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Numerical wave models have been developed for the wave forecast in last two decades;
however, it faces challenges in terms of the requirement of large computing resources
and improvement of accuracy. Based on a convolutional long short-term memory
(ConvLSTM) algorithm, this paper establishes a two-dimensional (2D) significant wave
height (SWH) prediction model for the South and East China Seas trained by WaveWatch
III (WW3) reanalysis data. We conduct 24-h predictions under normal and extreme
conditions, respectively. Under the normal wave condition, for 6-, 12-, and 24-h
forecasting, their correlation coefficients are 0.98, 0.93, and 0.83, and the mean
absolute percentage errors are 15, 29, and 61%. Under the extreme condition (typhoon),
for 6 and 12 h, their correlation coefficients are 0.98 and 0.94, and the mean absolute
percentage errors are 19 and 40%, which is better than the model trained by all the
data. It is concluded that the ConvLSTM can be applied to the 2D wave forecast with
high accuracy and efficiency.

Keywords: ConvLSTM, wave forecasting, significant wave height, typhoon, deep learning

INTRODUCTION

Ocean surface gravity waves (hereinafter, waves) are strongly non-linear and significantly affect
ocean engineering activities, maritime operations, and transportation. Traditional wave forecasting
models have been continuously developed and improved. Currently, the most widely used models
are the WaveWatch III (WW3) by the US National Centers for Environmental Prediction, the
Simulating Waves Nearshore (SWAN) by the Netherlands Delft University, and so on. The
traditional numerical wave models are based on the wave action balance equation and adopt
gridded discretization instead of differential equations. This inevitably introduces numerical
errors and faces problems such as non-convergence and instability in numerical computations.
Additionally, numerical models are highly sensitive to the simulated area terrain (especially
in shallow nearshore waters) and computational domain boundaries. They also require input
information of many other variables, such as wind data (Niu and Feng, 2021). Uncertainties of
these external variables lead to additional model errors, which further affect the model’s accuracy.
Numerical models also consume large amounts of computational resources and need to run for
long periods of time, which is often impractical in emergency situations and thus is a significant
bottleneck that restricts the development of fast and accurate wave forecasts.

With the rapid development of artificial intelligence (AI), due to its applicability across diverse
fields and the ability to consider non-linearities in complex physical mechanisms, AI techniques
have been widely applied in the field of marine sciences. These range from the automatic detection
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and prediction of mesoscale eddies (Zeng et al., 2015; Xu
et al., 2019), El Niño–Southern Oscillation, Arctic sea ice
density, and sea surface temperature prediction (Aparna et al.,
2018; Kim et al., 2018, 2020; Ham et al., 2019; Zheng et al.,
2020). Wave forecasting has also been attempted through AI
techniques though this is mostly a single-point wave forecasting.
For example, Kaloop et al. (2020) combined wavelets, particle
swarm optimization (PSO), and extreme learning machine
(ELM) to create a joint wavelet-PSO-ELM (WPSO-ELM) model
and found that in the case of lower complexity and fewer
input variables, 36-h wave height forecasts for coastal and in
the offshore areas have higher prediction accuracies. Londhe
and Panchang (2006) used an artificial neural network (ANN)
based on existing wave datasets to predict wave heights at six
geographically separated buoy locations. This article uses ANN
technology to reproduce ocean surface wave observed by buoys
for 24 h. It is found that the method has a good forecast for
the next 6 h, and the correlation between the observation and
forecast for the next 12 h can reach 67%. Emmanouila et al.
(2020) improved the numerical prediction of SWH by using a
Bayesian network (BN).

Recently, the long short-term memory (LSTM) network has
been applied to wave forecasting applications. The LSTM was
proposed by Hochreiter and Schmidhuber (1997), which has
many advantages over other networks. For example, it can
selectively choose to remember or forget long-term information
through a series of gates, which is very useful in the study of
waves that evolve rapidly in space and time. Its usage has seen
application where Lu et al. (2019) combined the LSTM network
and multiple linear regression to establish an M-LSTM hybrid
forecast model that limits a single predictor, thereby optimizing
wave height forecasts. Fan et al. (2020), by contrast, coupled
LSTM and SWAN for single-point forecasting and found that this
model has better forecasting performances than models such as
ELM and SVM. Additionally, in their combined SWAN-LSTM
model, forecast accuracy was increased by 65% compared to
using SWAN alone.

From the above literature review, we can see that the
application of AI in ocean wave forecasting is still largely
limited to single-point forecasting. However, a wave field is
two-dimensional (2D), and few AI predictions of 2D wave
fields have been reported. This paper intends to use the
convolutional LSTM (ConvLSTM) algorithm recently proposed
by Shi et al. (2015) to perform AI forecasting of the 2D wave
field, thus adding to the available literature on its efficacy.
ConvLSTM has been successfully applied to 2D precipitation
nowcasting (Shi et al., 2015). It shows good spatiotemporal
correlation and is always better than the fully connected LSTM
(FC-LSTM) network and thus solves the problem of spatial
information loss and improves the accuracy of 2D predictions.
Presently, ConvLSTM has also been applied to human behavior
recognition (Majd and Safabakhsh, 2019), dynamic gesture
recognition (Peng et al., 2020), and stock prediction (Lee and
Kim, 2020). Its application to the short-term prediction of waves
is limited to a study conducted by Choi et al. (2020) that
estimated wave height from raw images provided by buoys.
This paper adds to the literature by conducting the short-term

prediction of the 2D wave field by applying the ConvLSTM
network in the South and East China Seas. The remainder
of this paper is structured as follows: Section “Materials and
Methods” describes the materials and methodology, including the
ConvLSTM network and model evaluation methods, and model
training and verification materials used in this study. Section
“Results” presents the results, mainly discussing the forecast
results under different sea conditions using ConvLSTM, and
Section “Discussion” concludes with the discussion.

MATERIALS AND METHODS

Materials
Significant Wave Height Reanalysis Product
In this study, significant wave height (SWH) data are
obtained from the WW3 third-generation numerical wave
model reanalysis dataset produced by the National Oceanic
Atmospheric Administration (NOAA)1. This reanalysis product
is used to train and validate the ConvLSTM network. Usage
of this product is justified as researchers have extensively
validated the dataset and found that it is in good agreement with
observations (Mondon and Warner, 2009; Zheng and Li, 2015;
Triasdian et al., 2019). The study area is defined as the coastal
waters in the northwestern Pacific Ocean enclosed by 105◦ E to
126◦ E and 4◦ N to 43◦ N. The study period is selected from 2011
to 2019. The temporal resolution of the data is hourly, and the
spatial resolution is 1/2◦ 1/2◦.

Selected Typhoons
Typhoons (those systems that reached a maximum Beaufort wind
force of 12–13, and a central wind speed of 32.7–41.4 m/s) that
entered the study area enclosed by 105◦E to 126◦E and 4◦N
to 43◦N over the period 2011–2019 were selected to generate
a typhoon-induced SWH dataset. Typhoon data were acquired
from the Central Meteorological Observatory2. The dataset
contains a total of 64 typhoons, of which 51 are used in a training
set and the remainder used as test sets (Table 1).

Methodology
Convolutional Long Short-Term Memory Network
The LSTM is a special type of recurrent neural network (RNN).
The basic idea of the LSTM is to control the input and output
of information in the cell by introducing three gates: input,
output, and forget gates. These are used to control the flow
of information between the cells. Respectively, the input gate
determines the value to be updated, the output gate mainly
controls the information transmission to the next cell, and the
forget gate selectively forgets the information in the information
transfer. The LSTM has two states, cell state (ct) and hidden
state (ht), which are related to ct−1 and ht−1 of the previous cell
(Hochreiter and Schmidhuber, 1997). These structural features
enable the LSTM to learn long-term temporal information
and avoid long-term dependence problems. Since there are

1https://coastwatch.pfeg.noaa.gov/erddap/griddap/NWW3_Global_Best.html
2http://typhoon.nmc.cn/web.html
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TABLE 1 | Partitioning of typhoons into training and validation sets.

Partitioning Number Typhoons

Training 51 Songda (2011), Muifa (2011), Nanmadol (2011),
Nesat (2011), Nalgae (2011), Vicente (2012),
Saola (2012), Damrey (2012), Haikui (2012),
Kai-tak (2012), Tembin (2012), Bolaven (2012),
Jelawat (2012), Son-tinh (2012), Bopha (2012),
Soulik (2013), Utor (2013), Trami (2013), Usagi
(2013), Wutip (2013), Fitow (2013), Nari (2013),
Krosa (2013), Haiyan (2013), Neoguri (2014),
Rammasun (2014), Matmo (2014), Kalmaegi
(2014), Noul (2015), Chan-hom (2015), Linfa
(2015), Soudelor (2015), Goni (2015), Dujuan
(2015), Mujigae (2015), Nepartak (2016), Nida
(2016), Meranti (2016), Malakas (2016), Megi
(2016), Chaba (2016), Sarika (2016), Haima
(2016), Nock-ten (2016), Nesat (2017), Hato
(2017), Pakhar (2017), Talim (2017), Doksuri
(2017), Khanun (2017), Damrey (2017)

Test 13 Tembin (2017), Prapiroon (2018), Soulik (2018),
Mangkhut (2018), Trami (2018), Kong-rey
(2018), Lekima (2019), Lingling (2019), Tapah
(2019), Mitag (2019), Nakri (2019), Kammuri
(2019), Phanfone (2019)

many ways to propagate gradients in the LSTM, vanishing
and exploding gradient problems can be better avoided. The
following are the information state transfer formulae in one cell
of the LSTM:

it = σ(Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (1)

ft = σ(Wxf xt +Whf ht−1 +Wcf ◦ ct−1 + bf ) (2)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt +Whcht−1 + bc) (3)

ot = σ(Wxoxt +Whoht−1 +Wco ◦ ct + bo) (4)

ht = ot ◦ tanh(ct) (5)

where it represents the input gate, ft represents the forget gate, ot
represents the output gate, ct represents the state of the current
moment, ct−1 represents the state of the previous moment, ht
represents the final output, W represents the weight coefficient
for a given gate, b represents the corresponding bias coefficient
for a given gate, ◦ is the Hadamard product, and σ is the
sigmoid function.

Presently, the LSTM is widely used in time series forecasting.
However, when the LSTM is applied to 2D data, if it is expanded
into full connected layer processing, it not only consumes
substantial computing resources but also it is difficult to capture
the spatial correlation and spatial characteristics of the 2D space
field (Shi et al., 2015). To overcome these deficiencies, Shi
et al. (2015) replaced the FC-LSTM layers with a convolutional
structure, leading to the development of the ConvLSTM network.
The primary difference between the LSTM and the ConvLSTM

is the replacement of matrix multiplication by a convolutional
operation:

it = σ(Wxi ∗ Xt +Whi ∗ ht−1 +Wci ◦ ct−1 + bi) (6)

ft = σ(Wxf ∗ Xt +Whj ∗ ht−1 +Wcf ◦ ct−1 + bf ) (7)

ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ Xt +Whc ∗ ht−1 + bc) (8)

ot = σ(Wxo ∗ Xt +Who ∗ ht−1 +Wco ◦ ct + bo) (9)

ht = ot ◦ tanh(ct) (10)

where ∗ is convolution operator.
Convolution operation can extract the spatial characteristics

of the data, while the LSTM can extract the temporal variability
of the data. Therefore, the ConvLSTM has the ability to well
depict both a variable’s spatiotemporal characteristics and is
hence highly suitable for regional ocean wave predictions.

Architecture of the ConvLSTM Model for Wave
Forecasts
In this paper, a regional wave prediction model is established
based on the ConvLSTM network (Figure 1). The SWH data
of three continuous time steps are taken as the input data. The
SWH data at a certain time in the future are output through
three ConvLSTM layers and finally through a convolution layer
for a total of four layers. For example, SWH at times 13:00, 14:00,
and 15:00 on January 1, 2018 is given (input) to the model and
SWH at time 16:00 is predicted (output). To improve the model’s
ability to capture non-linearities, the recursive linear unit (ReLU)
is employed as the activation function in each layer, with the
hard sigmoid used as the activation function in the loop step. The
convolutional kernels of each of four layers are set to 5 ∗ 5, 3 ∗ 3,
3 ∗ 3, and 5 ∗ 5, respectively, to capture different characteristics
at different spatial scales. The root-mean-square error (RMSE) is
used as the loss function during model training, the number of
epochs is set to 100, and all other remaining parameters remain
constant throughout all training exercises.

Data Pre-processing
To improve the training dataset quality, the WW3 SWH
reanalysis product is linearly interpolated from a resolution
of 1/2◦ ∗ 1/2◦ to 1/4◦ ∗ 1/4◦. The input data are wave field
data of three consecutive time steps. According to the different
prediction time steps (e.g., 1, 2, and 3 h), the corresponding
training dataset and verification set are generated using the data
from 2011 to 2018, in which the data volume ratio of training
set and verification set is 4:1. For predictions of SWH, the data
for the year of 2019 are the test set, which are excluded from
the model training to ensure relative independence between the
training and test datasets.
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FIGURE 1 | Schematic of the SWH prediction model based on the ConvLSTM.

Evaluation Functions
In order to better evaluate the accuracy of model forecasts,
this article defines the following evaluation functions. Difference
error (DR), mean absolute error (MAE), RMSE, spatially
averaged RMSE (SARMSE), and spatially averaged mean absolute
percentage error (SAMAPE) are used to evaluate the deviation
between predicted values and WW3 reanalysis data. In addition,
the spatially averaged correlation coefficient (SACC) is used to
measure the linear correlation between the predicted values and
WW3 values. The expressions of the above variables are as
follows:

DR(i, j) = hp(i, j)− hm(i, j) (11)

MAE =
1
I · J

I∑
i=1

J∑
j=1

∣∣hp(i, j)− hm(i, j)
∣∣ (12)

RMSE =

√√√√√ 1
I · J

I∑
i=1

J∑
j=1

(hp(i, j)− hm(i, j))2 (13)

SARMSE =
1
K

K∑
k=1

√√√√√ 1
I · J

I∑
i=1

J∑
j=1

(hp(i, j, k)− hm(i, j, k))2

(14)

SAMAPE =
1
n

n∑
k=1

1
I · J

I∑
i=1

J∑
j=1

∣∣hp(i, j, k)− hm(i, j, k)
∣∣

hm(i, j, k)
× 100%

(15)

SACC =
1
n
∑n

k=1(hp(i, j, k)− hp(i, j, k))(hm(i, j, k)− hm(i, j, k))√
1
n
∑n

k=1(hp(i, j, k)− hp(i, j, k))2√
1
n
∑n

k=1(hm(i, j, k)− hm(i, j, k))2

(16)

where i and j denote the coordinates of space lattice points, k
denotes cases, n represents the total number of cases, I denotes
the total number of latitudinal lattice points, and J denotes the
total number of meridional lattice points. DR(i, j) is the error
value of a certain point in space, hp(i, j) is the SWH value
predicted based on the ConvLSTM model, and hm(i, j) is the
WW3 SWH value corresponding to a certain point in space.
hp(i, j, k) represents the ConvLSTM model-predicted SWH at
a certain point in the case space, hp(i,j,k) represents the mean
SWH predicted by the ConvLSTM model at a certain point in
the case space, and hm(i, j, k) represents the SWH of WW3
at a certain point in the case space. hm(i,j,k) represents the
mean SWH of WW3.

RESULTS

In this study, the ConvLSTM is applied to wave forecasting in
the northwestern Pacific Ocean under both normal and extreme
conditions. This section is divided into two subsections. In
Section “Wave Forecast Under Normal Conditions,” the test set
results are presented and discussed for the normal condition. In
Section “Wave Forecast Under Extreme Conditions,” the wave
forecast is presented for extreme condition (i.e., typhoon cases).

Wave Forecast Under Normal Conditions
First, we discuss the performance of the ConvLSTM algorithm
in predicting SWH under normal conditions. Figures 2, 3 show
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examples of the ConvLSTM wave forecasts, which all use SWH
data at 5:00, 6:00, and 7:00 (UTC) on October 3, 2019, as
inputs. Figures 2A,D,G correspond to the spatial distribution of
the forecasted SWH after 1, 3, and 6 h. Figures 2B,E,H show
the spatial distribution of the WW3 data that corresponds to
the forecast moments. The errors between the forecast and the
WW3 data are displayed in Figures 2C,F,I. In the 1-h forecast
(Figures 2A,B), the model results show good consistency with
the baseline in terms of both the magnitude of the wave height
and the spatial distribution. In general, the 1-h forecast error
fluctuates within −0.1 to 0.1 m (Figure 2C). Relatively high
values are observed in the open sea and Bohai Sea. Low SWH
covers the rest of the domain. A slightly larger error can be
seen only in the Yellow Sea. We can identify that when forecast
time span is increased to 3 h, a high degree of accuracy is
obtainable in the Yellow and East China Seas (Figures 2D,E).
The large deviations of the forecasts from the WW3 correspond
to the high SWH area in the Bohai Sea (Figures 2G,H), with
a large forecast error also noted in Figure 2I. The 6-h wave
forecasts underestimate the SWH noticeably in the Bohai and
South China Seas, while the forecasts overestimate the SWH
in the Yellow and the East China Seas. Figure 3 shows the
predicted and the WW3 SWH at each sample point in space at
the three moments from Figure 2 from low to high latitudes.
It can be found that the predicted spatial distribution of SWH
at these three moments is basically consistent with that from
the WW3. From Figure 3A, the 1-h forecast has the best
performance, a good consistency is observed between forecast
and the WW3 data with MAE, RMSE, and the correlation at
0.03 m, 0.04 m, and 0.997, respectively. The forecast values
are smaller than the WW3 baseline. A similar pattern can also
be seen in Figure 3B. This deviation causes the larger MAE
and RMSE of the 3-h forecast compared with the 1-h forecast,
and the correlation decreases to 0.991. At the 6-h window,
the least accurate forecast was observed that had a correlation
coefficient of 0.962.

To further illustrate this model’s performance, it is necessary
to discuss the impact of the forecast time span on forecast errors.
The forecast time span is the time scale of wave forecasting.
Figure 4 shows the error variations with the forecast time span
in 2019, which is based on the training and validation sets
for the period from 2011 to 2014. It can be seen that the
SARMSE increases as the forecast time span increases, while
this trend is reversed for SACC. The SARMSE for the forecast
time span of less than 6 h is less than 0.2 m, with the SACC
close to 1.0, the forecast accuracy is still high, so in this case
the spatial characteristics of the wave field from the training
set at the three moments can better respond to the changing
wave field trends of the next 6 h that ensure a relatively high
forecast accuracy. When the forecast time span increases to
12 h, the SARMSE gradually increases to 0.29 m. However,
when the forecast time span exceeds 12 h and increases to 24 h,
the model still keeps the SACC around 0.8, but the SARMSE
is close to 0.6 m. The adaptability of the training samples to
forecast larger time spans decreases, which may be due to a
great number of unknown factors encumbering the training
set from accurately and adequately responding to a rapidly

evolving wave field. The above results indicate that the model still
requires further experiments, testing and evaluation to improve
forecast beyond 12 h. The selection of training samples can
be adjusted to improve the model performance, which will be
discussed in Section “Discussion.” Therefore, it can be concluded
that the larger the forecast time span, the larger SARMSE and
the smaller SACC.

In the preceding paragraph, the SARMSE is presented for the
discussion of the model performance. To better represent the
model errors, the changes of SAMAPE with the forecast time span
are listed in Table 2, which shows that the changes of SAMAPE
are similar to those of the SARMSE. The SAMAPE increases and
the forecast accuracy decreases as the forecast time span increases
(Table 2). When the forecast time span is 3 h, the SAMAPE is
only 11.1%, and when the forecast time span increases to 24 h,
the SAMAPE is 62.8%.

Wave Forecast Under Extreme
Conditions
Typhoons, generated over tropical and subtropical oceans,
produce intense surface wind speed that can force wind waves to
grow to approximately 10 m in height. Along the coast of China,
typhoons mainly affect the South China Sea in May, June, and
October to December, and usually affect southeastern coastlines
and even the coastal areas in the East China Sea from July to
September (Lu and Qian, 2012). Due to the large discrepancy
between normal and extreme (typhoon-induced) wave states, in
conjunction with the low frequency of typhoons in proportion
to the full dataset, the ConvLSTM trained by the data under the
normal conditions may fail to learn all typhoon characteristics
and so typhoon-induced SWH forecasts may be flawed. In this
section, we propose that the ConvLSTM can be trained by the
typhoon-induced wave data for the wave forecast under the
extreme conditions.

To verify this hypothesis, we have defined Model 1 and
Model 2, where Model 1 is trained by the normal-condition
wave data and Model 2 is trained by typhoon-induced waves.
For the experiments, their forecast time spans are held at a 3-
h constant. Figure 5 shows the forecast effect of using Model 1
and Model 2 using snapshots of Typhoons Lekima that occurred
in the East China Sea at 18:00 on August 8, 2019 and Tembin
that occurred in the South China Sea at 21:00 on December
24, 2017. Comparing Figures 5A,D, with Figures 5B,E, we
can find that although Model 1 is able to capture the primary
features of the wave field near the typhoon center, the forecast
results at the center are generally smaller than the WW3, large
SWH generated near the center is not adequately reproduced.
Far from the typhoon center where the system has a reduced
impact on the waves, Model 1 can more adequately capture
SWH patterns than at the typhoon center. By contrast, Model
2 is better able to capture the spatial patterns of SWH during
typhoons as observed from Figures 5B,E. This, however, comes
at a minor cost of slightly overestimating SWH at the typhoon
center. That is, the area around the highest values in Figures 5B,E
are slightly larger than that in Figures 5C,F. There are insufficient
examples of typhoon-induced SWH in the Model 1 dataset due
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FIGURE 2 | Comparison of SWH from the WW3 and the ConvLSTM algorithm prediction. (A,D,G) are 1-, 3-, and 6-h predictions, respectively, based on the SWH
data at 5:00, 6:00, and 7:00 on October 3, 2019. (B,E,H) The WW3 wave fields at the corresponding forecast moments. (C,F,I) are the difference error between the
WW3 data and the predictions.
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FIGURE 3 | Predicted (red line) vs. the WW3 (black line) SWH throughout the study area for (A) 1-, (B) 3-, and (C) 6-h forecast moments.

FIGURE 4 | Variations in the SARMSE (blue) and SACC (red) of each training
result with forecast time span.

to the low frequency and short duration of typhoons and thus
in all training datasets, there were insufficient examples of
typhoon-induced SWH for Model 1 to learn from. Consequently,
typhoon characteristics are difficult to be extracted from Model
1. Generally, both in the center of the typhoon and surrounding
areas, wave forecasts were greatly improved in Model 2 as
compared to Model 1.

To further illustrate the difference in the wave forecasts with
Model 1 and Model 2 under extreme state, changes of the forecast
time span of Model 1 and Model 2 are examined. The error
statistic results (SACC, SARMSE, and SAMAPE) are shown in
Figures 6A–C, respectively. In Figure 6A, SACC of both Model
1 and Model 2 decreases almost linearly with the increase of the
forecast time span, but the SACC of Model 2 is always higher than
that of Model 1. In Figures 6B,C, both SARMSE and SAMAPE
of Model 1 and Model 2 show an almost linear increasing trend.
The SARMSE of Model 2 within 6 h is less than 0.5 m and the
SAMAPE is less than 20%, while the SARMSE from Model 1 is at
about 1 m and the SAMAPE at approximately 40%. When the
forecast time span is 24 h, the SAMAPE of Model 2 becomes
slightly higher than that of Model 1.

In summary, for within the 24-h forecast under typhoon
conditions, Model 2 shows better forecast capability than that
of Model 1. Compared with Model 1, the prediction error

TABLE 2 | Changes of SAMAPE with forecast time span.

Lead time 3 h 6 h 9 h 12 h 15 h 18 h 21 h 24 h

SAMAPE 12.8% 15.0% 16.9% 29.0% 27.4% 29.0% 46.5% 61.4%
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FIGURE 5 | The SWH prediction results of Model 1 and Model 2 under typhoon conditions in the East China Sea and South China Sea. (A–C) SWH of Typhoon
“Lekima” over the East China Sea at 18:00 on August 8, 2019. (D–F) SWH of Typhoon “Tembin” over the South China Sea at 21:00 on December 24, 2017.

FIGURE 6 | Error statistics of Models 1 and 2 relative to the WW3 baseline.
(A) SACC, (B) SARMSE, and (C) SAMAPE.

of Model 2 is smaller and the prediction in the typhoon-
affected area is more accurate. This is because the training
set of Model 1 is mainly from the wave data under normal
conditions including few typhoon-induced wave data. As a result,
Model 1 cannot accurately capture wave characteristics under
typhoon conditions.

DISCUSSION

In this paper, an intelligent forecast model for waves in
the South China Sea and East China Sea based on the
ConvLSTM algorithm is established. The model relies on
wave hindcasts as input to forecast wave spatial distributions.
It can be seen from the results in Section “Results” that
the prediction of the SWH based on the ConvLSTM is
feasible under normal and extreme conditions. The 1–
12-h results are acceptable, with relatively larger errors
in 24-h forecasts.

Figure 7 discusses the model’s performance from the input
data time span and the training sets time span, respectively.
We first discuss the input data time span that represents the
input data quantity. For example, “2 h” (Figure 7A) means
the continuous input of 2-h wave field data for forecasting.
Figure 7A shows the forecast error results against the input
data time span. When the input data time span is 2 h,
the SACC is low (about 0.97), and the SARMSE is large
(about 0.22). Since the data volume of 2-h wave field data
is small, the model reproduces few wave features during the
training process, which leads to low forecast accuracy. As the
input data time span increases, the SACC improves, and the
SARMSE gradually decreases, stabilizes, but increases at 5-h
mark. The reason is that if the amount of input data is too
much, it causes data redundancy, which cannot further improve
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FIGURE 7 | (A) Changes in SARMSE and SACC with the time span of the input data. (B) Changes in SARMSE and SACC with the time span of the training set data.

forecast accuracy. Therefore, it can be seen that 3 h is the
optimal selection for the input data time span in terms of
the forecast accuracy and computing time cost. This selection
of the input data time span guarantees the forecast accuracy,
in addition to saving computational resources and minimizing
the amount of time required for computations to ensure the
forecast timeliness.

Because of the difference in the characteristics of the different
training set time span, it is necessary to find the optimal training
set time span. We set the forecast time span to 6 h and
then select the same number of data samples under different
time spans as training sets. Figure 7B shows the error results
under different training set time spans. Generally, with the
increase in the training set time span, the SARMSE has a
downward trend, and the SACC has an upward trend. When
the training set time span is 1y, the SARMSE is 0.21 m,
and the SACC is about 0.97. As the training set time span
increases, the SARMSE gradually decreases and stabilizes at
about 0.15 m. When the training set time span exceeds 4
years, the model performance has not greatly been improved.
So, this study chooses 4 years as the training set time span.
Therefore, combining the input data and the training set time
span, the SWH prediction based on the ConvLSTM does not
require a very large training set, nor does it require long-term
data as input. So, this method not only improves the forecast
efficiency but also greatly saves computational resources. This
model is trained on the GeForce RTX 2080 Ti, the training
of a single model takes about 2 h, and it only takes less
than 20 s to complete the prediction of the test set in 2019.
Therefore, the SWH prediction based on the ConvLSTM is
feasible and efficient.

The present study only uses SWH data to predict the
SWH; however, the generation of waves is closely related to
the overlying wind field, and SWH can also be predicted
by wind and other variables (Wang et al., 2021), but this
relationship is specific to wind waves as may be caused
by typhoons. Swell contamination of the wave field can
weaken the wind–wave relationship (Niu and Feng, 2021)

and thus it is necessary to introduce other input variables.
Consequently, in future research, additional physical phenomena
such as ocean currents can be added to improve wave
forecasts. Additionally, due to the coarse nature of the
input data, no wave information on any coastline was
available and thus restricts its operational usage for coastal
communities. The usage of a high-resolution wave model
can be used in place of the reanalysis dataset that can
provide coastal wave information and should be pursued in
future research.
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