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Global warming has intensified the rise in sea levels and has caused severe ecological

disasters in shallow coastal waters such as the Northeastern China’s Bohai Sea. The

prediction of the sea surface height anomaly (SSHA) has great significance in the context

of monitoring changes in sea levels. However, the non-linearity of SSHA due to the

occurrence of dynamic physical phenomena poses a challenge to current methods(e.g.,

ROMS, MITgcm) that aim to provide accurate predictions of SSHA. In this study, we have

developed an optimized Simple Recurrent Unit (SRU) deep network for the short- to

medium-term prediction of the SSHA using Archiving Validation and International of

Satellites Oceanographic (AVISO) data. Thanks to the parallel structure of the SRU,

the computational complexity of the deep network can be reduced to a considerable

extent and this makes the short- to medium-term prediction more efficient. To avoid

over-fitting and a vanishing gradient, a skip-connection strategy has been utilized for

model optimization, and this improves significantly the accuracy of prediction. Detailed

experiments were carried out in the Bohai Sea to evaluate the proposed model and it

was demonstrated that the proposed framework (i) outperformed significantly the current

deep learning methods such as the BP (Backpropagation), the RNN (Recurrent Neural

Network), the LSTM (Long Short-term Memory), and the GRU (Gated Recurrent Unit)

algorithms for 1, 5, 20, and 300-day prediction; (ii) can predict the short-term trend in the

SSHA (for the next day or 2 days) in real time; and (iii) achieves medium-term prediction

in seconds for the next 5–20 days and shows great potential for applications requiring

medium- to long-term predictions. To the best of our knowledge, this is the first paper that

investigates the effectiveness of the SRU deep learning model for short- to medium-term

SSHA predictions.

Keywords: short-to medium-term, sea surface height, recurrent neural network, simple recurrent unit,
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1. INTRODUCTION

1.1. Research Background
As a result of global warming, the sea-level has rose considerably
in the last few decades (Fasullo et al., 2020). Studies have shown
that in recent decades the global sea-level has changed from a
relatively low average rate (0.4 mm/a) of increase in the past
two thousand years to a much higher rate (3.6 mm/a) (Kittel
et al., 2021). However, the magnitude of the rise in the global
sea-level is not consistent in space, and the changes in sea-level
have significant regional characteristics from the decadal to the
multigenerational scale. The global average rate of rise in sea-
level for the period 1993–2019 was 3.24± 0.3 mm/a; in the same
period, the rate of rise of sea-level along China’s coast was 3.9
mm/a (Kappelle, 2020). Sea level rise along China’s coast is more
serious (Jeon et al., 2021). In the last 10 years, the average sea-
level of China’s coastal areas has been at a high level in the past 40
years, being about 100 mm higher than the average sea-level in
1980–1989. Due to the shallow water of the Bohai Sea (average
18 m), the rate of rise of the sea-level in this area for 1980–
2019 was 3.7 mm/a. It is estimated that, in the next 30 years, the
sea-level of the Bohai Sea will rise by 55–180 mm (Tang et al.,
2021).

Rises in sea-level have a serious impact on the economic
and social development of the coastal areas of China. A recent
analysis of the Global Navigation Satellite System (GNSS)
data over a 10 year period showed that although, in the
main, the sea-level in the north coast of the Yangtze River
estuary has risen, the sea-level in the west coast of Bohai
Bay has decreased significantly. The west bank of Bohai Bay
has numerous rivers due to the low lying and flat terrain
and strong land subsidence, hence this area has become one
of the most sensitive areas to experience regional sea-level
changes (Wang et al., 2017; Cui et al., 2018; Feng et al.,
2019).

The factors affecting sea-level change include melting glacial
ice, precipitation, evaporation, runoff, and other seawater
exchange processes, as well as changes in seawater density due
to changes in temperature or salinity (Jeon et al., 2021). These
factors are classified as spatial effects (Tang et al., 2021). It was
reported (Guo et al., 2015) that the seasonal variation and spatial
distribution of SSHA were related to the changes in the volume
of seawater and the effect of differences in temperature, which
are due to changes in the onset of the monsoon and the seawater
temperature, respectively. Also, based on satellite altimetry data,
the spatial and seasonal variations of the SSHA in the coastal
waters to the east of China have been analyzed (Yan et al.,
2020).

Given the increase in sea-level, how best to accurately predict
the changes in sea-level and then make risk management
decisions and adopt effective prevention strategies based on the
science has become an important issue of widespread concern
to the scientific community and society. However, the stochastic
dynamics and instabilities of changes in sea-level brings many
challenges with respect to the prediction of the SSHA and may
limit our ability to respond in a timely manner to the effects of
global change (Yu et al., 2019a; Wang et al., 2020).

1.2. Related Works
The traditional research methods for prediction of the SSHA
mainly comprise physics-based and statistical-based methods.
Based on the sea-level, temperature, salinity, wind field, and
other relevant environmental parameters, the physical processes
that control ocean movement and circulation may be described;
then a method of converting the physics-based model to obtain
a model that describes the changes in sea-level is called a
physics-based method. In general, for long-term prediction,
physics-based methods tend to have excellent characteristics,
while statistical-based methods are more suitable for short-
term prediction in specific practical applications. Physics-based
models have very strict requirements for high-performance
computing systems: first, the solution of the model requires
very large computing power, and the real-time requirements
for prediction are very high, thus the model must complete
the calculation within the specified time. Second, with the
continuous improvement of forecasting accuracy, the required
computing power will show a geometric growth. Therefore, the
effective predictable period of the current prediction system
based on physical model is about one week and the accuracy
of ∼0.9 (Qiao et al., 2016, 2019). Statistical-based methods
and deep learning networks using a data-driven approach to
SSHA forecasting, and have the ability to do so with less
computational and time costs. The current method achieves
average predicting accuracy of coming 24, 48, 72, 96, and 120
h by 0.9, 0.85, 0.79, 0.74, 0.68, respectively (Shao et al., 2015;
Song et al., 2020). Statistical-based methods focus on building
a prediction model using the relationships between historical
data. The interaction of factors that affect the changes in sea-
level make the time-series data exhibit variation and non-
linear characteristics, which lead to large deviations between
the prediction results, based on the traditional time-series, the
statistical model, and other conventional methods, and the actual
results; moreover it is difficult to obtain satisfactory results. With
the development of artificial intelligence (AI)-based algorithms,
deep learning methods have shown great power in being able
to undertake prediction tasks. The deep learning method has
obvious advantages in being able to process a large number
of samples and non-linear data, and can describe the highly
complex relationships existing between the input data and the
output data. Well-known deep learning networks for spatio-
temporal learning and predictions include the Recurrent Neural
Network (RNN) (Mahata et al., 2019), the Long Short-Term
Memory (LSTM) (Graves, 2012), and the Gated Recurrent Unit
(GRU) (Li et al., 2021), etc. Recently, the prediction systems based
on these neural networks have been applied for the prediction of
the SSHA (Shao et al., 2015; Song et al., 2020).

1.2.1. Recurrent Neural Networks (RNN)
Traditional neural networks usually assume that all inputs (or
outputs) are independent of each other. However, in the process
of practical operation, there is a dependency between the current
state of each node and the previous steps, and this is the basic
assumption of expanded RNN. The signal feedback structure
of the recurrent neural networks (RNN) (Mahata et al., 2019)
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adopts the output state of the network at the time of K associated
with the historical signal before the time of K, in order for it to
have dynamic characteristics and a memory capability. However,
RNNs are challenged by the vanishing gradient problem, where
the gradient decreases over time (Mahata et al., 2019). Moreover,
the RNN may also suffer from the gradient explosion problem.
Although many techniques have been developed to address these
issue, it remains difficult to obtain long-term memory.

1.2.2. Long Short-Term Memory (LSTM)
The phenomena of the vanishing gradient and the exploding
gradient of the RNN may not mean that learning cannot be
implemented, but even if it can, the process will be very slow. One
solution is to establish the weight of linear self-connections with
a value close to 1 in the self-connection part, which is called the
leaky unit. At present, the most effective way to adjust the weight
of the linear self-linking is through gates, thus allowing the weight
of linear self-linking to change and make adjustments at each
step. LSTM (Graves, 2012) is an implementation of gated RNNs.
The LSTM is a new cyclic network architecture training method
featuring a gradient based learning algorithm. The approach can
learn how to span a time interval of more than 1,000 steps to
overcome the problem of error return. The LSTMhas successfully
solved the defects of the original cyclic neural network and has
become the most popular RNN (Yu et al., 2019b).

1.2.3. Gated Recurrent Unit (GRU)
Due to its complex internal structure, the training of the LSTM
network is the very time-consuming and the LSTM exhibits a
poor real-time capability. With the rapid growth in demand for
speech-to-text applications, computing resources are currently
not even keeping up with its needs. To solve this problem,
Gated Recurrent Unit (GRU) network model (Li et al., 2021) was
proposed on the basis of the original LSTM model. The forget
gate and the input gate are combined into a single update gate,
and the cell state, the hidden state and other changes are also
mixed. The GRU neural network has been successfully applied
to sequential or temporal data. The GRU has a simpler structure
than the LSTM; nevertheless, its performance is comparable with
the LSTM. The GRU even outperforms LSTM but has a lower
complexity and faster convergence (Zhou et al., 2021). However,
the GRU has a serial structure, whichmakes parallel computation
hard to implement.

1.2.4. Simple Recurrent Unit (SRU)
The common feature of LSTM and GRU is that the calculation
of the gate of each time step depends on the output of the
previous time step, which leads to a high serial dependence of
the network. Also, it is difficult to speed up the calculation by
parallel calculation. To solve this problem, the Simple Recurrent
Unit (SRU) network was proposed (Lei et al., 2018). The main
design feature of the SRU is that the gate calculation depends
only on the current input cycle. In this way, only the point-by-
point matrixmultiplication of themodel depends on the previous
time step. Thus, the network can be configured in parallel. In
addition, the SRU also reduces the number of gates, and the
design only features the forget gate and the reset gate. In this way,

the calculation efficiency of SRU neural network is higher than
that of LSTM and GRU (Jiang et al., 2018).

1.3. The Contribution of This Paper
This paper has developed an SRU model for the short- to
medium-term prediction of the SSHA. The parallel computing
afforded by the SRU makes it more efficient than the traditional
RNN, LSTM, and GRU methods. To solve the problems of
over-fitting and vanishing gradient, a skip-connection strategy,
which can significantly improve the prediction accuracy, was
utilized for model optimization. An outline of the workflow is
as follows: We analyzed and normalized the historical SSHA
data from the Archiving Validation and International of Satellites
Oceanographic (AVISO) center, and then, using the statistical
relationships for the historical data, the SRU model for training
of the historical data was established. In the training process, we
introduced the SRU optimization strategy to solve the gradient
explosion phenomenon and the disappearance. Finally, the well-
trained model was applied for the short- to medium-term
prediction of the SSHA in the Bohai Sea. The model is compared
with traditional models (e.g., BP, RNN, LSTM, GRU, and SRU)
with regards to prediction accuracy and efficiency.

The organization of this paper is as follows: section 2
introduces the methodology, which includes the principle of the
SRU model and its construction. Section 3 analyses the results
for 1, 5, 20, and 300-day prediction by comparing the results for
the proposed model with the existing BP, RNN, LSTM, and GRU
models. We summarize the results of this paper in section 4 and
provide future research directions.

2. METHODOLOGY

2.1. The Principle of SRU
The basic structure of SRU is shown in Figure 1, where the SRU
infrastructure consists of a single forget gate. Assumed input Xt

and time t, we need to calculate linear transformation x̂t and
forget gate ft . This calculation only depends on Xt , therefore
parallel processing can be carried out.The forget gate contains
internal state Ct , and we need to calculate output state ht , where
G represents the activation function, f represents the forget gate,
r denotes the reset gate, h is the output state, C represents the
internal state, and x represents the input. The SRU is defined
in Equation (1) where it can be shown that computations are
dependent only on Xt , allowing computations to be parallelized.

x̂t = WXt

ft = σ
(

WfXt + bf
)

rt = σ
(

WrXt + br
)

Ct = ft ⊙ Ct−1 +
(

1− ft
)

⊙ x̂t

ht = rt ⊙ g (Ct) + (1− rt) ⊙ Xt

(1)

SRU algorithm is mainly developed to remove the time
dependence of the most computing operations, and carry out
parallel processing. Figure 2 compares the structure of SRU
with that of the traditional RNN. On the left is the traditional
RNN/LSTM/GRU structure. The gray calculation part of each
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FIGURE 1 | The basic structure of SRU. From the above diagram, we can see that the SRU infrastructure consists of the input Xt and time t, a single forget gate ft,

and reset gate rt. The forget gate contains internal state Ct, and we need to calculate output state ht, where G represents the activation function. In SRU, we just need

to calculate linear transformation x̂t and forget gate ft, which only depends on Xt. Therefore, parallel processing can be carried out.

FIGURE 2 | The structure of RNN (left) vs. that of SRU cells (right). Compared with the structure of the traditional RNN, SRU eliminates the time dependence of

most computing operations and carries out parallel processing.

time has to wait until the last time. It is mainly reflected in
the matrix multiplication of the hidden layer and the weight of
each door in the last time, which is very time-consuming. While
SRU can be parallel in calculating gate, that is to say, matrix
operation with large amount of calculation at each time can be
parallel. The rest of the dependence is the calculation of Ct and
Ht . These calculations are all element-wise multiplication and
addition, which is very fast.

SRU is much faster than the current loop implementation,
and the loop unit simplifies the state calculation. For SRU,
CUDA level optimization method can be used to integrate
all elements into a single core function call, which shows
the same parallelism similar to CNN, attention model and
feedforward network. In particular, although the internal state
Ct still using the previous state Ct−1, but in the loop step, it is
no longer dependent on ht−1. Finally, all matrix multiplication
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FIGURE 3 | The Research area and the Absolute dynamic topography of the Bohai Sea. As can be seen from the contour lines (dashed lines) in the graph, there is

little diversity across the region.

FIGURE 4 | The climatology of SSHA distribution in the Bohai Sea. The graph shows that the SSHA in the Bohai Sea is slightly higher in summer (A) than in winter

(B), but the overall difference in the Bohai Sea is smaller at the same time of the year.
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FIGURE 5 | The structure of our model. From the above diagram, we can see that the Xt is the input, Yt is the output. The SRU network ensures most of the

operations are all element-wise multiplication and addition, these calculations can be put into parallel processing. With A, B, and C three-layer SRU modules that can

be accelerated in parallel across the time dimension.

FIGURE 6 | The experimental results of prediction,1-day prediction in (A) and 5-day prediction in (B). LSTM and its variants GRU and SRU methods have the

advantage of gating mechanism, which leads to the very high goodness of fit values.

operations in SRU can be easily parallelized. That is, SRU
network ensures most of the operations are put into parallel
processing. Only the steps with small amount of operations
are serialized.

2.2. The Data Source and Model
Construction
In this paper, the sources of data were the altimetry data
of TOPEX/Poseidon, Jason 1, ERS-1, and ERS-2 downloaded
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from the Archiving Validation and International of Satellites
Oceanographic (AVISO) website (http://marine.copernicus.eu/).
This data consist of daily product on a 1/4◦ × 1/4◦ Mercator grid
ranging from 1993 to 2018. The study area is the Bohai Sea (37–
41◦ N, 117–122◦ E). The SSHA data ranges from January 1 1993
to December 31 2018 and is divided into training and testing
sets on a 4:1 ratio. Figure 3 shows the Research area and the
Absolute dynamic topography of the Bohai Sea. Figure 4 shows
the climatology of SSHA distribution in the Bohai Sea. The graph
shows that the overall difference in the Bohai Sea is smaller at the
same time of the year. For the Bohai Sea, this study first calculate
the daily mean SSHA value over the whole Bohai Sea region, and
then used this one-dimensional time series data for training and
testing. The length of the data sequence was 10,000, and 80% of
the data were selected as the training dataset and the remaining
20% were used as the test set.

TABLE 1 | The experimental results of 1 and 5-day prediction.

Model
1-day 5-day

R2 RMSE (cm) Time (s) R2 RMSE (cm) Time (s)

BP 0.903 2.60 12 0.874 4.6 18

LSTM 0.989 1.05 9 0.971 1.13 10

GRU 0.987 1.09 6 0.977 1.03 8

SRU 0.99 1.03 1 0.987 1.01 2

Before implementation of the training model, it was necessary
to perform data normalization in the pre-processing step. This
plays an important role in establishing a robust training model,
which can (i) ensure a positive impact during updating of the
parameters; (ii) reduce the training time; and (iii) help avoid
the side effects caused by the variable distributions and ranges
of input data, and make the calculation of the measurement
parameters accurate as a result of training.

In this paper, we construct a SRU framework for SSHA
prediction with a three-layer SRUmodules. Its structure is shown
in Figure 5, where x, y denote the input and output data and
A,B,C denote the first, second, and third level of SRU module,
respectively. This framework eliminates the dependence on T −

1 time step, so it can be accelerated in parallel across time
dimension (or input position). During themodel training, several

TABLE 2 | The experimental results of 20-day prediction.

Model R2 RMSE (cm) Time (s)

BP 0.743 6.86 24

LSTM 0.968 1.17 18

GRU 0.972 1.12 12

SRU 0.974 1.09 9

SRU* 0.994 0.89 4

*GPU-based parallel SRU algorithm

FIGURE 7 | The experimental results of 20-day prediction. Our medium-term predict method is still fast enough for most applications of sea-level rise.
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FIGURE 8 | The experimental results of 300-day prediction. The results proves the possibility and power of our method to be applied to long-term prediction.

TABLE 3 | The experimental results of 300-day prediction.

Model R2 RMSE (cm) Time (s)

BP 0 55.48 500

LSTM 0.984 1.37 380

GRU 0.971 1.67 290

SRU 0.982 1.35 268

SRU* 0.991 1.05 210

*GPU-based parallel SRU algorithm

parameters need to be initialized. The learning rate (Lr) was
initialized to 0.001, batch size was initialized to 100, epoch was
initialized to 50, and dropout was initialized to 0.5; each epoch
ran 1,000 steps, and each step ran all the input data in the network
for one round completely. The parameters of our method were
optimized by the Adam algorithm to minimize the loss on the
training dataset.

Well-known data normalization method include the
maximum-minimum normalization and the average standard
deviation normalization. Here, we use the first one, which has
been widely used in deep learning systems. It can scale the
original data into 0–1 range through dividing the original data
by the difference of the maximum and minimum value. The
formula is shown in Equation (2), where xscaleri denotes the value

after normalization:

xscaleri =
xi −min{xi}

max{xi} −min{xi}
. (2)

To evaluate the performance of our method, we define two error
indicators to evaluate the performance of our method: R-Squared
(R2) and Root Mean Square Error (RMSE). R-Squared (R2) is an
important statistical measure of fit which indicates how much
variation of a dependent variable is explained by the independent
variable(s) in a regression model. It ranges from 0 to 1, where the
best fit closes to 1. (R2) can be calculated by Equation (4), where
themean square error (MSE) is defined in Equation (3) as follows:

MSE =
1

N
6N

i=1(ŷi − yi)
2 (3)

R2 = 1−
6N

i=1
(ŷ(i)−y(i))2

N

6N
i=1

(y(i)−ȳ)2

N

= 1−
MSE(ŷ, y)

Var(y)
(4)

RMSE is the standard deviation of the residuals (prediction
errors), which is a measure of how spread out these residuals are.
It identifies how concentrated the data is near the best fit. RMSE
is commonly used in prediction analysis to verify experimental
results. In the AVISO dataset used in this paper, the SSHA data
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are in centimeters and the unit of RMSE is the same as SSHA. It
is defined in Equation (5) as follows:

RMSE =

√

1

N
6N

i=1[ŷ(i)− y(i)] (5)

3. PREDICTION RESULTS

To evaluate the effectiveness and efficiency of the proposed
method, the performance of the proposed method based on
the SRU deep network was compared with that of several
existing models, including BP (He et al., 2018), LSTM (Graves,
2012), GRU (Li et al., 2021), and the original SRU (Lei et al.,
2018) models without optimization and parallel computing.
The performance of the original SRU network without parallel
computing was considered mainly because in most scenarios
parallel computing is supported in marine survey platforms and
equipment. For certain applications, however, and especially
for small survey vessels or on small islands, high performance
equipment is not readily available and hence parallel computing
is not supported. Thus, for these situations, it is necessary to
ensure that the SRU framework can be applied for prediction
of the SSHA. The short- to medium-term prediction was
first performed for the 1, 5, and 20-day prediction. Also,
to demonstrate the capability of the method for long-term
prediction, a 300-day experiment was performed. The training
and testing environment was equipped with 2 × 10 Intel
Platinum9200 Xeon scalable processors (128 GB memory) and
16 Tesla V100 SXM2 GPU (total 512 GB).

3.1. Short-Term Prediction Results
The results for the 1 and 5-day predictions are presented
in Figure 6 and Table 1 as follows, where SRU denotes the
original SRU without optimization and parallel computing.
This experiment was performed to show the effectiveness and
efficiency of the SRU compared to the existing BP and LSTM
family algorithms (LSTM,GRU) for short-term prediction. Given
that the 1 and 5-day predications can be performed with the SRU
very quickly, it was desirable to include parallel computing in the
SRU implementation.

From the experimental results, it can be seen that the
LSTM and the GRU and SRU variants outperform the BP
method significantly in terms of both accuracy and efficiency.
The respective R2 values are all >0.9, and the RMSE values
are around 1, which is much lower than 2.6, the value
for the BP method. Compared with the commonly used
BP neural network, the LSTM family of methods have the
advantage of the gating mechanism, which leads to very high
goodness-of-fit values. The forget gate in the network can
filter the unimportant information automatically and leave
the important information for prediction assessment. This
mechanism enables the LSTM method to avoid the problem
of the vanishing gradient during learning, and to select
and memorize important information to make the prediction
more accurate.

By comparing the LSTM, GRU, and SRU methods, it can
be seen that the SRU gave much better performance than the

LSTM and GRU due to its simpler structure. The accuracy of the
algorithm is comparable with and even outperforms that of the
LSTM and GRU, while it is much faster than the LSTM and GRU
methods. Further, the time consumption factor has been reduced
to 1 s for 1-day prediction and 2 s for 5-day prediction, which
makes the short-term SSHA prediction essentially equivalent
to real-time prediction. Overall, this experiment demonstrates
good performance for the SRU method in terms of short-term
prediction of the SSHA.

3.2. Medium-Term Prediction Results
The medium-term prediction, which plays a significant role
in monitoring sea-level changes for decision making, is the
most appropriate task for demonstrating the performance of the
proposed method. Here, the revised SRU model (SRU∗), which
features skip-connection optimization and parallel computation,
was compared with the BP, LSTM, GRU, and the original SRU
method (without optimization and parallel computation). The
experimental results, presented in Figure 7 and Table 2, show
that the proposed method achieves much more satisfactory
results than the current published state-of-the-art methods.
The R2 value is much lower. This means that the skip-
connection optimization can help alleviate the over-fitting and
vanishing gradient problem in the SRU to reduce fitting errors
to a large extent. Above all, the time consumption for the
SRU∗ is much lower than that for the existing methods (BP,
LSTM, GRU, and original SRU), hence demonstrating the
effectiveness of parallel computing in SRU. Moreover, in this
experiment, we also tried to build higher-layer SRU models.
When the SRU deep network was increased from three to six
layers, it was found that the accuracy increased (R2 increased
by 9.2% and RMSE decreased by 30%), while the training
time changed little. In comparison with the results for short-
term prediction, medium-term prediction cannot be performed
in real time; however, the method is still fast enough for
most applications that require medium-term prediction of
sea-level rise.

3.3. Long-Term Prediction Results
To demonstrate the full extent of the prediction and fitting
capabilities of the neural network model, the long-term 300-
day prediction was examined. The training time for the three-
layer SRU was about 210 s, and the prediction accuracy of
the six-layer SRU was found to be better than that of the
three-layer SRU; however, the increase in the prediction time
was not significant because the jump connection structure
greatly increases the calculation speed. In addition, comparing
the R2 and RMSE values for the SRU with those of the
other neural network models, indicated that the run time
for the whole SRU program was shorter than that of the
LSTM and the GRU, and the actual prediction outcome was
better. The main reason for the improvements is that the
SRU’s high network and light cycle structure make the SRU
outperform the other neural networks in terms of the accuracy
and speed of calculation, confirming that the SRU prediction
time-series model is superior to that of the other RNN
neural networks.
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FIGURE 9 | The investigation of model generalization using the new National Marine Data and Information Service test set.

To demonstrate the capability for long-term SSHA prediction,
the 300-day prediction experiment was performed. The results
are shown in Figure 8 and Table 3, it was observed that the
method needed about 210 s to train a three-layer SRU model.
Although the computational complexity of long-term prediction

is somewhat higher than that of short- and medium-term
predictions, the experiment demonstrates the possibilities and

power of the method when it is applied to long-term prediction.

In addition, compared to the BP and other LSTM models,
the run time of the present method is much lower while

the prediction accuracy is comparable or even better than the
aforementioned methods.

The above-mentioned improvements arise mainly from
the benefits from the skip connection optimization strategy,
which effectively reduces the fitting error. The short- to long-
term prediction results all demonstrate the effectiveness and
efficiency of the SRU based framework to model the changes
in the nonlinear chaotic structure of sea levels. The skip-
connection strategy helps the SRU avoid the problem of the
vanishing gradient in the empirical prediction, and, in so doing,
simultaneously improves the prediction accuracy and reduces the
computational complexity.

3.4. The Generalization of the Deep
Learning Model
The model generalization of a deep learning model is also a
key factor for considering to be used for practical applications.
In this section, we investigate the generalization ability of the
deep learning model by introducing a new test set: the datasets
of National Marine Data and Information Service (NMDIS)
reanalysis data (http://mds.nmdis.org.cn/). This dataset belongs
to the reanalysis dataset. It is different from the observational
AVISO dataset, which is used for training in this paper. The new
dataset comprises of daily SSHA data from January 1, 1958 to
December 31, 2018. The spatial resolution is 0.5◦ × 0.5◦.

Experimental results of the deep learning model (SRU* with
parallel computing and skip-connection) on the 1, 5, 20, and 300-
day predictions are shown in Figure 9 and Table 4, respectively.
It can be seen from the results that for short and medium
prediction, the performance of the deep learning model is almost
the same with that on the original dataset. Although for the long
term prediction, the R2 of the deep learning model is a little bit
lower and its RMSE is relatively higher than that on the original
dataset. The performance of the deep learning method for long-
term prediction on the new test set is still comparable with that
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TABLE 4 | The investigation of model generalization using an additional test set.

Experiments Model R2 RMSE (cm) Time (s)

1-day SRU* 0.984 0.99 2

5-day SRU* 0.968 1.09 6

20-day SRU* 0.912 1.33 15

300-day SRU* 0.842 3.66 36

*GPU-based parallel SRU algorithm

on the original dataset. That is, the deep learning model has very
good generalization ability and it can be widely applied to SSHA
prediction problems with variant kinds of dataset.

4. SUMMARY AND DISCUSSION

An SRU deep learning network for the short- to medium-
term prediction of the sea surface height anomaly (SSHA)
has been developed. The parallel structure of the SRU ensures
good efficiency of the prediction. To avoid the over-fitting and
vanishing gradient problems, the skip-connection strategy was
utilized to speed up the convergence in the loss function in the
SRU. To evaluate the effectiveness and efficiency of the method,
detailed experiments were performed for 1, 5, 20, and 300-day
SSHA predictions in the Bohai Sea using AVISO data. The main
findings were as follows:

(1) For short-term (1 and 5-day) prediction, the original SRU
model achieved the best performance with the lowest
time consumption among the LSTM family of methods
(LSTM and GRU) and also significantly outperformed the
traditional BP method. The SRU method can effectively
undertake short-term SSHA prediction in real time.

(2) For medium-term (20-day) prediction, the revised
SRU and SRU* frameworks gave the most satisfactory
results compared with the existing methods (BP, LSTM,
GRU, original SRU) by introducing the skip-connection
optimization strategy and parallel computing. When the
SRU deep network was increased from three to six layers, the
accuracy clearly increased (R2 increased by 9.2% and RMSE
decreased by 30%), while the training time changed little.
Although the revised SRU cannot perform medium-term
SSHA prediction, it is fast enough for most applications.

(3) For long-term (300-day) prediction, the revised SRU and
SRU* framework also had great capabilities and possibilities
for use in long-term prediction. Compared to the BP and
other LSTMmodels, the running time of the method is much
shorter while the prediction accuracy is comparable or even
superior. These improvements arise mainly from the skip-
connection optimization strategy, which effectively reduces
the fitting error.

This study shows that the prediction of the changes in sea-level
from the perspective of non-linearity can not only explain the
physical laws underpinning the data pertaining to changes in
sea-level, but can also play an essential role in establishing the
prediction theory based on non-linear deep learning methods.

The sensitivity of the non-linear chaotic system to the initial
value shows that for the traditional linear model it is difficult to
track and predict such non-linear data. In the critical period of
global climate change, the changes in sea-level not only follow
the basic laws of physics, but also are affected by the unique
and non-repetitive events of the climate, such as the impact of
global warming and the ENSO (El Nino southern oscillation)
events. There are many factors that affect the sea-level, hence
proper understanding of the changes which affect the sea-level is
a complex task. Given such circumstances, there is an immediate
need to improve the accuracy of the prediction algorithms such
as the non-linear deep learning methods; these methods are of
great significance in the context of prediction capability and
forward-looking decision-making.

For the future work, we will put our efforts in improving
the performance of SRU framework by introducing more
effective optimization and speeding-up techniques to make our
method more powerful to be applied for medium and long-term
prediction. Moreover, the current work treats the Bohai Sea as a
whole region, and uses its mean value as one-dimensional data
for SSHA prediction. In the future, we also want to build two-
dimensional prediction model, which can be applied for SSHA
prediction over each grid point in the Bohai Sea.
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