthy et al., 2008; Rosani
et al., 2016; Franco-Martinez et al., 2019; Bello-Perez et al., 2020;
Gursky, 2020; Williams et al., 2020). Derebe et al. (2014) reported
that vitamin A deficiency may lead to an immune deficiency in
mice with decreasing the abundances of SAAs in small intestine
and liver. Another study in mice also demonstrated that animals
may against lipopolysaccharides (LPS)-induced inflammation
and tissue injury through increasing content of serum acute-
phase SAA (Cheng et al., 2018). On the other hand, MacCarthy
et al. (2008) reported that serum CRP-like protein level improved
several folds in common carp (Cyprinus carpio) challenged with
the pathogen Aeromonas hydrophila. A study done in rainbow
trout showed that serum CRP concentration rose to a maximum
at 6 or 9 days after exposure to formalin for 3.5 h at 300 ppm or
9.5 h at 30 ppm, respectively, and subsequently it began to decline
until below normal at day 18 (Kodama et al., 2004). Kodama et al.
(2004) also reported that the CRP content enhanced significantly
to a maximum at day 3 after exposure to metriphonate (9.9
times higher than normal), then reduced to below normal.
Interestingly, the present study showed that dietary histamine
did not markedly affect serum CRP and SAA contents at days 28
and 56, although slight enhancement was observed in histamine-
supplemented groups. A possible explanation for this might be
that serum acute phase proteins (CRP and SAA) contents had
recovered in some extent after starvation for 24 h. Unfortunately,

serum CRP and SAA contents have not been immediately
measured after feeding in this study. Taken together, exogenous
high dose histamine not only causes liver oxidative damage but
also induces inflammation on the digestive tract in both terrestrial
and aquatic animals.

Intestinal morphometrical change is a helpful indicator of gut
inflammation and health status (Venold et al., 2012). Intestinal
integrity is mainly referred by MT, MFH, and abundance of
goblet cells (Garcia-Ortega et al., 2016). Generally, higher MT
and MFH indicated healthier intestinal structure, strongly linked
to the suppression of enteritis and nutrient transport capacity.
In this study, the reduction of MT and MFH demonstrated
high doses of histamine (0.25 and 0.3%) exert harmfulness
effect on intestinal morphology of grouper. Similar results were
reported that high dose of histamine (103.5 mg/kg or more) may
result in destruction of gastric and intestinal mucosal barrier
in yellow catfish (P. fulvidraco) (He et al., 2018). As far as we
know, to date, information about the effects of histamine on
intestinal morphology in fish remains limited. Several studies
indicated that histological and morphological pathology of
digestive systems appeared in both rainbow trout and chicks
when dietary histamine content exceeded 2 g/kg (Watanabe et al.,
1987; Fairgrieve et al., 1994).

It has been extremely reported that intestinal microbiota
might be of crucial importance to host health by improving
intestinal morphology (Lee et al., 2014; Sayyaf Dezfuli et al.,
2018; Torraca and Mostowy, 2018; Cani et al., 2019; Liu et al.,
2019; Ortega et al., 2019), modulating metabolic, physiological,

Frontiers in Marine Science | www.frontiersin.org 10 June 2021 | Volume 8 | Article 685720

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-685720 June 8, 2021 Time: 16:52 # 11

Liu et al. Dose-Dependent Effects of Histamine

and immunological processes (Al-Fataftah and Abdelqader, 2014;
Reda and Selim, 2015; Wang et al., 2018; Heiss and Olofsson,
2019; Deng et al., 2020), and which is highly sensitive to
dietary ingredients and components (Ringø et al., 2016). In
the current study, the intestinal microbiota of grouper was
dominated by Proteobacteria, Firmicutes, Bacteroidetes, and
Actinobacteria, which is in keeping with our previous studies in
grouper (Yang et al., 2019). Dietary 0.3% histamine significantly
enhanced relative abundance of Fusobacteria compared with the
control. Bacteria from this phylum includes several common
pathogens in human (Tahara et al., 2014; Han, 2015; Harrandah
et al., 2021) and aquatic animals (Meng et al., 2021; Wang
et al., 2021), which can cause tissue necrosis and inflammatory
response of the host. The relative abundances of Firmicutes
and Bacteroidetes in histamine supplemented groups were lower
than those in the control, and it has been reported that
members of these phyla improve the functions of intestinal
mucosal barrier and non-specific immunity of fish (Costantini
et al., 2017; Duan et al., 2018; Wang et al., 2019; Meng
et al., 2021). These results may partly explain why the
growth performance and non-specific immunity of grouper
in the control group were higher than those in histamine
supplemented groups. Although significant difference was not
observed in intestinal microbial diversity of grouper, higher
histamine-treated diets changed bacterial composition in the
intestine and increased its diversity, such as increased relative
abundances of Cetobacterium, as well as decreased abundances
of Ruminiclostridium, uncultured_bacterium_f_Lachnospiraceae,
and uncultured_bacterium_f_ Bacteroidetes_S24-7_group. In
accord with our study, Ye et al. (2020) reported that chilled trash
fish generally contain high levels of biogenic amines (such as
histamine) (Zhao et al., 2012, 2016), led to significantly decreased
intestinal beneficial bacteria (e.g., Bacteroidetes_S24-7_group
and Lachnospiraceae, etc.) in hybrid grouper (Epinephelus
fuscoguttatus ♀ × Epinephelus lanceolatus ♂), paralleled with
suppression of growth performance. As for horse study,
supplementation of Saccharomyces cerevisiae (S. cerevisiae)
modulated positively the overall structure of intestinal microbiota
with increased relative abundance of Lachnospiraceae (Garber
et al., 2020), which is a family of butyrate-producing bacteria
(Nicholson et al., 2012; Hamilton et al., 2020). On the other hand,
high fat diet resulted in a reduction of the relative abundance
of the Bacteroidetes_S24-7_group and Lachnospiraceae in mice,
which might be one of the primary etiological mechanisms
underlying obesity (Li et al., 2020). Similar to this study, the lower
relative abundance of Cetobacterium is accompanied by greater
growth performance in tilapia (O. niloticus) (Standen et al.,
2015; Li et al., 2019). Moreover, combined with the poor growth
performance and increased relative abundances of Cetobacterium
in the soybean meal (SM) group, Wang et al. (2020) speculated
that Cetobacterium may exert a harmful effect in bullfrog
(Lithobates catesbeianus). However, these results are contrary to
that of Meng et al. (2021) who suggested Cetobacterium has a
beneficial effect on the production of vitamin B-12 in common
carp (Cyprinus carpio L.). In the present study, combined with

the results of intestinal morphology and inflammation markers,
the increase of intestinal microbial diversity by supplemented
histamine may be adverse to maintain homeostasis of intestine,
indicating a tendency to induce inflammation, which is in
line with previous study (Reveco et al., 2014). The above data
suggested that the intestinal microbiota composition of grouper
was greatly shaped by supplementation of high dose of histamine,
which might negatively affect the growth performance, immune
function, and intestinal morphology.

CONCLUSION

Diet supplemented with no more than 0.2% histamine did not
negatively affect the growth performance, immune response,
and intestinal health in grouper, while high doses (0.25 and
0.3%) of dietary histamine exert apparently negative effects on
growth performance, immune response, and intestinal health in
grouper. This study lays the foundation for future studies on
exploring effective strategies to eliminate the adverse effects of
histamine in marine fish.
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