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Marginal reefs are known for severe stress-inducible perturbations such as high
sedimentation, eutrophication, ocean warming, and acidification from anthropogenic
climate change. The corals striving in such stressful environments develop physiological
adaptations induced by differential genomic expressions or association with thermal
stress-tolerant algal symbionts (Symbiodiniaceae). Despite such adaptations, corals are
threatened by other space competitors such as algae and sponges. Coral-eroding
sponges belonging to the Cliona viridis complex are one such space competitors
that also associate with Symbiodiniaceae algal photosymbiont. The diversity of
Symbiodiniaceae associates with the coral and sponge from the same ecosystems
is scarcely known. In the present study, Symbiodiniaceae community structure in
the coral Turbinaria mesenterina, a newly described coral-eroding sponge Cliona
thomasi, and their surrounding seawater was determined from the nearshore marginal
reef along the central west coast of India. The results revealed a significantly
higher relative abundance of Durusdinium and Gerakladium than Symbiodinium
and Cladocopium in the seawater. Interestingly, both investigated host species
showed differential Symbiodiniaceae association with significantly higher abundance
of Durusdinium in coral and Gerakladium in sponge. The beta diversity analysis by
Permutational multivariate analysis of variance (PERMANOVA) confirmed significant
differences in Symbiodiniaceae profiles between sponge and coral. Durusdinium and
Gerakladium are thermotolerant genera known to associate with different hosts in
suboptimal conditions. Our field surveys suggested the bleaching resistance of the
coral T. mesenterina despite the fact that the sea surface temperature reached
the coral thermal threshold of 31◦C during different periods of the years 2015,
2016, 2017, 2018, and 2019. Therefore, the thermal tolerance of the investigated
coral and sponge species may be attributed to their respective thermotolerant
photosymbiont associations. Furthermore, the results also indicated the host-specific
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photosymbiont selection from the local environment. Although these observations
provide valuable biological insight, more research is needed to understand the tripartite
association of sponge-coral-symbiont together to evaluate the competitive fitness
of holobionts.

Keywords: coral, sponge, Cliona, Turbinaria, Symbiodiniaceae, symbiont, ITS2, bioerosion

INTRODUCTION

Coral reefs harbor the most dynamic and complex plethora
of microbial communities, including bacteria, fungi, viruses,
archaea, and dinoflagellates (Mies et al., 2017; Osman et al.,
2020; Pernice et al., 2020). Endosymbiotic dinoflagellates of
the Symbiodiniaceae family have gained considerable attention
as an indicator for the well-being of the coral reef health
and ecosystem functioning (Silverstein et al., 2012; Osman
et al., 2020). Symbiodiniaceae are present in the coral’s ambient
environment (seawater and sediment) as free-living form as well
as in association with different host organisms like sponges,
foraminifera, clams, etc. (Takabayashi et al., 2012; Granados-
Cifuentes et al., 2015). Free-living Symbiodiniaceae are crucial
pool of photosymbiont for host organisms, as they acquired
new symbiont from the ambient environment at different
life stages (Granados-Cifuentes et al., 2015; Nitschke et al.,
2016). Endosymbionts of reef-building corals contribute to most
of the energy requirement of coral through photosynthesis,
enabling calcium carbonate accretion and growth (Al-Horani,
2016). In return, coral supports Symbiodiniaceae by providing a
protective environment and necessary components required for
photosynthesis (Williams and Patterson, 2020). The dynamics in
coral-Symbiodiniaceae interaction influences the ability of corals
to function under different environmental conditions (Jones
et al., 2008; Ziegler et al., 2017). The association of coral with
different Symbiodiniaceae is regulated by local environmental
conditions (Thornhill et al., 2017; Baker et al., 2018). So far,
obligatory symbiosis of corals with different Symbiodiniaceae
genera has been documented from a broad geographical and
environmental regimes, that include Symbiodinium, Breviolum,
Cladocopium, Durusdinium and, occasionally Fugacium and
Gerakladium (formerly clades A, B, C, D, F, and G, respectively)
(LaJeunesse et al., 2018; Osman et al., 2020). Each symbiont
genus provides a different degree of support to the host coral
(Stat et al., 2008; Camp et al., 2020; Pernice et al., 2020).
For instance, Symbiodiniaceae diversity in Leptoria phrygia,
experiencing thermal instability showed an exclusive association
with Durusdinium for coping with thermal stress (Carballo-
Bolaños et al., 2019). Furthermore, D’Angelo et al. (2015)
confirmed the specific association of different Porites spp. with
Cladocopium (C3) type symbiont in the warm and hypersaline
waters of the Persian/Arabian Gulf.

Recent studies have confirmed that some corals (e.g.,
Montastraea cavernosa, Pocillopora damicornis, Stylophora
pistillata, and Porites lutea) can adapt, sustain, and survive
against local environmental stressors by switching or shuffling
their associated photosymbionts (Silverstein et al., 2015; Boulotte
et al., 2016; Osman et al., 2018; Tan et al., 2020). Response

to environmental stressors varies among coral species and
endosymbiont communities (van Woesik et al., 2011; Cunning
et al., 2017). The local environment exerts selection pressure
which eliminates the sensitive Symbiodiniaceae taxa and results
in the dominance of stress-resilient species (Cunning et al.,
2015; Claar et al., 2020). This differential abundance of specific
thermotolerant Symbiodiniaceae taxa affects the functional
characteristics of their host (LaJeunesse et al., 2010a; Carballo-
Bolaños et al., 2019), eventually leading to the emergence of a
particular “space winner” genotype (LaJeunesse et al., 2010a; Stat
and Gates, 2011).

Globally, coral reefs are under threat due to climate change
induced thermal stress and anthropogenic impacts, which disrupt
delicate coral-Symbiodiniaceae interaction, causing mass coral
bleaching, mortality, and rapid health deterioration of reef
ecosystems (Hughes et al., 2017, 2018). Moreover, increasing
disturbance may contribute to the overgrowth of benthic space
competitors like cyanobacterial mats, macroalgae, and sponges,
which pose additional threats to stressed reef-building corals
(Horwitz et al., 2017). Among these benthic space competitors,
bioeroding sponges are one of the most aggressive competitors
that are known to erode reef-building corals and destruct the
reef (Schönberg, 2000; Zundelevich et al., 2007; Fang et al.,
2018b). For instance, species belonging to Cliona viridis species
complex accounts for significant erosion of corals at the rate
of >10 kg/m sponge area/year (Schönberg, 2000; Achlatis
et al., 2019). The cosmopolitan sponge genus Cliona consists
of 86 species (Van Soest et al., 2020), and among those,
only about 25% of species are known to harbor symbiotic
dinoflagellate communities (Achlatis, 2018; Mote et al., 2019).
Studies have shown that algal symbionts of Cliona species
provide their host with energetic inputs needed for excavating
calcium carbonate through investment in photosynthates and/or
photosynthesis by-products (Marlow et al., 2018; Achlatis et al.,
2019). These symbionts occur in high densities in Cliona
viridis species complex and display remarkably rapid lateral
expansion and high bioerosion rates (Schönberg et al., 2008;
Hill et al., 2011). Therefore, Symbiodiniaceae family members
support their bioeroding host in space competition as well
as in coping with the fluctuating environmental conditions
(Fang et al., 2017, 2018b).

A few studies have shown that some sponges are associated
with algal symbionts from Symbiodinium, Breviolum, and
Gerakladium genera (formerly clades A, B, and G) (Hill et al.,
2011; Ramsby et al., 2017). Moreover, these Symbiodiniaceae
diversity analyses were mainly based on specific and/or multiple
gene amplification followed by sequencing (Hill et al., 2011;
Ramsby et al., 2017). However, the application of the next-
generation sequencing (NGS) approach to dissect the taxonomic
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diversity of Symbiodiniaceae family associated with sponges is
sparsely studied compared with other invertebrates (Riesgo et al.,
2014; Ramsby et al., 2018). In order to gain insights into the role
of Symbiodiniaceae members in the reef ecosystem, it is essential
to study the multifaceted association between coral-symbiont,
sponge-symbiont, and sponge-coral.

Determination of the composition and variability of symbiont
community in reef-building corals and space-competing sponges
is crucial to get an insight into how the symbiont compositional
change influences the host’s physiology and competitive abilities
in response to suboptimal environmental conditions. Although
previous studies significantly contributed to our understanding
of coral-symbiont diversity and the environmental-induced
plasticity, the understanding of symbiosis between bioeroding
sponges and Symbiodiniaceae is still sparse. Therefore, the
present study employed a deep sequencing approach to
elucidate the Symbiodiniaceae diversity associated with the
coral Turbinaria mesenterina and the bioeroding sponge Cliona
thomasi, both competing in a marginal coral reef environment
on the west coast of India. Shallow water nearshore coral reefs
in this region are subjected to a broad range of chronic and
acute stressors, which are considered suboptimal for coral reef
development, including thermal stress-driven recurrent coral
bleaching episodes (De et al., 2015, 2021; Hussain et al., 2016),
coral diseases (Hussain et al., 2016), monsoonal freshwater
influx, and anthropogenic perturbations like, siltation, turbidity,
nutrient input, fishing, and intensive tourism-mediated damage
(De et al., 2020). C. thomasi investigated herein is a newly
discovered ecologically important sponge species, abundant in
the Indian Ocean coral reefs (Mote et al., 2019). Therefore,
aggressive growth of this species on live corals raises serious
concern about reefs health (Mote et al., 2019).

MATERIALS AND METHODS

Study Site and Field Surveys
The study was conducted at the nearshore shallow water patch
coral reef in the Grande Island archipelago, Central West Coast
of India (15◦ 21′ 14.2′′ N, 73◦ 45′ 57.8′′ E). This nearshore
patch coral reef on the Eastern Arabian Sea is highly disturbed
by a wide range of stressors due to ongoing frequent thermal
stress, low pH, monsoonal dilution of coastal seawater, higher
sedimentation, and turbidity as two major rivers (Zuari and
Mandovi rivers) discharge large amount of terrigenous sediment
runoff and organic matter enrichment (Purnachandra Rao et al.,
2011; Shynu et al., 2015; Veerasingam et al., 2015; Manikandan
et al., 2016; Hussain and Ingole, 2020). The coral community
in this reef habitat is mainly dominated by stress-resilient
genera like Porites, Siderastrea, Pseudosiderastrea, Coscinarea,
Turbinaria, and Goniopora; notably, sensitive branching taxa like
Acropora are absent in this region (Hussain and Ingole, 2020).
In recent years, corals in this nearshore habitat experienced an
adverse impact from mass coral bleaching event (∼50%) during
2014–2017 (Hussain and Ingole, 2020), along with overgrowth
of coral-eroding Cliona sponges (Manikandan et al., 2016; Mote
et al., 2019), algal turf, macroalgae (Manikandan et al., 2016),

coral diseases like white plaque and trematodiasis (Manikandan
et al., 2016), and bioinvasion of alien octocoral Carijoa riisei
(Patro et al., 2015). The study area is under continuous
monitoring for the coral reef health assessment program since
2015. The field surveys showed a massive bleaching of corals in
2015. These bleaching events were continuously observed under
subsequent field surveys. Furthermore, an increase in the sponge
prevalence was recorded during 2015–2017. The details of survey
times, methodology applied to monitor and the prevalence of
coral-eroding sponges, and coral bleaching from the study site
are given in Supplementary Information.

Sample Collection
The samples of the bioeroding sponge C. thomasi (n = 4)
growing over the coral (T. mesenterina) colonies and healthy
coral species T. mesenterina (n = 4) were collected in January
2019 from the depth of 6–8m. Massive growth forms of sponge
species C. thomasi over different individual coral species are
shown in Figures 1a–d. Utmost care was taken while collecting
the samples, wherein each sample was distinct and separated
from the other by at least 5 m. The coral and sponge tissue
samples of∼1–2 cm2 in diameter and 0.5–1 cm in thickness were
collected using precleaned hammers and chisels. To compare
the community with the ambient environment, surrounding
seawater samples (n = 4) were collected from a distance of 2–
4 m away from sponge-coral colonies. Samples were immediately
brought on board, fixed in liquid nitrogen, and transported
to the laboratory for further processing. The sponge species
was identified by spicule morphology and molecular analysis
following the established protocol (Mote et al., 2019).

DNA Extraction and Sequencing
The total DNA from each collected sample was extracted using
the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol. About 500 ml of seawater
for each sample was filtered using 0.22 µm polycarbonate
membrane filter (Whatman), and the filter paper was used for
DNA isolation. For the identification of the Symbiodiniaceae
community, the internal transcribed spacer 2 (ITS2) region was
selected for amplification and sequencing using the primer set
as forward 5′-GTGAATTGCAGAACTCCGTG-3′ and reverse 5′-
CCTCCGCTTACTTATATGCTT-3′ (Boulotte et al., 2016). PCR
amplifications were carried out in a 50-µl reaction volume
containing ∼50 ng of DNA, 25 µl of 2×Taq Platinum PCR
Master, 200nM of each primer, and ddH2O to make up the final
volume. Reactions were performed at 95◦C for 5 min, followed
by 35 cycles of 95◦C for 30 s, 51◦C for 30 s, and 72◦C for 30 s,
and a final extension at 72◦C for 4 min using a Mastercycler
(Applied Biosystems, Foster City, United States). Illumina MiSeq
libraries for the ITS2 region were generated and validated
using 2100 Bioanalyzer (Agilent Technologies) for quality, and
samples were sequenced using the 2× 250 paired−end chemistry
according to the manufacturer’s specification (HiSeq Reagent
Kit). Sequencing was done on the MiSeq Illumina platform and
produced 4,525,076 paired-end raw reads with an average read
length of∼350 to∼ 420 bp.
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FIGURE 1 | Massive growth forms of Cliona thomasi observed over different live coral colonies of Turbinaria mesenterina (a–d) from the studied site Grande Island.

Bioinformatic Analysis
Sequence reads generated through the Illumina Miseq platform
were demultiplexed, and primers were trimmed using Cutadapt
(Martin, 2011). DADA2 pipeline recommended by Callahan
et al. (2016) for ITS analysis based amplicon sequence variant
(ASVs) generation was followed. The determined ITS2 ASVs
were assigned a taxonomic identity using the RDP classifier
(Wang et al., 2007) against reference database sequences.
This study employed three different databases for taxonomic
classification of ASVs: (i) Db1 (Claar et al., 2020), (ii)
Db2 (Shi et al., 2021), and (iii) Db31. To aid in the
removal of non−Symbiodiniaceae sequences (e.g., non-target
dinoflagellates), default RDP bootstrap value of 50 was used.
The rank was set “unassigned” below this threshold, and
these were hence removed from further analysis. The defined
Symbiodiniaceae ASV table was utilized for downstream analysis,
and abundance variations of Symbiodiniaceae genera and
subtypes were analyzed.

The intragenomic variations (IGVs) among ITS2 regions
challenged the Symbiodiniaceae diversity estimation. It is
therefore important to determine the IGV profiles. The IGV
profile for the Symbiodiniaceae diversity from the investigated
samples was determined by SymPortal (Hume et al., 2019).

1https://raw.githubusercontent.com/nitschkematthew/Symbiodatabaceae/master/
Combining_databases/ITS2dbn1_Dinophy_Symbio.fasta

For the SymPortal analysis, all sets of sequences were remotely
submitted to SymPortal.org. SymPortal identify the specific
sets of defining intragenomic variants (DIVs) that are used to
characterize ITS2-type profiles (Camp et al., 2020; Hume et al.,
2020).

Statistical Analysis
The vegan package v.2.5-6 in R (Oksanen et al., 2018) was used
to calculate the alpha-diversity indices such as ASV richness,
Shannon, Chao, and Simpson indices and to prepare a rarefaction
curve for the investigated samples. The significant differences
among the diversity indices values were determined by the
Kruskal-Wallis test (with Dunn’s post hoc test). Furthermore,
the beta-diversity measures to test the statistical difference of
Symbiodiniaceae community composition among the samples
were determined by applying permutational multivariate analysis
of variance (PERMANOVA) with 999 permutations using
Bray-Curtis dissimilarity matrix in PRIMER v7 (Clarke and
Gorley, 2015). Symbiodiniaceae community composition was
ordinated using non-metric multidimensional scaling (nMDS),
as implemented in vegan package in R using metaMDS function
(Oksanen et al., 2018). Similarity percentage (SIMPER) analysis
was performed to calculate the contribution of each ITS2 subtype
to the dissimilarity within and between samples in the PRIMER
v7. Analysis of similarity (ANOSIM) was carried out using 999
permutations with a Bray-Curtis distance in vegan package R
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using Anosim function to test if there is a statistical difference
between the Symbiodiniaceae communities of samples.

RESULTS

Diversity and Composition of
Symbiodiniaceae Based on ITS2
Sequence Analysis
Deep sequencing analysis of ITS2 region recovered a total
of 4,534,038 raw sequence reads from three compartment
of the coral reef habitat, i.e., reef-building coral, bioeroding
sponge, and seawater (Supplementary File 1 and Supplementary
Table 1). The raw amplicon sequencing dataset is available
at the NCBI sequence read archive (SRA) database (accession
PRJNA636097). After processing through DADA2 pipeline,
the filtered sequence reads (3, 647, 450) were assigned to
1,008 unique ASVs (Supplementary File 1 and Supplementary
Table 1). The taxonomic classification of these ASVs showed
high degree of variations when assigned against different
Symbiodiniaceae databases investigated in this study. The
ASVs with more than 50% confidence for their taxonomic
assignments were 613, 594, 253 for the databases Db1, Db2,
and Db3, respectively. The variations obtained at the genera
level for the ASVs from different databases are shown in
Supplementary File 2 (Supplementary Table 1). The databases
Db1 and Db2 showed similar results of taxonomic distribution
and determined six Symbiodiniaceae genera (Durusdinium,

Gerakladium, Symbiodinium, Cladocopium, Breviolum, and
Fugacium) (Supplementary File 2 and Supplementary Table 1).
However, Db3 showed the lowest ASVs (253), which were
mainly assigned only to Durusdinium, Gerakladium, and
Symbiodinium (Supplementary File 2 and Supplementary
Table 1). At ITS2-subtype level, Db1 and Db2 identified more
Symbiodiniaceae diversity than Db3 (Supplementary File 2 and
Supplementary Figures 1–3). Based on the higher diversity
determination, we followed the Db1 database sequences to
represent Symbiodiniaceae diversity in our samples.

The assigned 613 Symbiodiniaceae ASVs further distributed
as 174 for coral, 180 for sponge, and 464 in seawater. The
overlap of these ASVs between coral, sponge, and seawater is
shown in Figure 2. The distribution of these ASVs among the
samples with sequencing reads was investigated with a rarefaction
curve (Supplementary File 1 and Supplementary Figure 1).
Shannon’s diversity index determined for the studied samples
was in the order of seawater (3.24 ± 0.29) > T. mesenterina
(2.46 ± 0.23) > C. thomasi (2.03 ± 0.40) (Supplementary File 1
and Supplementary Table 2). A similar, trend was observed in
the Simpsons index as seawater (0.92 ± 0.02) > T. mesenterina
(0.85 ± 0.03) > C. thomasi (0.78 ± 0.06) (Supplementary
File 1 and Supplementary Table 2). The alpha-diversity indices
determined were found significantly different only between coral
and seawater based on the Kruskal-Wallis test, followed by
Dunn’s post hoc test (p < 0.05). The beta-diversity measures
for the investigated samples showed significant differences
among the composition of the Symbiodiniaceae community
associated with the coral species T. mesenterina and the

FIGURE 2 | Venn diagram shows the number of Symbiodiniaceae amplicon sequence variants (ASVs) present in each reef habitat compartment (coral, sponge, and
seawater), as well as the amount of overlap between and among samples.
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sponge species C. thomasi (PERMANOVA, p = 0.04; ANOSIM,
R = 0.854, p = 0.04, see Supplementary Tables 3, 4). The
Symbiodiniaceae communities between sponge-seawater and
coral-seawater were also found to be significantly different
(PERMANOVA and ANOSIM, p < 0.05, Supplementary File 1
and Supplementary Tables 3, 4). The significant differences
in beta-diversity between investigated coral and sponge species
are mainly contributed by Symbiodiniaceae genus Durusdinium
and Gerakladium. The results from the SIMPER analysis
further confirmed higher dissimilarity in the Symbiodiniaceae
community association between T. mesenterina and C. thomasi
(average dissimilarity 58.3%) than T. mesenterina-seawater
(average dissimilarity 42.4%) and C. thomasi-seawater (average
dissimilarity 40%) (Supplementary File 1 and Supplementary
Table 5). The differential Symbiodiniaceae association was
further confirmed by the clustering pattern obtained from nMDS
analysis. The investigated host types were clustered distinctly
and separately based on their associated Symbiodiniaceae
community (Figure 3). The observed distinct variation among
the Symbiodiniaceae species assemblage in bioeroding sponge
and coral indicates the symbiont selectivity among two different
hosts within the same reef habitat.

The most abundant Symbiodiniaceae genus found in the
investigated coral species was Durusdinium (89.8 ± 11.7%),
followed by Gerakladium (10.2 ± 11.7%) (Figure 4A). At ITS2
subtype level, Durusdinium sp. (89.1 ± 13.4%) was found

to be the dominant, followed by G3.3 (9.9 ± 12.9%) in the
coral species T. mesenterina (Figure 4D). The other types of
Durusdinium, i.e., D1.8, D105, D106, D120, D124, and D2 were
detected in lower abundance (Figure 4D). On the contrary,
the sponge species C. thomasi contained a higher abundance
of Gerakladium (83.3 ± 23.7%), followed by Durusdinium
(16.6 ± 23.8%) (Figure 4B). Among Gerakladium types,
the highest dominance determined was for Gerakladium G3.3
(78.5 ± 21.2%), followed by Durusdinium D1 (16.6 ± 23.7%)
(Figure 4E). The other types of Gerakladium G100, G101, G3.1,
and G3.2 were detected in lower abundance (Figure 4E). The
most abundant Symbiodiniaceae taxa in seawater samples were
Durusdinium (51.0 ± 10.1%) and Gerakladium (40.3 ± 3.3%),
followed by Symbiodinium (3.5± 5.5%), Fugacium (3.0± 3.1%),
and Cladocopium in (2.0 ± 3.5%) (Figure 4C). Breviolum
was also detected in seawater in a very low abundance
(<1%). Furthermore, at the ITS2 type level, seawater contained
Durusdinium sp. (50.6 ± 13.9%) and Gerakladium G3.3
(36.3± 5.1%) (Figure 4F).

In order to define the intragenomic variants for the
ITS2 region, SymPortal DIV profiles for the Symbiodiniaceae
community in corals, sponge, and free-living habitats were
determined. SymPortal analysis provided the complete ITS2
profile only for coral samples, which showed the dominance of
ITS2 type profile D1 and lower dominance of types D4-D4c-D1c-
D2-D6 (Supplementary File 2 and Supplementary Figure 4).

FIGURE 3 | Non-metric multidimensional scaling plots showing the pattern of Symbiodiniaceae communities recovered from the coral samples, sponge samples,
and seawater (stress value: 0.12). Stress value <0.05 shows an excellent representation in nMDS analysis.
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FIGURE 4 | Symbiodiniaceae community composition at Grande Island. (A–C) Relative abundances of Symbiodiniaceae genera in host (coral and sponge) and free
living in seawater. (D–F) Relative abundances of Symbiodiniaceae at subtypes level in host (coral and sponge) and free living in seawater. Values represent mean
relative abundances across group samples.

However, seawater and sponge samples could not show the
complete ITS2 type profiles (Supplementary File 2 and
Supplementary Figure 5).

DISCUSSION

This study determined the Symbiodiniaceae diversity associated
with the two space competitors (i.e., coral and sponge) in
the same reef habitat using high-throughput sequencing of
the ITS2 region. ITS2 marker is commonly used to analyze
Symbiodiniaceae (Thornhill et al., 2007; Stat et al., 2011; Shi
et al., 2021). The present study followed the ASV-based approach
for defining the Symbiodiniaceae diversity over the conventional
operational taxonomic units (OTUs) using 97% similarity
clustering threshold to collapse sequence diversity into OTUs.
The redundancy in ITS2 delineation has been well documented
based on the reference database employed (Tonk et al., 2013;
Shi et al., 2021). This study confirms the variations in ITS2
delineation and taxonomic assignment through three different
reference databases. The difference in the results obtained may be
attributed to the sequence length and ITS2 boundary variations
in the databases. Furthermore, this study confirms the IGV level
delineation called as DIVs for ITS2 subtypes using SymPortal.
The DIV profiles to search for Symbiodiniaceae community of
coral showed strong overlap with the sponge and free-living
habitat due to the high relative abundance of Durusdinium (D1)
(Supplementary File 2 and Figure 3).

Symbiodiniaceae Community Associated
With the Coral T. mesenterina
The investigated coral T. mesenterina showed a higher abundance
of the genus Durusdinium. Interestingly, Durusdinium genus
is widely known to be associated with scleractinian corals
from the Caribbean and Indo Pacific reefs (Knowlton and
Rohwer, 2003; Jones et al., 2008; Brener-Raffalli et al., 2018).

Previous studies have suggested that the association of coral with
Durusdinium may indicate local environmental stressors, such as
high temperature, sedimentation, and light intensity (D’Angelo
et al., 2015; Osman et al., 2020; Wall et al., 2020). Studies
from different global reefs attribute the increased association
of Durusdinium with corals to the adaptation against thermal
stress (Oladi et al., 2019; Chankong et al., 2020; Williams
and Patterson, 2020). Durusdinium communities in corals from
the Andaman Sea with high host specificity were attributed
to higher turbidity and high nutrient concentrations in the
reef (LaJeunesse et al., 2010b). In general, the studies have
confirmed that the Durusdinium type D1a or D1-4 (Durusdinium
trenchii) are more frequently associated with corals in thermally
challenged marginal habitats (Cooper et al., 2009; LaJeunesse
et al., 2010a; Stat et al., 2013; Oladi et al., 2019; Qin et al.,
2019; Williams and Patterson, 2020). D. trenchii is often referred
to as an opportunistic symbiont which makes their association
heterologous (Smith et al., 2017; Matthews et al., 2018).

The marginal coral reef of the present study was subjected to
severe thermal stress-driven coral-bleaching events from 2014 to
2016. Sea surface temperature (SST) data of NOAA Coral Reef
Watch (NOAA-CRW) platform revealed that the SST exceeded
the thermal bleaching thresholds throughout the years 2015
to 2019 (Supplementary File 1 and Supplementary Figure 2).
The underwater field survey confirmed in situ coral bleaching
during October 2014, April 2015, October 2015, and April
2016 (Hussain and Ingole, 2020). The years 2014–2017 were
the warmest years in history, leading to mass coral mortalities
globally (Eakin et al., 2019; Skirving et al., 2019). There have been
reports of coral bleaching in all major reefs of India during this
period (Hussain and Ingole, 2020). Such warming events in the
last few decades have significantly altered the coral population
and led to the emergence of non-reef-forming communities
(Hughes et al., 2017; Lough et al., 2018). This clearly implies
that temperature and local stressors remain important drivers of
coral decline; therefore, the response of Symbiodiniaceae to
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stressors is crucial for predicting the response of the reef
community as a whole.

Our in situ surveys confirmed high bleaching resilience
in T. mesenterina (Figures 5a–c) while other coral genera
such as Coscinaria, Goniopora, and Porites were susceptible to
thermal bleaching (Supplementary File 1 and Supplementary
Figure 3). The determined association of stress-tolerant
Symbiodiniaceae members belonging to Durusdinium with
the coral T. mesenterina may be attributed to its stress tolerance
and bleaching resistance. A detailed analysis of Symbiodiniaceae
association with other coral species though is needed to
confirm the thermal-tolerance adaptation of T. mesenterina.
Increased stress on marginal reefs tends to shift the coral
community toward low species heterogeneity and to increase
the dominance of species well adapted to increasing temperature
regime (van Woesik et al., 2011; Hoegh-Guldberg et al.,
2019). The switching of endosymbiont from Cladocopium to
Durusdinium has been reported in adults of Acropora millepora
in response to heat stress and, more recently, in Acropora
spp. from Palk Bay (India) after the bleaching event in 2016
(Thinesh et al., 2019). In the disturbed reefs in Singapore,
the higher bleaching resilience of Pocillopora was attributed
to its association with thermotolerant Durusdinium (Guest

et al., 2016). The coral Galaxea fascicularis from the South
China Sea was found to be more resistant to thermal stress
because of its association with Durusdinium D1a (Zhou et al.,
2017). In another report, Pocillopora verrucosa associated with
Durusdinium D1a was found to be more resistant to thermal
stress than Pocillopora lutea associated with Cladocopium
(Qin et al., 2019). Interestingly, a decadal study with higher
temperature variability in the Kenyan reef found that Pavona and
Pocillopora were resistant to bleaching due to their association
with Durusdinium (McClanahan et al., 2015). Similar results
of higher temperature regime tolerance were reported for
scleractinian coral Leptoria phrygia from Southern Taiwan
(Carballo-Bolaños et al., 2019). Studies revealed that under
high-temperature stress, Durusdinium D1a increases the
coral bleaching thresholds by 1.0 to 1.5◦C (Berkelmans and
Van Oppen, 2006; Silverstein et al., 2015) by maintaining
a high photochemical efficiency compared with Breviolum
and Cladocopium (Cunning et al., 2017; Klueter et al., 2017).
Therefore, our observations suggest that T. mesenterina
is tolerant against the thermal bleaching events in the studied
marginal reef habitat. Our finding implies that the higher thermal
resilience in T. mesenterina was possibly due to the association
with Durusdinium. A similar association of Durusdinium with

FIGURE 5 | Mass bleaching event observed during November 2015: (a) In situ observation of coral bleaching in 2015 [Photograph provided by Hussain and Ingole
(2020)]. (b) In situ observation for bleaching resistance of T. mesenterina than the other coral species observed. (c) Thermal bleaching resistance observed in coral
boring sponge C. thomasi and T. mesenterina: (1) healthy C. thomasi, (2) healthy T. mesenterina, and (3) partially bleached Porites sp. colony. (d) (1) Healthy
C. thomasi and (2) partially bleached Favites sp.
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FIGURE 6 | Graphical representation of host-specific acquisition of Symbiodiniaceae and its benefit to the host survival in bleaching impacted marginal coral reef
ecosystem.

T. mesenterina has been reported from the stressed marginal
habitat of Taiwan (Chen et al., 2005).

Along with Durusdinium, Gerakladium (10.2%) was the
subdominant genera in T. mesenterina. The association of
Gerakladium with scleractinian coral is rare though a few studies
reported its association with Porites lobata in Hawaii (Stat
et al., 2013), Orbicella annularis from Virgin Islands (Edmunds
et al., 2014; Pochon et al., 2014a), Acropora sp. from Western
Australia (Thomas et al., 2014), and Diploastrea heliopora from
the Great Barrier Reef (Chakravarti and van Oppen, 2018).
Gerakladium is mostly associated with the specific group of
sponges (Schönberg and Loh, 2005; Hill et al., 2011), soft
corals (Van Oppen et al., 2005), and foraminifera (Pochon
et al., 2014b). The simultaneous occurrence of Durusdinium
and Gerakladium was reported in thermally tolerant Porites
lutea, from the South China Sea (Qin et al., 2019). However,
the Gerakladium association with T. mensenterina needs to be
ascertained by increasing the range of study sites from different
geographical locations.

Symbiodiniaceae Community Associated
With the Sponge C. thomasi
The present study confirmed the dominance of Gerakladium in
the encrusting sponge species C. thomasi unlike the dominance of
Durusdinium in host coral T. mesenterina. The results indicated
the host-specific association of Symbiodiniaceae members.
The species-specificity and flexibility in the Symbiodiniaceae
association have also been reported in some sponges (Hill
et al., 2011; Ramsby et al., 2017). For instance, Caribbean
clionaid species C. aprica, C. laticavicola, and C. tenuis are
known to associate with Symbiodinium and Breviolum, while

the other member of the family C. caribbaea, C. varians, and
C. tumula are known for their multi symbiont association with
Gerakladium, Symbiodinium, or Breviolum (Granados et al.,
2008; Hill et al., 2011; Ramsby et al., 2017). The Indo-
Pacific Cliona orientalis is known to harbor only Gerakladium
(Hill et al., 2011).

The Symbiodiniaceae of sponges were studied earlier using
Symbiodiniaceae-specific markers based on Sanger sequencing
approach or denaturing gradient gel electrophoresis (DGGE)
methods (Schönberg and Loh, 2005; Granados et al., 2008;
Hill et al., 2011; Pochon et al., 2014b; Ramsby et al.,
2017, 2018) and a study by Ramsby et al. (2018) by NGS.
The available literature suggests the wide occurrence of
Gerakladium genus in C. viridis species complex, but there is less
information about cryptic species or subtypes of Symbiodiniaceae
(Supplementary File 1 and Supplementary Table 6). At
the subtype level, only G2.1 was reported from the sponge
C. orientalis. In the present study, we have utilized the high-
throughput sequencing of the ITS2 region, which improved
the detection of different Symbiodiniaceae subtypes from mixed
populations and also determined community composition in
the sponge. Within sponge C. thomasi samples, type G3.3
had the highest relative abundance (78.5%) followed by G101
(3.0%). In addition, the results detected type G3.1 and G3.2
at lower abundance (<1%), which indicates genetically distinct
Symbiodiniaceae taxa in sponges. The advancement in detecting
relatively rare Symbiodiniaceae subtypes reveals that sponge
symbiont association can be flexible or specific within the
same genus at the subtype level. The lower abundance of
Symbiodiniaceae subtypes is known to play a significant role
in coral holobiont resilience and response to perturbation
(Ziegler et al., 2018). Therefore, the findings presented here
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indicate that there are additional sponge-associated species
within Gerakladium genus which prove the great importance
of the way that ITS2 sequence data are analyzed and
interpreted in studies concerning the biological diversity.
The knowledge of the dinoflagellate communities associated
with bioeroding sponges is limited at the species level, with
only two known species (Gerakladium endoclionum from
C. orientalis, and Gerakladium spongiolum from C. varians) from
sponges (Ramsby et al., 2017). Our ITS2 rDNA based analysis
could not confirm the species identity of Symbiodiniaceae
associated with C. thomasi due to lack of species-specific
subtypes information in the revised taxonomy of Gerakladium
(LaJeunesse et al., 2018).

Different studies have confirmed the ecological significance of
Gerakladium in the bioerosion capabilities, survival, and growth
rate of Clionaid sponges (Fang et al., 2016, 2018a; Achlatis et al.,
2019). Furthermore, Chakravarti and van Oppen (2018) showed
the Gerakladium genus as thermotolerant by ex situ analysis.
Our in situ observations indicated the increased prevalence of
C. thomasi from 6% in 2015 to 11% in 2017 (Supplementary
File 1 and Supplementary Figure 4) and bleaching resistance
during mass bleaching events (Figures 5c,d). The thermal
tolerance of sponges during mass bleaching events may be
attributed to its association with Gerakladium.

Environmental Acquisition of
Symbiodiniaceae
Symbiodiniaceae communities of the ambient seawater were
predominantly represented by Durusdinium and Gerakladium,
while Symbiodinium, Fugacium, and Cladocopium in were less
dominant in the present study. Water column Symbiodiniaceae
community may be exclusively free-living or symbiotic with
different benthic hosts (Yamashita and Koike, 2013; Nitschke
et al., 2016; Claar et al., 2020). Most of corals (∼80–85%) tend to
acquire different symbionts from the surrounding environment
at different life stages (Stat et al., 2008; Boulotte et al., 2016).
The determined higher abundance of Durusdinium sp. in
T. mesenterina and in ambient seawater (equal to Gerakladium)
from the thermally challenged marginal sites indicates two
possibilities of their association: (1) that the symbiont population
in coral may have been retrieved from seawater or (2) the
symbiont is typically associated with the coral hosts (Claar
et al., 2020). Since horizontal acquisition is well established in
corals, the former possibility appears a better fit. Unlike corals,
vertical transmission of Symbiodiniaceae has been suggested
in few sponges (Mariani et al., 2000, 2001). However, a few
studies also suggested the environmental acquisition of free-
living photosymbiont in sponges (Strehlow et al., 2016; Francis
and Cleary, 2019). Also, it has been experimentally demonstrated
that C. varians acquire symbiont from the ambient environment
(Riesgo et al., 2014). The present study revealed the dominance
of Gerakladium G3.3 in the sponge samples and also in
ambient seawater.

Therefore, it can be inferred that there is a possibility
for the acquisition of free-living symbiont from the ambient
environment by C. thomasi, although detailed studies are

required to understand their mode of acquisition. Our
results support the possibility of host-specific acquisition of
photosymbionts as Durusdinium in coral and Gerakladium
in the sponge (Figure 6). Host-specific Symbiodiniaceae
association in coral is well noted from different bioregions
(Bernasconi et al., 2019; Howe-Kerr et al., 2020; Wall et al.,
2020). The differential acquisition of symbionts by different
hosts from the same environment can be attributed to
various factors such as (1) cellular signaling to and from
host and symbiont (Davy et al., 2012), (2) metabolic requisites
of both the host and symbiont (Suggett et al., 2017), (3)
microhabitat conditions of the host, (4) mode of transmission
of the symbiont, i.e., horizontal or vertical (Stat et al.,
2008), and (5) selection mediated reshuffling and/or re-
switching of symbiont (Boulotte et al., 2016). Nevertheless,
physiological, molecular, genetical, and signaling related
detailed studies are needed to confirm the mode of host-specific
Symbiodiniaceae association.

CONCLUSION

The present study provides an important insight into the coral-
Symbiodiniaceae-sponge symbiosis in a data-deficient marginal
coral reef habitat. Our results unveil a high abundance of thermal
stress-tolerant Symbiodiniaceae Durusdinium and Gerakladium
in an ambient environment experiencing severe temperature
anomalies for the last 5 years. Furthermore, the study showed
differential associations of Symbiodiniaceae between two hosts
indicating a host-specific mode of selection. Since both the
dominant Symbiodiniaceae members are well known for their
thermotolerance, the determined thermal resistance by both the
hosts in this habitat may be attributed to their association with
the resistant Symbiodiniaceae Durusdinium and Gerakladium.
Hence, the study highlights the influence of Durusdinium and
Gerakladium and their possible role in enhanced acclimatization
capacity of coral T. mesenterina and bioeroding sponge
C. thomasi in a suboptimal environmental regime. At large, the
stress-tolerant symbiont association may increase the resistance
of few species and aid their survival, thereby increasing
their dominance in space competition. Further studies on
physiological, metabolic, and transcriptomic insights will help
confirm the energetic tradeoffs by symbiont communities in the
success of their respective hosts.
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