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Coral reefs are undergoing changes caused by coastal development, resource use, and
climate change. The extent and rate of reef change demand robust and spatially explicit
monitoring to support management and conservation decision-making. We developed
and demonstrated an airborne-assisted approach to design and upscale field surveys
of reef fish over an ecologically complex reef ecosystem along Hawai‘i Island. We also
determined the minimal set of mapped variables, mapped reef strata, and field survey
sites needed to meet three goals: (i) increase field survey efficiency, (ii) reduce field
sampling costs, and (iii) ensure field sampling is geostatistically robust for upscaling to
regional estimates of reef fish composition. Variability in reef habitat was best described
by a combination of water depth, live coral and macroalgal cover, fine-scale reef rugosity,
reef curvature, and latitude as a proxy for a regional climate-ecosystem gradient. In
combination, these factors yielded 18 distinct reef habitats, or strata, throughout the
study region, which subsequently required 117 field survey sites to quantify fish diversity
and biomass with minimal uncertainty. The distribution of field sites was proportional
to stratum size and the variation in benthic habitat properties within each stratum.
Upscaled maps of reef survey data indicated that fish diversity is spatially more uniform
than fish biomass, which was lowest in embayments and near land-based access
points. Decreasing the number of field sites from 117 to 45 and 75 sites for diversity
and biomass, respectively, resulted in a manageable increase of statistical uncertainty,
but would still yield actionable trend data over time for the 60 km reef study region
on Hawai‘i Island. Our findings suggest that high-resolution benthic mapping can be
combined with stratified-random field sampling to generate spatially explicit estimates of
fish diversity and biomass. Future expansions of the methodology can also incorporate
temporal shifts in benthic composition to drive continuously evolving fish monitoring for
sampling and upscaling. Doing so reduces field-based labor and costs while increasing
the geostatistical power and ecological representativeness of field work.
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INTRODUCTION

Coral reefs are undergoing continual and rapid changes caused
by coastal development, resource use, and climate change
(Knowlton, 2001). Both the benthic habitat and occupants of that
habitat need ecologically robust monitoring in order to assess
patterns and rates of change for management and conservation
decision-making (Brownscombe et al., 2019). However, the
approaches available for most monitoring programs are limited
by issues of access, cost, and repeatability. Reef habitat and fish
monitoring is usually carried out by divers using visual and/or
photographic data collection techniques (e.g., Flower et al., 2017;
Friedlander et al., 2018; Gorospe et al., 2018). These methods
often yield data on specific locations at discrete points in time,
but they are difficult to scale up to derive ecosystem-level patterns
and trends over time (Edgar et al., 2016).

Habitat complexity of coral reefs is driven by spatial
and temporal variability in available substrate, such as rocks,
sand, hard calcareous surfaces, live coral and algal cover,
and environmental variables such as depth, rugosity, water
quality, and light availability (Kovalenko et al., 2012). These
drivers interact and create feedbacks on populations of fish,
invertebrates, and other organisms that inhabit the reef.
Quantitative monitoring of these drivers and their interactions
remains a major challenge due to the sheer extent, variability and
complexity of coral reef ecosystems. Recent advances in airborne
imaging spectroscopy (hyperspectral) mapping of reefs, whereby
the ocean surface is imaged in hundreds of narrow, contiguous
spectral bands, have yielded spatially explicit information on the
location and extent of key determinants of reef habitat including
live coral and macroalgal cover, sand cover, water depth, and
a range of 3D habitat complexity metrics to more than 16 m
(52 ft) depth (Asner et al., 2020a,b, 2021). In combination with
previously mapped coastal land features, these benthic mapping
capabilities provide an improved means to monitor changes in
habitat over time at large ecological scales. While the approach is
limited to very few airborne systems today, the same technology
is in development for space-based deployment (Thompson et al.,
2020), which will provide opportunities to greatly improve reef
habitat mapping worldwide, and highlight a need to develop
applications of this technology as soon as possible.

Combinations of multiple reef and terrestrial habitat maps
provide an opportunity to develop, test and improve fisheries
monitoring in spatially explicit ways. Specifically, high-resolution
mapping allows for stratified-random sampling of reef species
(fish, invertebrates, and others), which involves dividing the
entire ecosystem into smaller subgroups known as strata.
These strata represent habitats that differ significantly from
one another, and need to be sampled separately. While this
sampling approach is commonly applied in terrestrial ecosystems
(e.g., Shiver and Borders, 1996; Tomppo et al., 2008), aquatic
applications have successfully utilized similar approaches with
multispectral remote sensing data (Friedlander et al., 2007;
Purkis et al., 2008). Map-based approaches provide an avenue
for regional downscaling to derive randomly located sites for
monitoring that accurately represent habitat variability across the
entire ecosystem (e.g., Mellin et al., 2009; Knudby et al., 2011).
Map-based approaches also allow upscaling of field-based

observations to generate regional estimates that integrate habitat
complexity over space and time, which is central to marine spatial
planning, fisheries management, reef restoration and numerous
other activities.

Here we build off a past approach using a large-scale ecosystem
mapping and sampling scheme, driven by airborne hyperspectral
remote sensing data (Asner et al., 2017), to scale surveys of reef
fish over an extensive, ecologically complex reef ecosystem in
the Hawaiian Islands. The method provides detailed maps of the
most important habitat-generating organisms in an ecosystem
(e.g., trees in forests, corals on reefs), and utilizes these maps
along with other geospatial information to sample and then
upscale field-based surveys of habitat occupants (e.g., birds in
forests, fish on reefs) to the regional level. Accurate regional stock
assessments of reef fishes are critical for effective management
and conservation of coral reefs (Bacheler et al., 2017). Using
new aircraft-based hyperspectral remote sensing and other
environmental maps, combined and analyzed into reef classes
or strata, we carried out a field sampling campaign to assess
reef fish diversity and biomass, two important metrics of fishery
composition and condition. We then upscaled the field data using
the mapped strata to estimate total fish diversity and biomass
as well as spatial variation in both sets of ecological metrics.
Finally, we reduced the number of field sites incrementally to
assess the minimum level of monitoring required to maintain
statistically robust estimates of fish diversity and biomass. Our
findings uniquely generate specific recommendations for future
monitoring of Hawaiian coral reef ecosystems over time, and
the approach provides a methodology that can be applied in any
coral reef ecosystem.

MATERIALS AND METHODS

Study Region
The District of South Kona is located in the southwestern
portion of Hawai‘i Island in the eight Main Hawaiian Islands
(Figure 1). Extending along a coastline of 60.5 km, the South
Kona reef ecosystem spans a wide range of environmental
conditions driven by changes in volcanic substrate age as well
as an annual precipitation gradient of 900 mm (1600 mm
year−1 at the north end; 700 mm year−1 at the south end) on
adjacent lands (Giambelluca et al., 2013). These two factors
combine to drive variation in runoff and submarine groundwater
discharge into the reef system (Peterson et al., 2009). Land cover
and land use also vary along the South Kona shoreline and
in adjacent inland areas. The northern portion of the District
is dominated by a combination of residential housing and
dense small-holder agricultural operations. Moving southward,
residential populations are reduced in density, and fewer but
larger agricultural production areas (i.e., plantations, ranches)
are more common.

The South Kona District shoreline is dotted by large
embayments including Kealakekua, Hōnaunau, Ki‘ilae,
Kipahoehoe, Pāpā, Miloli‘i, Honomalino, Okoe, Kapu, and
Manukā bays. Other numerous coves and long stretches of
non-embayments, along with coastal headlands, are common
as well. Compared to other areas of Hawai‘i Island, South
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FIGURE 1 | The location of South Kona District in green lines on the left, with live coral cover mapped along the coast (from Asner et al., 2020b). Example areas of
live coral cover are shown at (a) Hōnaunau Bay, (b) Pāpā Bay, and (c) Okoe-Kapua Bay. Background imagery retrieved from Google, ©2020 Digital Globe, ©2021
Maxar Technologies.

Kona District has fewer and less intensive areas of nutrient-
or sediment-rich effluent from onshore disposal sites, golf
courses or other land-based sources (Gove et al., 2016). This
results in relatively clear waters with visibility often exceeding
30 m. Exceptions to this include two northern embayments
of Kealakekua and Hōnaunau, which can become turbid
from runoff and/or high visitor traffic (Wedding et al., 2018).
Physical oceanographic data indicate that the prevailing current
is in the north-to-south direction and distinct areas and/or
periods of upwelling are also common throughout the region
(Gove et al., 2019).

Airborne Mapping of Benthic Variables
We used the Global Airborne Observatory (GAO), formerly
known as Carnegie Airborne Observatory (Asner et al., 2012),
to map a suite of benthic variables throughout the South Kona

District. Water depth maps were created using a neural network
model applied to the GAO imaging spectrometer (hyperspectral)
reflectance data from campaigns in 2019 and 2020 as detailed
in Asner et al. (2020a). The resulting depth maps have a spatial
resolution of 2 m, and a depth range of 0–16 m (Asner et al.,
2021), with a demonstrable accuracy comparable to estimates
from other bathymetric studies (Asner et al., 2020a).

Because habitat complexity can strongly influence reef fish
assemblages (Graham et al., 2015), we generated reef rugosity
maps using a standard metric applied to the high-resolution
water depth maps. We mapped two resolutions of rugosity
using the surface-to-planar area methodology described in Asner
et al. (2021): 2-m resolution maps of fine-scale rugosity and 6-
m resolution maps of coarse-scale rugosity. Fine-scale rugosity
captures high-frequency benthic surface variability caused by
coral colonies, rocks and other features, whereas coarse-scale
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FIGURE 2 | Overview of iterative geospatial clustering and stratification process for coral reefs.

rugosity captures larger terrain features resulting from reef-scale
geologic accretion and subsidence processes affecting wave forces
and light regimes.

Finally, we used a computational deep learning model to
estimate the percent cover of live coral, macroalgae, and sand
from the same 2-m resolution imaging spectroscopy data across
the study region (Asner et al., 2020b). From small-scale studies,
live coral and macroalgal cover are often linked to habitat
complexity, yet in prior studies we found that, across the full
Hawaiian archipelago, the association between rugosity and live
coral cover was not consistent between islands, and rugosity has
a stronger link to many other factors tested (Asner et al., 2020b,
2021). Therefore, we included coral cover and habitat complexity
separately. In sum, we derived benthic variables commonly
known to influence fish populations (e.g., Gorospe et al., 2018):

water depth, reef rugosity, and live coral cover, and we added
macroalgal cover with the hypothesis that it could be associated
with an increased presence of herbivorous fish.

Regional Stratification
We used an iterative, multi-stage process to determine the
minimal set of mapped variables and the resulting minimal
number of reef strata needed to meet three goals: (i) increase
field survey efficiency, (ii) reduce field sampling costs, and (iii)
ensure field sampling is geostatistically robust for upscaling to
regional estimates of reef fish composition (Figure 2). In addition
to our mapped benthic variables, our process started with a
broad suite of input environmental variables (Supplementary
Table 1 and Supplementary Figures 1, 2) known to affect reef
fish biomass and diversity through ridge-to-reef impacts on water
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quality (Carlson et al., 2019), influences on human accessibility
(Cinner et al., 2018), or direct impacts on fish habitat (Gorospe
et al., 2018). Because the spatial resolution of many of these input
maps was coarse compared to the GAO input maps, all maps
were initially rescaled to 30-m resolution by pixel averaging for
down-sampling or cubic-spline interpolation for upscaling. This
reduced the data size and made the spatial variability of each of
the considered variables more comparable.

The first step involved rescaling all input variables to a
mean of 0 and a standard deviation of 1. Categorical variables
needed to be converted to multiple columns of data using
one-hot encoding or similar. A k-means clustering procedure
(MacQueen, 1967) was used with k determined with the aid of the
Gap statistic (Tibshirani et al., 2001). The resulting stratification
map and means within each stratum informed subsequent steps.
A separate Random Forest Machine Learning (RFML) model
(Breiman, 2001) was run on the input dataset against designated
“core” variables: live coral cover and rugosity, as they are known
to correlate most strongly with fish biomass (e.g., Friedlander
et al., 2007; Gorospe et al., 2018). A permutation-based
importance measure for each input variable, along with a partial
dependence plot for each variable, also informed the next step.

Using results from step one, we determined variables that met
either of two conditions: (i) less than a 20% relative contribution
to changing the overall explanatory performance of the model;
or (ii) near zero variation between cluster-level means. The first
condition indicates that the variable is too weakly correlated with
the designated core variable to be of significance in the model.
The second condition indicates that the variable does little to
differentiate the habitat diversity within the survey region. When
such variables were found, they were removed from the input
dataset and the first step was repeated until all remaining input
variables did not meet (i.e., were not screened out by) the two
conditions above.

Upon completion of the two steps above, we generated a map
of the k clusters by applying a k-means model to maps of the
remaining input variables. These mapped clusters were treated
as strata for a stratified random sampling scheme. We evaluated
the number of field samples needed to satisfy the geospatial and
ecological variation in the mapping variables under the given
stratification using a standard methodology of allotting samples
to an individual stratum based on its relative size and the standard
deviation of core variable values within the stratum. This was
done for each core variable by specifying a confidence interval
level (α), and a maximum half-width of the confidence interval
(x) as a percent of the core variable mean, and a table containing
the within-stratum means (Ȳi) and standard deviations (σi) for
the core variable from the input map grouped by the levels
in the strata map. By apportioning the field samples to each
stratum (ni) proportional to the area covered by that stratum
(Ni), multiplied by stratum population standard deviation, σi,
of the core variable within that stratum, i.e., ni ∝ Niσi, the
optimal number of samples for the region (n) and the number
computing a table containing the within-stratum means (Ȳi) and
standard deviations (σi) for the core variable from the input
map grouped by the levels in the strata map. By apportioning
the field samples to each stratum (ni) proportional to the area

covered by that stratum (Ni), multiplied by stratum population
standard deviation, σi, of the core variable within that stratum,
i.e., ni ∝ Niσi, the optimal number of samples for the region
(n) and the number of samples per stratum were computed
simultaneously using the formula:

n >
z2
α

∑
i∈K

wiσ
2
i

ci(
xȲ/100

)
where:

ci =
Niσi∑

j∈K Njσj
,

wi =
Ni

N
, and

ni = ceil(cin)

While too few strata will increase the number of field samples
needed to obtain our desired level of confidence, numerous
small, uncommon strata will make sampling within each stratum
difficult and costly. We ran an analysis to investigate whether
the number of strata could be further reduced by combining
similar strata without significantly increasing the number of total
field samples needed. Using the formula above, we assessed the
increase in the minimum number of samples needed as individual
strata were iteratively combined to generate a reduced number
of strata by replacing the remaining next closest pair of existing
strata on the dendrogram from the clustering procedure into one.
At each step, the number of required samples was recomputed,
and this was repeated until only one stratum remained. This
approach indicated how many strata can be combined to reduce
field costs without losing geostatistical robustness and efficiency.

At the conclusion of this process, the output consisted of
a map of k strata across the study region, and the minimum
number of field sites needed in each stratum to meet the desired
uncertainty condition for each of the key variables. Doing so
ensured that the field data could be upscaled in a geostatistically
and ecologically robust manner. All modeling steps were carried
out in the Python programming language, incorporating tools
contained in the Scikit-learn package (Pedregosa et al., 2011).

Field-Based Fish Surveys
We used a restricted random selection process to identify suitable
field site locations where transects would be established within
each of the final strata from the procedure above. Our goal
was to identify survey locations across both the North-South
range and the available depth range of each stratum. Ideally, we
aimed to locate all sites entirely within the area of their specified
stratum. Such locations would be “pure,” i.e., all map pixels within
25 m × 15 m (our transect area) of each location would belong
to the stratum. However, the spatial dimensions of some strata
(too narrow, too sparse, etc.) precluded the identification of such
a pure sample. To maximize purity of the field sites per stratum,
we considered only pixels where surrounding area pixel purity
was greater than a specified minimum of 75%. At the start of the
iterative selection process for each stratum, we ran a 13× 13 pixel
moving window over the cluster map computing the pixel purity
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for each pixel in the strata map. If we did not find a sufficient
number of suitable locations meeting the purity threshold, this
threshold was reduced by 5% until a suitable number of sites
was reached. Once a sample location was selected, we optimized
the stratum purity of this sample by automatically adjusting the
transect azimuth direction.

To keep the site locations from clustering too close together
during the selection process, we used a weighted random
sampling approach. All potential site locations were initially
weighted equally. Higher weights increased the likelihood of
selecting a given location as a site, where a weight of 0 disqualified
that location. Each time a new sample location was chosen,
the weight of all sample locations within 50 m of this selected
location was set to zero, and weights between 50 and 300 m of the
selected location were multiplied by 0.5. This greatly reduced site
clustering, except in cases of extremely sparse strata.

As a secondary criterion, we also wanted site locations to
represent the full range of depth of each stratum. During the
iterative site selection process, we split the total area of each
stratum into three equal parts to represent shallow (0–5 m),
medium (5–10 m) and deeper (10–16 m) depths based on
percentiles of the pixel depth values, and allotted site locations
between these depth classes as uniformly as possible. Overall,
our site selection process yielded 117 sites across 18 strata
(Supplementary Figure 3; see details on stratification output in
section “Results”).

We assessed reef fish biomass and biodiversity using a
standard 25 m × 5 m underwater visual belt transect survey
method (Brock, 1982; Friedlander et al., 2006, Friedlander
et al., 2006, 2007). Underwater visual census (UVC) surveys
are a practical diver-based approach to capture the abundance,
biomass, and diversity of reef fishes in shallow reef environments
(Brock, 1954; Samoilys and Carlos, 2000; Friedlander et al., 2018).
Studies implementing UVC surveys have used several variants of
this method which include stationary point counts (Campbell,
1986; Heenan et al., 2014) and visual belt transects (Halford and
Thompson, 1994; Friedlander et al., 2006). Each of these variants
of UVC surveys collect comparable data but have caveats due
to restrictions in their ability to detect certain cryptic species as
well as their spatial and temporal coverage of reef environments
(Samoilys and Carlos, 2000; Edgar et al., 2004; Fernández et al.,
2021). However, for capturing general reef fish populations
densities, UVC surveys are low cost, easy to implement, and
malleable to different research and management needs.

At each site, two divers each completed a transect
approximately 10 m apart, which were then averaged during data
analysis. We identified all fish on the transect to species level,
and visually estimated the size of fish by total length, binning
fish into five cm slots up to 25 cm, and to the nearest cm for fish
greater than 25 cm. We swam across the transects at a constant
rate, with an average survey time of 15 min per transect.

Biomass (kg ha−1) was estimated using size and weight values
from Fishbase1. Species were grouped by trophic structure as
three sub-groups: grazer, browser, and scraper. Trophic groups
were generated from pre-existing groups following Heenan

1http://www.fishbase.org

et al. (2016) as well from unpublished data from the Division
of Aquatic Resources, State of Hawai‘i. We estimated species
richness as the number of species present as well as the Shannon
diversity (H) index at each site (Shannon, 1948). The behavior,
mobility, and schooling assemblage habits of certain fishes, such
as those in the families Acanthuridae, Scaridae, Mullidae, and
Lutjanidae, may bias upscaled map data by creating higher
frequency biomass hotspots or anomalies in high resolution map
data (Donovan et al., 2018). The design of UVC surveys to census
the biomass and diversity of fishes does not incorporate fish
assemblages that are temporary, haphazard, and non-uniformly
distributed across a reef. As a result, temporary schooling
fish cause data bias when upscaling to high resolution maps
(Donovan et al., 2018). To account for large schooling fish and
fish biomass anomalies that overestimate or bias map data, sites
that had both schools of 20 fish or more and a biomass over
500 kg ha−1 were replaced by the average biomass for that species
that occurred in the stratum for the site. This was applied to
data from 12 of the 117 sites, with each site only needing one
replacement. For these 12 sites, species that displayed schooling
behavior were Acanthurus leucopareius (n = 5; stratum 5, 6, 9),
Acanthurus blochii (n = 1; stratum 15), Decapterus macarellus
(n = 1; stratum 10), Lutjanus kasmira (n = 1; stratum 5),
Mulloidichthys flavolineatus (n = 1; stratum 1), Mulloidichthys
vanicolensis (n = 1; stratum 14), Naso lituratus (n = 1; stratum
16), and Scarus psittacus (n = 1; stratum 1). An example of this
replacement was for a school of S. psittacus at a site in which a
school of 245 fish with a biomass of 2900 kg ha−1 was present.
This schooling behavior caused extreme biomass anomalies in the
map data and overestimated S. psittacus biomass, and thus was
replaced by the average biomass for its stratum of 328 kg ha−1.
Large fishes that were rare, had high biomass, and were expected
to have high mobility such as sharks and rays, were also removed
from the data. We recognize the limitations of this averaging
approach for some large schools of migratory fish. As a result,
one can view this study as being focused on fish with smaller
home ranges. Meanwhile, until new methods for more accurately
measuring large schools with large home ranges are developed,
this error will remain inherent to all transect-based field survey
approaches. We feel that the stratum-averaging is a reasonable
interim solution.

Regional Upscaling
Machine learning models were used to upscale the field data into
South Kona regional maps. For each of the six biomass (total,
grazer, browser, and scraper) and biodiversity (richness, Shannon
diversity) values computed from transects, we built a RFML
regression model trained with data collected from the 117 field
sites matched with data from the full maps of the input variables
that went into the final stratification process defined above.

To build a training dataset, we collected input map data
from all 2 m × 2 m pixels falling within the mapped transect
survey area of each field site and treated each of these pixels as
an independent observation for the purpose of model training.
All pixel observations for each field site were also assigned the
transect-derived values of the response variables (fish biomass
and diversity) from that field site. After discarding pixels with
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missing or invalid data in any of the input layers, this resulted
in a dataset of 14,896 observations across the 117 field sites
visited in the field (Supplementary Figure 3). A RFML model
training requires specification of a few configuration parameters,
and these parameters can affect the overall fit of the model.
Thus, for each response variable the optimal configuration
settings were found by fitting the model using a five-fold cross-
validation approach across all combinations of the following grid
of parameters: the number of regression trees in the RFML model
(possibilities were 50, 75, 100, 250), the maximum branching
depth (2 or 3 deep), and the minimum number of samples
needed to split a node within each tree (2, 5, 10, or 20). The
combination that gave the best fit, determined by minimal
mean squared error using a cross-validation procedure was
considered optimal.

The next step was to apply fitted RFML models to the input
maps to derive estimates of fish biomass and biodiversity in each
pixel in the input maps. The regional maps were made using
a model averaging approach to further reduce the influence of
high values measured at individual field sites. With this approach,
the training data were grouped by field site and split into 10
equally sized parts. For each of the 10 parts, a model was fit
with the previously determined optimal parameter settings using
data from the other nine parts of the training data. Maps were
produced by applying each of the 10 models to the full South
Kona region input map pixel values, and the final output pixel
value was taken as the average of these 10 predicted values. This
10-part process was performed for each of the six biomass and
biodiversity output values.

Rarefaction Analysis to Minimize
Number of Field Transects
After completing the analysis of the field transects and upscaling
the results to region-wide maps, we assessed the degree to which
the results could be obtained from fewer field sites. We assessed
the effects of reducing the sampling sites on both point estimates
of region-wide averages computed directly on the field site
transect values and on the upscaled maps created using models
built with the field sites used as training data. In both cases, we
iteratively removed one site from each stratum with the minimal
number of transects per stratum being one. The reduction was
repeated with up to 18 transects removed for each iteration until
each stratum had only one site remaining. This resulted in nine
iterations with 99, 82, 65, 50, 38, 29, 24, 20, and 18 field sites used
in total, and the statistics from each iteration were quantitatively
compared to our nominal 117-site sampling approach.

To assess the effect of this reduction scheme on locational
estimates of region-wide averages, we used a bootstrap approach,
where at each iteration, the required number of field transects
was selected at random with replacement from the full number
of available transects for the given stratum. This simulates a
full new field survey performed under the same design and was
carried out for 30 permutations in each iteration, and the region-
wide estimate of mean was recomputed for each permutation. An
estimate of the standard error in the overall regional mean could
be achieved using the standard deviation of the 30 bootstrap

means for the given iteration, and a coefficient of variation (CV)
was computed by dividing the estimated standard error by the
mean of the permutation means across all 30 permutations. In
this way, we could compute the increase in uncertainty as we
reduce the overall sample size.

Because of the large computational requirements needed for
the RFML models, the bootstrap approach was done with 10
permutations rather than 30 for assessing the effect of reduced
sample sizes on upscaled map outputs. Here, the upscaling
process, including full model training, was run to the point of
map output creation for each of the 10 bootstrap permutations.
Then, across the 10 permutations for each variable and iteration,
we computed CV for each individual map pixel and for the
regional average. This allowed us to examine the effects of site
density reduction on map quality.

RESULTS

Regional Stratification
For the South Kona study region, the initial gap-statistical
analysis (step-1a of Figure 2) using the full suite of input variables
(Supplementary Table 1) suggested up to 38 strata or benthic
classes were needed to define the environmental and habitat
conditions of all reefs (Supplementary Figure 4). However, the
close relatedness of many of these strata suggested that several
could be combined (Supplementary Figure 5).

Random Forest Machine Learning analysis of the
environmental variables (Supplementary Table 1) indicated
that a subset of these variables strongly predicted the location
of two core habitat variables: live coral cover and fine-scale
reef rugosity (Figure 3). Cross-validation estimates of R2 for
the RFML models were 0.82 and 0.41 for live coral cover and
fine-scale reef rugosity, respectively. UTM Northing (equivalent
to latitude), macroalgal cover and water depth were the principal
determinants of live coral cover throughout the South Kona
District. Fine-scale reef rugosity was determined primarily
by UTM Northing, depth and reef curvature. Other variables
contributed less than 20% to overall model performance and
were removed from subsequent analyses.

Successive iteration through analysis steps 1 and 2 (Figure 2)
resulted in a dataset consisting of the following final stratification
variables: UTM northing, water depth, reef curvature, fine-scale
reef rugosity, live coral cover, and macroalgal cover. For the
final stratification, we increased the spatial resolution of selected
input maps to 2 m, the native resolution of the GAO input
maps, to provide finer granularity in the resulting classification
map. The number of remaining strata after this final iteration
was 18 (Figure 4), or less than half of the 38 original strata
(Supplementary Figure 5).

Within the final 18 strata, the number of field sites needed to
meet our goal of a 95% confidence interval ranging only ±10%
of each key variable mean was 117 and 35 if regional upscaling
is based on live coral cover or fine-scale rugosity, respectively.
Greater spatial variability in live coral cover generated the
more stringent requirement of 117 field sites compared to fine-
scale rugosity.
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FIGURE 3 | Relative importance of regional input variables (see
Supplementary Table 1) on mapped (A) live coral cover and (B) fine-scale
rugosity.

FIGURE 4 | Dendrogram of the between-strata Euclidean distance within the
reduced input set yielding 18 strata in the last iteration of Step 1 (Figure 2).

The 117 field sites were optimally apportioned based on
stratified-random design using ci defined above, which considers
variation in live coral cover within each of the 18 strata

(Table 1). For example, stratum 10, which covers a moderate
level of reef area, but relatively little geospatial variation in live
coral cover (SD = 0.04), required just four sampling transects
randomly located anywhere within the bounds of the stratum.
In contrast, stratum 7 covers more area and harbors high
variation in live coral cover (SD = 0.09), thereby requiring
nine sampling transects to capture sufficient variation in fish
habitat (Table 1).

Investigation of whether a reduction in the number of strata
was possible without reducing efficiency revealed a sharp increase
in the number of sampling sites needed to meet uncertainty
goals with anything less than 18 strata (Figure 5). Reducing
all the way down to just one stratum increased the total
number of transects needed for live coral-based sampling by
nearly 50%. Notably, using one stratum is equivalent to simple
random sampling along the entire South Kona District coast,
and 379 samples for live coral cover and 106 samples for fine-
scale rugosity would have been needed to meet the uncertainty
goals for these habitat variables. The associated increase in
geostatistical sampling efficiency with 18 strata was therefore 72%
(to n = 117) and 67% (to n = 35), respectively, for live coral-
and rugosity-based sampling. The final stratification map of the
18 distinct reef classes is shown in Figure 6. Inspection of these
maps suggested three broad regional-scale groups of reef habitat
(Figures 6a,b vs. Figures 6c,d vs. Figures 6f–h), which are driven
by a combination of latitude (climate), substrate age and thus
reef accretion stage, and similar large-scale factors. Within these
groupings, local-scale variability in live coral and algal cover,
depth, and rugosity sort habitat distributions within and among
strata (Figure 3).

TABLE 1 | Minimum number of field sampling transects required for each of the
18 mapping reef strata based on the stratum size and within-stratum standard
deviation of live coral cover.

Stratum Total Area
(ha)

Mean Live
Coral
Cover

SD Live Coral
Cover

Number of
Transects
Required

1 34.1 0.25 0.08 7

2 28.1 0.03 0.05 4

3 39.6 0.02 0.05 5

4 52.3 0.11 0.08 10

5 41.3 0.12 0.07 8

6 27.9 0.11 0.08 6

7 39.0 0.17 0.09 9

8 48.0 0.09 0.08 9

9 47.4 0.08 0.06 7

10 32.9 0.03 0.04 4

11 24.6 0.44 0.10 6

12 37.2 0.03 0.05 5

13 27.4 0.33 0.09 6

14 50.0 0.17 0.08 10

15 28.6 0.15 0.10 7

16 18.5 0.03 0.05 2

17 14.2 0.20 0.15 5

18 23.3 0.47 0.13 7
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FIGURE 5 | Sensitivity of the number of field-based transects (samples)
needed to meet regional uncertainty criteria as the number of strata are
increased from 1 to 18 based on regional variation in (A) live coral cover and
(B) fine-scale reef rugosity. Tick marks indicate the within-stratum standard
deviation or sampling error predicted when treating South Kona as one
stratum (k = 1) to the 18 final strata based on the entire analysis. The red line
indicates the total number of field-based transects (samples) required
regionally at different levels of stratification (1–18), resulting in (A) 117
transects based on live coral and (B) 35 transects based on fine-scale reef
rugosity.

Field Results
Field surveys at the 117 sites in the 18 mapped reef strata yielded a
total of 138 fish species throughout the South Kona study region.
Average species richness was 35 species per site and the mean
Shannon index was 2.15 per site (Supplementary Figure 6). Both
distributions were skewed to the right.

Total fish biomass averaged 1295 kg ha−1 in the South Kona
region. Grazers were the dominant trophic group averaging
421 kg ha−1, followed by browsers at 247 kg ha−1, and scrapers
at 174 kg ha−1. These averages were determined as a weighted
average of the stratum-level means, where weighting was based
on stratum area. Stratum 4 (0.11 ± 0.08 live coral cover) had the
highest biomass as well as the highest species richness, whereas
stratum 5 (0.12 ± 0.07 live coral cover) had the highest diversity

and equal species richness to stratum 4 (Table 2). Stratum 2
(0.03 ± 0.05 live coral cover) had the lowest biomass, diversity,
and species richness (Table 2). The top three fish in terms of
average biomass were N. lituratus, Scarus rubroviolaceus, and
Acanthurus olivaceus.

Upscaled Fish Biomass and Biodiversity
Maps
The optimal parameter settings and model fit quality varied
considerably between response variables, with R2 ranging from
0.32 to 0.38 for the biomass outputs and 0.54 to 0.58 for the
biodiversity outputs (Supplementary Table 2). The resulting
upscaled biomass maps each covered a total of 706 ha of South
Kona reef to 16 m water depth (Supplementary Figures 7–10).
A zoomed in example from Honomalino Bay is shown to
demonstrate spatial detail (Figure 7). These maps represent
our best estimates of spatial patterns of biomass abundance
for all fish species as well as for three key fish trophic
groups: browsers, scrapers, and grazers, for the entire South
Kona reef ecosystem (Supplementary Figures 7–10). Estimated
biomass of the different trophic groups was 541,400 kg
for all species, 106,052 kg for browsers, 184,399 kg for
grazers, and 66,293 kg for scrapers. Species richness per
site in mapped data peaked at 30–35 species per stratum,
and the two maps of fish species diversity showed strong
inter-map agreement, with the map of total species count
displaying greater variability between low and medium to
high values (zoom example: Figure 8, all data: Supplementary
Figures 11, 12).

Distributions of mapped fish biomass varied by fish functional
group and depth (Figure 9). For all fish species, the distribution
of high and low biomass values was similar in shape between
depth classes of 0–5 m, 5–10 m, and 10–16 m, with all depths
showing higher numbers of low biomass species (skew to the left).
However, for the scraper fish group, higher values of biomass
were most abundant in deeper water (10–16 m). For species
richness and Shannon index, there was skew to the right, with
a high number of sites showing relatively high diversity. This
pattern occurred across all depth classes.

Site Rarefaction Analysis
We assessed the sensitivity of the stratified-random sampling
approach to decreasing densities of field survey sites. The data
from the 117 field sites were reduced by one site per stratum until
a minimum of one site was retained in each stratum (n = 18
total sites). The coefficient of variation (CV) was calculated
at each stage of rarefaction to determine different levels of
uncertainty based on field site density (Figure 10). Because
different monitoring programs can accommodate different levels
of uncertainty, we present the trends without interpretation of the
minimum number of field sites required. However, we did find
that, in the South Kona region, it takes far fewer sites to monitor
fish diversity (richness, Shannon index) than it does to monitor
fish biomass. For example, just 45 sites are required to monitor
species richness along the 60.5 km reef at an uncertainty level of
5% CV (Figure 10a). In contrast, 80–90 sites are required to meet
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FIGURE 6 | Final 18-stratum map of coral reef conditions for the coast of South Kona District. The far left panel indicates the location of each sub-regional zoom
image (a–h) shown in the remaining panels. Each color indicates the location of each ecological stratum in the reef system. Background imagery retrieved from
Google, ©2021 Maxar Technologies.
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TABLE 2 | Mean field-based results by map stratum of water depth and species richness (S), Shannon diversity (H), and biomass (kg ha−1) of all fish, as well as biomass
for browser, grazer, and scraper trophic groups.

Stratum Sites (n) Depth (m) S H All Fish Biomass Browser Biomass Grazer Biomass Scraper Biomass

1 7 8 36 2.12 867 185 251 62

2 4 6 18 1.12 480 44 289 75

3 5 6 29 1.48 907 191 167 87

4 10 11 43 2.32 1970 316 447 410

5 8 10 43 2.53 1515 300 355 167

6 6 6 41 2.33 1953 335 882 230

7 9 11 34 2.04 989 223 294 132

8 9 7 36 2.19 1421 331 452 277

9 7 7 33 2.28 1829 323 714 308

10 9 10 31 2.18 590 97 186 96

11 6 9 36 2.38 1170 122 491 165

12 5 11 30 2.26 1063 120 416 106

13 6 9 38 2.41 1220 248 348 61

14 10 6 38 2.31 1473 368 463 123

15 7 11 42 2.43 1928 367 690 217

16 2 6 20 0.86 729 240 316 44

17 5 10 38 1.96 1421 311 462 288

18 7 4 28 1.88 852 157 320 63

FIGURE 7 | Example fish biomass maps of Honomalino Bay for (a) all fish, and for fish classified as: (b) scrapers, (c) browsers, and (d) grazers. Distributional pattern
differences can be seen between the different trophic groups, especially across depth gradients. Full maps in Supplementary Figures 7–10. Background imagery
retrieved from Google, ©2021 Maxar Technologies.

a 5% CV threshold for all fish biomass as well as fish biomass
for each of our trophic groups (Figure 10b). The difference in
site requirements for diversity vs. biomass is due to the relatively

well-mixed communities of species found within the study depth
range of 1–16 m. In contrast, biomass is much more variable
within and across habitats.
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FIGURE 8 | Example of upscaled biodiversity maps of Honomalino Bay using (a) species richness and (b) Shannon diversity index. Full maps in Supplementary
Figures 11, 12. Background imagery retrieved from Google, ©2021 Maxar Technologies.

We also considered the effects of decreasing field site density
on the average regional-scale diversity and biomass of the South
Kona reef ecosystem. This calculation was made using a bootstrap
approach by resampling the field transects within each stratum
10 times at several levels of site density reduction from 117 to 18
sites and running the regional upscaling procedure for each of
the 10 permutations. The uncertainty for a given map value for
each of the biomass and diversity indicators was then calculated
using the coefficient of variation (CV) across the values obtained

from the 10 permutations. This was first done for the mean pixel
value from each map. When the number of field sites was reduced
by one site per stratum, map-level pixel uncertainties increased
for each of the biomass and diversity indicators (Supplementary
Figure 13). Similar to the field-site results (Figure 10), diversity
indicators were more stable at an uncertainty of about 5% as field-
site density decreased from 117 to 40 sites. Thereafter, diversity
indicators became unstable, with increasing uncertainty peaking
at 13% with only 18 field sites incorporated into the maps.
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FIGURE 9 | Distribution of mapped biomass of: (A) All fish, and for fish classified as (B) scrapers, (C) browsers, and (D) grazers, as well as two measures of
biodiversity: (E) species richness and (F) Shannon index, as distributed in benthic depths 0–5 m, 5–10 m, and 10–16 m across the South Kona District.

Average regional-scale fish biomass estimates proved to be far
more sensitive to the number of field sites used for upscaling
(Supplementary Figure 13). Biomass of all fish averaged 10%
uncertainty as field site density was decreased from 117 to 50
sites. Thereafter, regional-level uncertainties for all fish combined
increased to 15% and eventually to 30% at a field sampling
density of just 18 sites, or one site per mapping stratum.
However, grazer and especially scraper biomass was much more
sensitive to decreasing sites, with the latter peaking at 30–50%
uncertainty when fewer than 30 field sites were used in the
regional mapping.

The process of increasing uncertainty with decreasing field-
site density resulted in a loss of map fidelity. In an example
from Honomalino Bay, Supplementary Figure 14 was generated
using all 117 field sites, and each panel thereafter shows the same
map after reducing the number of sites per regional stratum by
one site to a minimum of 18 sites region-wide. Supplementary
Figure 14J was created with the minimum 18 sites, and shows
the erroneous and dichotomous nature of the resulting all-fish
biomass map, which depicts strong differences between shallow
and deep water habitats.

Finally, we analyzed the sensitivity of individual biomass
pixels in the maps to decreasing field-based sampling and
calibration. For each pixel, we determined whether the CV

became unstable using an iterative approach that tracked the
mean and standard deviation of every pixel CV value with
progressively fewer and fewer regional-scale field site densities
(n = 117 to 18). When the CV value of a pixel increased more
than 1.25 standard deviations from its previous value, then
the number of samples before this occurrence was recorded
and the analysis was halted for that pixel. By applying this to
all pixels in the South Kona region, we mapped the spatial
pattern of uncertainty in the output maps caused by reduced
field site data collections. An example of this process is shown
in Figure 11 for Honomalino and Miloli‘i Bays, depicting the
pixel-by-pixel minimum field site density required for South
Kona to prevent instability in the mapped fish biomass results.
Brighter pixels indicate areas of reef in which greater field-
site sample sizes are needed in order to remain statistically
robust for regional monitoring. Areas of low field-sample needs
(purple-blue) are dominated by stretches of open sand; areas of
moderate field-sample needs (blue-green) are mixed sand and
rock surfaces; and areas of high field-sample needs (yellow-red)
are coral-rock mixed benthic surfaces. A complete coverage of
the South Kona reef ecosystem for all-fish biomass is provided
in Supplementary Figure 15, which highlights the large stretches
of reef that become statistically unstable for monitoring with too
few field sites.
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FIGURE 10 | Reduction in bootstrap coefficient of variation (CV) while
increasing the number field sites used in the stratum-level mean estimates of
(a) fish species diversity and (b) fish biomass values under the
stratified-random sampling scheme. These trends indicate our ability to
capture the true mean value of each of the 18 strata using field
measurements.

DISCUSSION

We developed, implemented, and assessed a method for high-
resolution mapping of fish diversity and biomass using a
combination of new airborne remote sensing, freely available
land-based maps, and in-situ field surveys. Across more than
60 km of the South Kona reef ecosystem of Hawai‘i Island,
the approach yielded spatially explicit estimates of fish diversity
and biomass, along with comprehensively analyzed uncertainties
based on field sampling density. The habitat mapping component
of the approach relied on new operational benthic products
derived from the GAO (Asner et al., 2020b, 2021). In
combination, these and complementary coastal land and climate
maps facilitated a large-scale, high-resolution reef stratification to
direct field surveys in an ecologically robust geospatial pattern.
Whereas traditional fish survey methods have used stratified
random sampling to determine survey locations, most have
not incorporated detailed habitat variability (see review by
Mellin et al., 2009). The method developed and tested here
allows an optimization of both the number and distribution
of field surveys to provide a more accurate representation of
fish populations.

Any socio-ecological stratification process involves trade-offs
between mapped environmental detail, derivation of input maps
to meet monitoring goals, and the time and cost of field sampling.

In our case, we sought to randomly sample reef fish diversity
and biomass in a manner that is most robust in scaling up to
spatially explicit maps and regional total stock estimates. To do
so, we focused on factors known to affect fish composition and
stocks, thereby folding in numerous potential benthic, terrestrial
and human factors. Out of the initial set of potential factors, our
analyses suggested that live coral cover, macroalgal cover, water
depth, fine-scale rugosity, and latitude (as UTM northing) were
most important in defining habitat. In South Kona, latitude is
a proxy for the north-south precipitation gradient that occurs
along the coast (Giambelluca et al., 2013). Based on these reduced
inputs, a set of 18 regional reef strata emerged from classification
to apply in subsequent random, field-based sampling. Critically,
the number of field sites per stratum was based on the variability
of the two primary mapped drivers of fish habitat: live coral
cover and fine-scale rugosity. This is important because it
took into account habitat variability, rather than simply the
average conditions of habitat in each reef class. This, in turn,
facilitated quantitative upscaling of the field data based on actual
habitat variability.

The resulting regional maps of fish diversity and biomass
yielded numerous findings. First, fish diversity, both in terms of
species richness and Shannon index, is spatially more uniform
than fish biomass throughout the South Kona reef ecosystem.
These results are consistent with recent findings from Hā’ena,
Kaua’i, where overall species richness, diversity, and assemblage
composition did not significantly differ inside and outside of a
Community-Based Subsistence Fishing Area (Weible et al., 2021).
Greater variability in fish biomass relative to diversity suggests
that biomass is more sensitive to habitat factors regulating the
amount of fish per unit reef area. However, biomass variability
could also be due to spatial variability in fishing pressure, which
is very high in some areas of South Kona (Foo et al., 2020).
Additionally, the field-based richness surveys yielded an average
of 35 species per site, whereas upscaled, map-based richness
peaked at 30–35 species per stratum and was often much lower.
The map-based results take into account habitat variability and
its relationship to fish diversity as calibrated via the field study,
strongly suggesting that not all habitats support similar levels of
fish diversity in South Kona, a finding that could be missed using
field surveys alone.

A second set of findings indicated that total fish biomass was
often lowest in embayments, owing to larger patches of open sand
habitat that contain fewer fish as well as the possible effects of
increased fishing accessibility in bays (Friedlander et al., 2018).
Field data indicated an average biomass of all fish of 1295 kg
ha−1, but upscaled and mapped-based biomass averaged about
800 kg ha−1 (Figure 9A). Similar to the biodiversity results,
the lower map-based biomass compared to field data was due
to the relative sparseness of suitable fish habitat throughout
the South Kona reef ecosystem, relative to habitats represented
in the field-based calibration sites. Notably, regional biomass
estimates of scrapers, grazers, and browsers averaged 60, 200,
and 100 kg ha−1, respectively (Figures 9B–D), compared to field
values of 174, 421, and 247 kg ha−1, again highlighting the fact
that habitat variability can cause over-estimates of biomass using
field sites alone.
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FIGURE 11 | Loss in mapped spatial structure of (a) total fish biomass, (b) scrapers, (c) browsers, and (d) grazers that results from a reduction in the number of field
sites used in the upscaling process. Background imagery retrieved from Google, ©2021 Maxar Technologies.

We also assessed the sensitivity of our method to a reduction
in the total number of field sites deployed to calculate the
minimum number of transects that could have been used to
achieve similar results. We first undertook a stringent 117-site
sampling of the South Kona coast to generate diversity and
biomass estimates at a 95% confidence level. Doing so provided
the strong statistical power for establishing the spatial pattern,
which greatly affects our ability to detect future change. To
increase monitoring efficiency, we then artificially reduced the
number of field sites and reanalyzed the results at different reef
aggregation levels. First, we found that reducing the number of
sites had a moderate effect on estimates of fish species richness
and Shannon diversity (Figure 10a). Specifically, reductions from
117 sites to 18 sites (or one site per mapped habitat) only
increased the coefficient of variation (CV) in mean stratum-
weighted diversity estimates by 6%. This again points to the
relative evenness of species distributions throughout the South
Kona reef ecosystem. In stark contrast, reduction of field sample
density from 117 to 18 sites resulted in a 20–40% increase in total
fish biomass CV, meaning that 18 surveys would not allow a trend
in fish populations to be detected accurately over time. South
Kona requires no less than 40 sites to maintain an uncertainty of
10% CV for total fish biomass monitoring. However, this finding
is also strongly dependent upon fish trophic group. For the deeper
and more sparsely distributed scraper fish group, 70 sites are

needed just to meet the 10% CV threshold (Figure 10b). The
methods presented here can be adapted to the specific group of
fish being monitored.

At the regional level, decreasing numbers of field sampling
sites resulted in average uncertainties of up to 30% for total
fish biomass and 50% for scraper biomass (Supplementary
Figure 13). When viewed in mapped format, these increasing
uncertainties are non-uniform, with hotspots of error
emerging in complex geospatial patterns associated with
benthic habitat variability (Figure 11 and Supplementary
Figure 15). These findings strongly suggest that the negative
impacts of undersampling should be considered on a
ecologically explicit basis.

This first effort focused on 60 km of coastline along
Hawai‘i Island, with the advantage of good boat and diver
access combined with high-resolution airborne hyperspectral and
regional ancillary map data. While the South Kona region is
ecologically variable, with more than 10 embayments, numerous
headlands, and long stretches of variable reef morphology, even
this region does not represent the extreme reef habitat variability
found across the Main Hawaiian Islands, which is mediated by
island age, geologic substrate, subsidence, physical oceanographic
conditions and other factors. Scaling up our approach to the main
Hawaiian Islands is readily possible given that we have the same
benthic mapping data for the entire archipelago, yet doing so
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may yield an untenable number of reef strata for field sampling
unless more work is done to further assess relationships between
habitat complexity, benthic composition, and fish communities
at the scale of the entire archipelago. This presents a challenge
that can be addressed via iterative map-based analyses and
field-based surveys until the broader reef-fish relationships are
better quantified. In parallel to the Hawai‘i roll-out of this
approach, there are other regions of the world where fish survey
data exist in sufficient quality and geospatial density to further
test the upscaling approach presented here. This has already
been undertaken using multi-spectral satellite data on benthic
habitat composition and bathymetry (Purkis et al., 2008; Knudby
et al., 2011). Adding new airborne and forthcoming spaceborne
imaging spectrometer data could increase the fidelity of these
efforts through more detailed mapping of coral and non-coral
dominated habitats.

We showed that high-resolution benthic mapping can be
combined with stratified-random field sampling to generate
spatially explicit estimates of fish diversity and biomass over
large ecologically complex reef systems. The approach presented
here can be used for any population, community, or ecosystem-
level study that relies on reef habitat as defined by the types
of benthic, terrestrial, and human factors mapped here, and
could be considered when designing and implementing new
marine monitoring programs or increasing the efficiency of
existing programs. Other upscaling methods could be used,
and there are many available, but we chose to proceed with
a common type of machine learning (RFML) due to its
flexibility, lack of assumptions regarding input data, and the
available tools for avoiding overfitting. Similarly, other remote
sensing technology, such as high-resolution laser scanning and
radar for additional information on benthic and sea surface
structure, could yield additional inputs to the models to
further delineate habitats. Moreover, additional spatially explicit
information related to fisheries, such as catch or gear use,
could also be incorporated into the approach if the data
are of sufficient resolution and quality. Future expansions

of the methodology could also incorporate temporal shifts
in benthic composition, such as live coral cover change,
to direct continuously evolving monitoring for stratified-
random sampling. Doing so reduces field-based labor and
costs while increasing the geostatistical power and ecological
representativeness of field work.
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