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Multi-gliders have been widely deployed as an array in nowadays ocean observation
for fine and long-term ocean research, especially in deep-sea exploration. However,
the strong, variable ocean currents and the delayed information feedback of gliders are
remaining huge challenges for the deployment of glider arrays which may cause that the
observed data cannot meet the study needs and bring a prohibitive cost. In this paper,
we develop a Glider Simulation Model (GSM) based on the support vector regression
with the particle swarm optimization (PSO)-SVR algorithm to integrate the information
feedback from gliders and ocean current data for rapid modeling to effectively predict
the gliders’ trajectories. Based on the real-time predictive information of the trajectories,
each glider can select future movement strategies. We utilize the in-suit datasets
obtained by sea-wing gliders in ocean observation to train and test the simulation model.
The results show that GSM has an effective and stable performance. The information
obtained from the modeling approaches can be utilized for the optimization of the
deployment of the glider arrays.

Keywords: glider, simulation model, PSO-SVR, rapid modeling, trajectory prediction

INTRODUCTION

Underwater gliders are characterized as a type of persistent (can operate continuously for weeks
to months even to years), long operation range (up to thousand kilometers), small power
consumption, and unmanned marine vehicle which are propelled by buoyancy (Rudnick et al.,
2004). These characteristics make them conduct long-term ocean studies and understand the inner
working mechanisms of the ocean in a controllable way which are better than existing traditional
instruments for ocean observation (Testor et al., 2019). In recent years, with the widespread
attention aroused by researchers on ocean observation, especially on deep ocean, gliders are widely
deployed in ocean studies (Liblik et al., 2016).

Furthermore, in the major ocean observation, multiple gliders are deployed as a glider array to
develop surveys to optimize and refine the ocean sampling. Shu et al. (2019) deploy 12 gliders as
an observation network in the northern South China Sea (NSCS) for the research on anticyclonic
eddies. The observations reveal not only the fine subsurface structure of temperature and salinity
but also the time evolution of the three-dimensional structure of the eddies. Li et al. (2019) not
only equip the glider observation array with CTDs to reveal the three-dimensional structure of
the anticyclonic eddies in NSCS but also mount the biogeochemical sensors on the gliders which
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can show the influence of anticyclonic eddies on the
biogeochemical structure. On this basis, a compound
three-dimensional structure of the eddy is constructed.

Although glider arrays present a compelling advantage
in ocean observation, there are challenging difficulties on
deployment. The movements of gliders are closely related to
dynamic ocean currents (Thompson et al., 2010); the high
nonlinearity of disturbances may make the actual observation
trajectories of gliders not consistent with the planned running
trajectories, which can cause the redundant measurement or
the incomplete measurement during the experiments (Zhang
et al., 2007). Meanwhile, the position information of gliders will
only be transmitted when the gliders come out of the water;
the asynchrony of information synchronization prevents the
accuracy of the simulation on the trajectory control of glider
arrays. Furthermore, conducting a coordinated observation with
multiple gliders in large-scale ocean experiments is expensive.

Several prior studies have focused on these problems. Rao and
Williams (2009) considered the influence of ocean currents and
proposed a path planning method based on rapidly exploring
random trees (RRT). However, this path planning method is
based on the assumption that we have accurate knowledge of
future currents, which is nondeterministic in practice. Thompson
et al. (2010) presented a method with historical ocean current
predictions to address the glider path planning and control in
the uncertain, time-varying ocean currents. Besides, to solve
the problem that currents may drive glider arrays into clumps
without feedback information (Leonard et al., 2007). Paley et al.
(2008) designed a control system named Glider Coordinated
Control System (GCCS) which, through the real-time feedback
control law, coordinates the gliders and optimizes the glider
measurement formations. The study of Leonard et al. (2010)
confirmed the capacity of the GCCS applied to ocean sampling.
Considering avoiding the collisions between gliders, a navigation
system based on Networked Decentralized Model Predictive
Control was developed to coordinate the gliders into the desirable
formation (Fonti et al., 2011). This method has high autonomy
and reliability but only considers the horizontal plane motion.
Xiong et al. (2020) discussed a rapidly exploring random tree
star (RRT∗) method which is a variant algorithm of standard
RRT to meet the need of collision avoidance and achieve
continuous sampling effectively. Xue et al. (2018) also proposed
a strategy of the control of hybrid gliders that merge the
coordinate control model based on artificial potential fields with
a motion optimization method. In a recent study, Clark et al.
(2020) decoupled a vehicle motion model with a predictive
ocean current model forming an adaptive planner that glider
observation arrays can maintain stability.

However, most of the studies are pointing at the nonlinear
mechanical model of the underwater glider and the uncertain
ocean current predictive model, as the actual conditions of
gliders and ocean currents can quickly diverge in practice
and the existing studies are not feasible to reconfigure the
glider arrays according to actual conditions in different sea
states. Thus, in this paper, we design a glider simulation model
(GSM), considering multiple factors, which can rapidly feedback
information from gliders and provide real-time predictive

information of coordination of gliders. Based on the predictive
information, each glider can determine future motion strategies.
In this model, we introduce support vector regression based on
PSO-SVR as the supporting algorithm. Although the information
feedback from gliders contains non-inear fluctuations, noise, and
outliers, the PSO-SVR algorithm can well grasp the movement
trend. As far as we know, few studies have employed PSO-SVR
to optimize glider control and formation deployment. We also
introduce three observation datasets obtained by sea-wing gliders
into the simulation experiments; the results demonstrate that the
GSM has great stability and effectiveness on sea-wing gliders.

The rest of the paper is made up as follows: the summary
of the dataset is shown in section “Data.” In section “Methods,”
we give a comprehensive introduction to the methods involved
in the model. Section “Experiments” presents the results of the
experiments using different algorithms, and a full comparison of
the performance is evaluated. In the last section, we draw the
conclusion and increase the future works needed to be done to
improve our simulation model.

DATA

Glider Data
Sea-wing gliders are selected to verify the validity of the
model (Figure 1C). Three sets of in-suit observation data
collected by sea-wing gliders are employed to train and test
the simulation model. These datasets come from two ocean
observation experiments where the investigation areas are located
in the northern South China Sea.

G-001 dataset: The experiment started from April 28, 2015, to
June 1, 2015, employing one glider (g-001) for the cross-sectional
observation of eddies, and the trajectory of the glider is shown in
Figure 1A.

G-002 dataset: The experiment started from July 3, 2016, to
July 16, 2016, and lasted for 17 days. During the experiment,
a sea-wing glider (g-002) with multiple sensors is deployed for
the inner observation of eddies, and the trajectory is shown in
Figure 1B; the black line represents the trajectory of g-002.

G-003 dataset: The experiment started from July 3, 2016,
to July 16, 2016, with a sea-wing glider (g-003) carrying one
sensor for cross-eddy observation. We can see the trajectory in
Figure 1B; the green line is the trajectory of g-003.

The triangles indicate the starting points of observations. The
backgrounds are the sea-level anomaly in the observation areas
where the higher the anomaly, the greater the possibility of
the existence of eddies. The arrows indicate the ocean current
field, and the size of arrows represents the strength of the
geostrophic currents.

AVISO Ocean Current Dataset
The ocean current dataset used in this study was distributed
by AVISO and derived from the absolute dynamic topography
(ADT), which can be downloaded from the website1.

1https://www.aviso.altimetry.fr/
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FIGURE 1 | The trajectories of gliders in the ocean observation. (A) The
observation started from April 28, 2015 to June 1, 2016. (B) The observation
started from July 3, 2016 to July 16, 2016. The triangles indicate the starting
points of observations. The backgrounds are the sea-level anomaly in the
observation areas, and the arrows indicate the ocean current field. (C) Picture
of the sea-wing glider.

METHODS

In this section, we present an overview of the method that we
adopt to train and test the simulation model.

SVR for Data Regression
SVR is an extended algorithm of the support vector machine
(SVM) which is a classic and powerful machine-learning
algorithm to solve the nonlinear regression problem (Brereton
and Lloyd, 2010). SVR calculates the loss function based on
the structural risk minimization, allowing a deviation of ε

between the output of the model and the real value, which
differs from the traditional regression model based on the error
between the output of the model and the real output. It can
avoid the disadvantages caused by pursuing experience risk
minimization.

In this subsection, we concisely describe the basic theory of
the SVR algorithm. We can learn more detailed theories from
Smola and Scholkopf (2004). In our study, the whole diving
and climbing process of the glider is described as the dataset
S =

{
(xi, yi)

}
. xi = {Pi,Di,Vi} denotes the parameters of the

ith diving process. Pi denotes the position in which the glider
dives into the water which is observed by the GPS equipped on
the glider. Di is the target diving depth, and Vi represents the
velocity at the diving point from the AVISO. yi represents the
real GPS coordinate of the point that the glider comes out of
the water during the ith climbing process. The objective of the
algorithm is to build a regression model to predict the location
that the glider comes out of the water in the following form:

f (xi) = wTxi + b,
yi − wTxi − b ≤ ε,

wTxi + b− yi ≤ ε,

ε ≥ 0

(1)

where w and b are, respectively, the slope and offset
coefficient generated in the process of mapping xi to
f (xi), which is optimized during the training of the
model. f (xi) is the predicted location that the glider
comes out of the water, whileε denotes the deviation
between f (xi) and yi. The loss is calculated when the
error between the predicted value and the real value
is greater than ε. So, the regression problem can be
formalized as minimizing the convex optimization problem as
follows:

min
1
2
∣∣∣∣w∣∣∣∣2 + C

m∑
i = 1

i
(
f (xi)− yi

)
(2)

In this equation, C is the regularization parameter, and i is the
ε –insensitivate loss function to assess the accuracy of the model.
Generally speaking, it is difficult to define the appropriate ε to
ensure that f (x), all pairs (xi, yi), and the slack variables ξi and ξ∗i
are introduced. The regression problem can be reformulated as
the following constraints:

min 1
2

∣∣∣∣w∣∣∣∣2 + C
m∑

i = 1

(
ξi + ξ∗i

)
,

s.t. yi − wTxi − b ≤ ε + ξi,

wTxi + b− yi ≤ ε + ξ∗i ,

ξ i, ξ
∗
i ≥ 0, i = 1, 2, ...,N

(3)
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By applying the Lagrange multiplier method and KKT
condition, the problem can be expressed as the following
equations:

f (x) =
m∑

i = 1
(̂αi − αi)K

(
xTi , xi

)
+ b,

s.t.
m∑

i = 1
(̂αi − αi) = 0,

0 ≤ αi, α̂i ≤ C

(4)

where αi and α̂i are the Lagrange coefficients, and K
(
xTi , xi

)
is the kernel function. The Lagrange multiplier method can
transform constrained inequalities into unconstrained equations,
and the KKT condition can transform the nonlinear regression
problem into an approximate linear regression problem. In our
study, the kernel function named radial basis function (RBF) was
mentioned which can project vectors into any dimensional space.
The equation is described by:

K
(
xi, xj

)
= exp

(
−

∣∣∣∣xi−xj∣∣∣∣2
2σ2

)
,

σ ≥ 0
(5)

where xi and xj are the input vector space, and σ is the
bandwidth of RBF.

From the above equations, we can see that two
hyperparameters heavily affect the performance of the SVR,
namely, the regularization parameter C which represents
the tolerance for error and the bandwidth of RBF σ which
determines the influence scope of each vector. The appropriate
selection of these hyperparameters can significantly improve
the performance of SVR. However, a trial-and-error approach
to optimize hyperparameters needs much time and is not
practical. In our study, we employ the PSO algorithm to
optimize parameters.

PSO for Optimizing Parameters
Although SVR is a powerful algorithm for regression
problems, its effectiveness is easily affected by the selection
of hyperparameters (Kim et al., 2020). Inappropriate parameter
selection can easily lead to over-fitting or under-fitting of the
prediction results which can affect the coordination of glider
arrays. In early studies of the SVR, the grid search method is
widely adopted to tune hyperparameters (Jiang et al., 2013).
In recent years, many heuristic algorithms have been used to
optimize the hyperparameters.

PSO is a technology of evolutionary computing proposed
by Kennedy and Eberhart (1995), which has advantages at
accelerating the process of tuning the SVR parameters and
getting the optimum. The main idea of the algorithm is to
analogize the process of optimizing parameters as birds looking
for food. Under the constraints of the fitness function, particles
keep adjusting speed and position through collaboration and
information sharing between each particle to find the final
optimum solution.

The particle speed update equation is:

vi = w × vi + c1 × rand() ×
(
pbesti − xi

)
+ c2

× rand() × (gbest − xi) (6)

where i = 1, ..., n ∈ Rn denotes the number of particles,
vi represents the speed of the particle, pbesti is the optimal
parameter under current training steps, gbest indicates the global
optimal parameter under current training steps, xi is the particle
position, rand() represents the random number between (0,1),
w is the inertia factor which affects the capability of global
optimization and local optimization of the algorithm, c1 indicates
the level that the particle updating is affected by the local optimal
particle, and c2 is the level that the particle updating is affected by
the global optimal particle.

The particle position update equation is:

xi = xi + vi (7)

In our study, to find the best hyperparameters (C,σ), the process
is shown as follows:

First, we set PSO parameters, the number of particles is 30, the
dimension is 2, the iteration steps are 50, and the space ranges
of the solutions are from 0.1 to 5. Second, randomly generating
the initial value of hyperparameters includes the prime velocities
and the initial positions of the swarm of particles in search space.
Third, we utilize the parameters in each particle to construct
the SVR model and calculate the values of the fitness function,
through the values of fitness function to update pbesti and gbest.
Last, if the experiment meets the iteration steps or the value of
fitness function reaches the extent predefined, we stop updating
and choose gbest as the best hyperparameters (C,σ); otherwise, we
return to Third.

EXPERIMENTS

In this section, we conduct experiments to evaluate the accuracy
and efficiency of the simulation model. We use the glider
datasets to train and test the simulation model where 75%
of each dataset are employed as the training samples for the
training and parameter optimization. The rest are applied as
the testing samples. We also select several other algorithms as
the baseline to compare them with our algorithm. The key
idea of our experiment is to utilize the information feedback
from gliders for rapid modeling to generate the trajectories
of gliders and minimize the error between real trajectory and
predicted trajectory.

Data Standardization
In this subsection, to eliminate adverse effects caused by
singular sample data, we standardized the data before conducting
experiments. The training data S =

{
(xi, yi)

}
are standardized

in the normalization function of min–max normalization:

Strain =
S−min(S)

max (S)−min(S)
(8)

where Strain represents the standardized value.
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The Experiment Results and Discussion
The Results of Parameter Optimization
In this subsection, we demonstrate the hyperparameters
optimized by the PSO algorithm. The optimization of parameters
uses an iterative approach, and the iterative results can be learned
from Figure 2 where the x-axis represents the number of iteration
steps, the y-axis represents the fitness values, the yellow lines
indicate the fitness values in the longitudinal direction, and the
blue lines represent the fitness values in the latitudinal direction.
The process of optimization is the coordinated adjustment of
particles to find the optimal fitness value. We can see that with
the increase of iteration steps, the fitness values keep decreasing
until achieving stability. The stability of fitness values means that
all particles achieve an individual best fitness and the PSO-SVR
model achieves the optimal hyperparameters (C, σ); we can learn
the optimization results in Figure 2.

The Comparative Experiment Results
To verify the effectiveness and stability of our model, we conduct
comparison experiments with four baselines, random forest
(RF), K-nearest neighbor (KNN), AdaBoost (Ada), and the basic
SVR, respectively.

Figure 3 shows the test regression results of three glider
datasets by using RF, KNN, Ada, SVR, and PSO-SVR,
respectively. Figures 3A–C demonstrate the real trajectories and
predicted trajectories of g-001, g-002, and g-003, respectively.
Since the difference between the results regressed by several
methods is not obvious enough and the trajectories of gliders
are not regular, we have to add the comparison experiments of
the errors between predicted values and real values to validate
the results. Figures 3D–F introduce the error comparison results.
The errors are computed by the function as follows:

error =
√(

predlon − reallon
)2
+
(
predlat − reallat

)2 (9)

Cooperating the figures of trajectory comparison in conjunction
with the figures of error comparison, we can learn that the
trajectory predicted by the simulation model proposed by
us has the best fit with the real trajectory, and what is
completely different from other methods is that the proposed
model keeps a stable and slight error which confirms the
robustness of our model.

Based on the simulation information of PSO-SVR and
other comparative experiments, we can further evaluate the
effectiveness and stability of the proposed simulation model by
the mean square error (MSE), the relative error (RE), and the
coefficient of determination (R2).

MSE =
1
N

N∑
i = 1

(
yi − f (xi)

)2 (10)

RE =

∣∣∣∣yi − f (xi)
∣∣∣∣

yi
(11)

R2 =
∑N

i
(
f (xi)− yi

)2∑N
i
(
yi − yi

)2 (12)

FIGURE 2 | The relationship lines between the iterative steps and the fitness
values of parameter optimization of g-001, g-002, and g-003. (A) The optimal
results of parameters of g-001. (B) Represents the parameter optimization of
g-002. (C) The optimal results of parameters of g-003. The yellow line
represents the fitness values in the longitudinal direction, and the blue line
demonstrates the fitness values in the latitudinal direction; the legends
demonstrate the best hyperparameters.

Here, yi denotes the real position that the glider comes out of
the water, f (xi) is the location of the glider predicted by the
simulation model. The quantity yi is the mean value of yi over
the whole moving process. N is the number of test samples.

The MSE, RE, and R2 over the testing samples of three
glider datasets are shown in Figure 4. Figure 4A represents the
performance of the simulation model applied in g-001 where
MSE = 0.00039, RE = 0.0005, and R2 = 0.9998; Figure 4B
shows the assessment factors of g-002 where MSE = 0.00095,
RE = 0.0013, and R2 = 0.993; the results of g-003 can be found
in Figure 4C, the value of MSE is 0.0007, RE is 0.0012, and R2
is 0.994. Obviously, in contrast to other methods, the PSO-SVR
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FIGURE 3 | The comparisons of the trajectories of three gliders reconstructed by several algorithms with the original trajectories and the error comparisons between
the proposed model with the comparison models. (A) The comparison of the regression results of g-001. (D) The comparison of the error of g-001. (B) The
comparison of the regression results of g-002. (E) The comparison of the error of g-002. (C) The comparison of the regression results of g-003. (F) The comparison
of the error of g-003.

yields better regression results with the lowest MSE and RE and
the highest R2, and these assessment indicators demonstrate that
the simulation model can accurately predict the trajectories of
gliders and meet the key idea of our experiments.

We can find out that the simulation model tested on the same
type of gliders has a different level of performance. The mode
tested with g-001 has the best performance, the performance
on g-003 is second, and g-002 has the worst performance.
From the information obtained from Figure 1, the strength
of the geostrophic currents of the g-001 trajectory coverage is
much lighter than that of g-002 and g-003. Besides, we can
learn that the movement direction of g-003 is consistent with
the direction of the flow field, while the direction of g-002 is
opposite to the flow field which makes the simulation model
with g-003 have better performance. Further speaking, both g-
001 and g-003 conduct the experiment for crossing the eddy,
but g-001 only conducts cross-sectional observation, and the
level at which g-001 is affected by the ocean dynamic process
is much weaker than that of g-003, which makes the model

test with g-001 have better performance than that with g-
003.

Besides, the error curves of the PSO-SVR algorithm in
Figures 3D–F have many bumps. Analyzed in conjunction
with Figure 1, the bump in the g-001 simulation experiment
appears when g-001 crossed through the eddy. The bumps
in the g-002 simulation experiment mostly appear at
the intersection of trajectories and the period of reverse
movement. In the simulation experiment of g-003, the larger
error values are distributed when the glider sails to the
boundary of the eddy.

From the above discussion, we suppose that the strength
and direction of the flow field play an indispensable role in
the accuracy of the simulation model. The strong currents, to a
certain extent, reduce the performance of the simulation model.
The eddies also have a great influence on the effectiveness of
the simulation model. When the gliders cross over the eddies
or move to the boundary of the eddies, the performance of the
model will decrease. Meanwhile, comparing g-002 with g-003, the
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FIGURE 4 | The performances of the model constructed by RF, KNN, Ada,
SVR, and PSO-SVR, respectively. (A) The performances of the model
constructed with the dataset of g-001. (B) The performances of the model
constructed with the dataset of g-002. (C) The performance of the model
constructed with the dataset of g-003. The orange histogram represents the
relative errors (RE), and the blue histogram shows the mean square error
(MSE). The coefficient of determination (R2) of the models is represented by
the red line.

difference between them is small which may be caused by their
different weights.

CONCLUSION

The tremendous potential value of the ocean observation with
the glider arrays is well known. However, the strong, variable
ocean currents, the lack of real-time feedback information of

gliders, and the high cost of cooperative observation with glider
arrays make it necessary to design a simulation model to provide
strategies for the deployment and adjustment of glider arrays.
The main target of our simulation model is to assimilate the data
collected by gliders into numerical models and model rapidly to
predict the future trajectories of glider arrays in advance which
can direct the gliders more efficiently to adjust measurement
formation. In this model, we collected three main influence
factors, including the strength and direction of ocean currents,
the current coordinate of the glider, and the diving depth of the
glider, to predict the trajectory of the glider after working for a
certain period of time. In addition, in the case that the accuracy
of the datasets is high enough, other more valuable factors can
be introduced. Moreover, to improve the performance of our
model, we use the PSO algorithm to dynamically optimize the
hyperparameters of the SVR algorithm and then cooperate PSO
with SVR as the supporting algorithm of the simulation model.

We conducted the experiments to demonstrate the
effectiveness of the model by applying the model to sea-
wing gliders. The results show that the simulation model has
good performance on sea-wing underwater gliders. However, we
need more datasets to evaluate the performance of the model
applied on different makes of gliders.
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