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The γ-irradiated horseshoe crab chitosan was used as food coating to extend the
shelf life of marine shrimp and fish. Fourier-transform infrared spectroscopy (FTIR), field
emission scanning electron microscopy (FE-SEM), and X-ray diffraction (XRD) were used
to characterize the γ-irradiated chitosan. After employing control (untreated seafood
samples/no preservatives), chemical preservation (treated with 2% glacial acetic acid)
and 2% chitosan (0, 10, and 20 kGy γ-irradiation) for the assessment assay, the shrimp
(Penaeus merguiensis), pomfret (Pampus argenteus), and hilsa fish (Tenualosa ilisha)
samples were examined for pH, thiobarbituric acid reactive substance (TBARS), total
viable counts (TVC), and sensory evaluation changes while under 15-day refrigeration at
4◦C. The results of FT-IR, XRD, and FE-SEM analysis revealed that irradiated chitosan
possessed a crystalline structure with smooth texture on its surface. Analysis of pH,
TBARS, TVC, and sensory evaluation demarcated irradiated chitosan with the ability
to delay microbial growth and this prolonged the shelf life of refrigerated shrimp and
fish. With novelty on γ-irradiated horseshoe crab chitosan use as natural preserving
agent, fisheries industries and food packaging practitioners would benefit from its
microbial-inert abilities particularly for long distant cold storage transport of packaged
marine meats.

Keywords: natural preservative, cold storage, food coating, chitosan, fish, shrimp, sensory evaluation

Frontiers in Marine Science | www.frontiersin.org 1 May 2021 | Volume 8 | Article 664961

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2021.664961
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2021.664961
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2021.664961&domain=pdf&date_stamp=2021-05-05
https://www.frontiersin.org/articles/10.3389/fmars.2021.664961/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-664961 May 5, 2021 Time: 12:59 # 2

Pati et al. Chitosan Coating on Shelflife Extension

INTRODUCTION

Seafood contains fatty acids such as omega-3, proteins and
minerals which altogether contribute to an ideal diet (Cheung
et al., 2010; Kwan et al., 2019). However, these nutritional
components are sustenance for microbes during food oxidation
(spoilage). Rapid spoilage of food is mainly due to the high
moisture and the decomposition of unsaturated fatty acids and
free amino acids (Binsi et al., 2015). In fact, unsaturated fatty
acids are chemically unstable and easily oxidized (Kilincceker
et al., 2009). In the presence of oxygen and temperatures
above 4◦C, aerobic microorganisms are provided with optimum
metabolic conditions to reproduce (Özogul et al., 2004; Li et al.,
2020). Therefore, additives that can limit microbial growth are
certain to delay the decomposition (fatty acid and lipid oxidation)
process and thus, extend the shelf life of food. At present,
industries involved with marine produce rely on freezing, salting,
chemical treatments and nitrogen or vacuum packaging for long-
term storage of their products (Gokoglu, 2019; Hazra et al., 2020;
Sarkar et al., 2021).

Freezing (cold storage) will delay microbial growth because
it suppresses their enzymatic activities which therefore, locks
nutrition in food (Jiang and Lee, 2005; Gonçalves and Gindri
Junior, 2009). Yet, freezing alone causes surface dehydration,
protein denaturation, and lipid oxidation which negatively
impacts flavor, odor, color, and texture of the stored foods (Gao
et al., 2014; Duan et al., 2019). Although shelf life of frozen foods
is extended with synthetic and artificial additives, these chemicals
may cause allergy, health complications or require a secondary
natural compound to become edible-safe (Matuska et al., 2006;
Gultekin and Doguc, 2013). With such shortcomings, researchers
resort to identify suitable biological sources that function as both
food additives and preservation (Cao et al., 2012). After a series
of extract preparations, chitosan (molecular weight: 50,000–
190,000 Da) from crustaceans, insects, and fungi were discovered
with antimicrobial ability (Shahidi et al., 1999; Prashanth and
Tharanathan, 2007; Friedman and Juneja, 2010). In addition,
chitosan derived from natural sources has different viscousness
in room temperature, has low toxicity and is biodegradable and
biocompatible to various foods (USFDA, 2001; Prashanth and
Tharanathan, 2007; Soares et al., 2013).

While heating cleaves the glycosidic bonds of chitosan,
reducing its molecular weight can enhance the antimicrobial
capabilities (Hao et al., 2021). Therefore, heat-treated or
increasing the concentration of naturally sourced chitosan has
been an industrial practice to preserve raw (Ouattar et al., 2000;
Sagoo et al., 2002; Rabea et al., 2003; Soultos et al., 2008; Raafat
and Sahl, 2009; Friedman and Juneja, 2010; Bonilla et al., 2013;
Duan et al., 2019; Hu and Gänzle, 2019; Lee et al., 2019) and
processed meats on the shelf (Darmadji and Izumimoto, 1994;
Georgantelis et al., 2007; Gómez-Estaca et al., 2007; Kim and
Thomas, 2007; Kanatt et al., 2008) with additional applications
that include long distance transport (Casariego et al., 2008;
Cerqueira et al., 2009; Souza et al., 2009; Fernández-Saiz et al.,
2013; Zarandona et al., 2021). Yet, the antimicrobial properties
of naturally sourced chitosan is selective, depending on its
molecular weight, temperature of the storage environment and

the pH of the coated food (Devlieghere et al., 2004; Kong
et al., 2010; He et al., 2016; Xing et al., 2016). For instance,
shrimp chitosan with higher molecular weight (2.3–3.5 × 105

gmol−1) offered weaker antimicrobial capabilities than the lower
molecular weight horseshoe crab chitosan (1.83 × 105 gmol−1)
in comparative assays on food oxidation (Zhao et al., 2010; de
Queiroz Antonino et al., 2017; Krisfalusi-Gannon et al., 2018;
Boudouaia et al., 2019; Pati et al., 2020a).

Researchers learnt that chitosan from marine sources such
as shrimp, crab, lobster, krill, and squid possessed different
molecular sizes and this influenced the number of functional
groups available for antimicrobial capabilities (Younes and
Rinaudo, 2015; Tamzi et al., 2020). Since not all marine resources
are available throughout the year and their yields vary with catch
efforts, researchers explored on the use of heating to reduce
the molecular weight of the derived chitosan. It is learnt that
heating will de-alkyl chitosan and expose more functional groups
whereby, the now less viscous chitosan offers better antimicrobial
efficacy (Souza et al., 2010; Ji et al., 2014). Other methods include
altering the pH of preserved products to arrest the oxidation
process, but this method is less economical and harmful to
consumers (Fan et al., 2009). By far, the promising method to
reduce chitosan molecular weight is heat irradiation after which
several studies made successful comparison between treated and
non-treated chitosan to prolong the preservation of frozen meats
(Abdeldaiem, 2014; Pati et al., 2016, 2020b; Xing et al., 2016;
Hassanzadeh et al., 2017; Lyu et al., 2017; Zhang et al., 2019).

Meanwhile, the mangrove horseshoe crab Carcinoscorpius
rotundicauda has no commercial importance in India except for
indigenous (Noida) preparation into health tonics and pain-relief
ointment and the sparring collection for biomedical research
(John et al., 2018). Elsewhere with similar opinions, the dried
carapace of C. rotundicauda is used for bioactive compound
research (Alam et al., 2015; Luo et al., 2020; Wardiatno et al.,
2021; Xu et al., 2021). With horseshoe crab chitosan, specifically
sourced from the dried carapace of C. rotundicauda claimed to
have the lowest molecular weight than other marine sources,
the present study explores on the use of heat radiation [via
gamma (γ) irradiation] to further reduce the molecular weight
of the derived chitosan for enhanced antimicrobial capability.
The chitosan of different molecular weights, recognized as
irradiated and non-irradiated, are then coated onto shrimp
(Penaeus merguiensis), pomfret (Pampus argenteus) and hilsa fish
(Tenualosa ilisha) which have high commercial value throughout
Asia (AlMomin et al., 2016; De et al., 2019; Hoang et al., 2020).
With novelty on horseshoe crab chitosan being able to display
better antimicrobial capabilities after irradiation, the shelf life
extension of refrigerated shrimp and fish is assessed using lipid
oxidation values, changes to pH and sensory scores within the
15-day storage period as carried out in the present study.

MATERIALS AND METHODS

Materials
A total of three seafood species namely, shrimp (P. merguiensis)
(each weighing about 30 g, average length 33–38 cm), pomfret
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(P. argenteus) (each weighing about 650 g, average length 30–
35 cm) and hilsa fish (T. ilisha) (each weighing about 800 g,
average length 30–39 cm) were selected due to their high
market and nutritional values (Figure 1). All samples were
randomly selected and purchased from 3 vendors certified with
ISO 9001/HACCP (hazard analysis at critical control point) and
seafood good manufacturing practices (SGMP). All the three
vendors were located at a fish market in Naya Bazar, Balasore
(21.5077◦ N, 86.9279◦ E). Simple random sampling was carried
out by collecting a total of 342 shrimp samples out of a harvesting
population of 50 kg (approximately 1,600 shrimp). In terms
of fish, 218 pomfret and 152 hilsa fish were collected out of
approximately 550 and 250, respectively. The simple random
sampling used for sample collection was based on the margin of
error (ME) which was considered as ±0.05 with 95% confidence
level (C) at a sample proportion (SP) of 50%. The sample size was
determined using the following formula:

Sample size =

Population size× A/(A+ Populationsize− 1) (1)

Where,
A = C2× SP× (1− SP)/ME2 (2)

Mangrove horseshoe cab carapace (length 14.4 ± 2.1 cm;
width 14.7 ± 1.8 cm) samples were obtained from Bichitrapur
mangrove sanctuary (21◦35′09.3′′N and 87◦25′21.3′′E) estuary
(Balasore, Odisha, India). Each shrimp/fish sample was further
divided into five equal parts for the later part of the
experimentation. Acetic acid (food grade), hydrochloric acid
(HCl), sodium hydroxide (NaOH), potassium bromide (KBr),
1-butanol, and thiobarbituric acid (TBA) were purchased from
Merck Life Science Pvt. Ltd. (Mumbai, India). The peptone water
was purchased from HiMedia Laboratories Pvt. Ltd. (Mumbai,
India), waterproof polyvinyl dichloride (PVDC) bags (50–70
micron of thickness) were purchased from Caprihans India Ltd.
(Mumbai, India), while double-distilled (DD) water was prepared
in the laboratory.

Preparation of Seafood Samples
The specimens were purchased alive and brought into the
laboratory in live condition and were killed by placing the
samples in chilled water at 4◦C to avoid rigor mortise. A thorough
cleaning was carried out using DD H2O. Water was then allowed
to drain and the samples were left to dry prior to dipping
in the chitosan solution. Freshly cleaned samples (500 g) of
meat/flesh/muscle tissue was cut, weighed and placed separately
(Cao et al., 2020).

Pre-processing of Shrimp Samples
The freshly harvested shrimp samples were drained thrice
with potable water to reduce its microbial load and the mud
adhered 45 min prior to the initiation of the experiment. After
draining, the shrimp was processed manually to remove catgut
and deshelling. The resulted fleshy part was washed thoroughly
with DD water (Tayel et al., 2020). The processing utensils and
equipment used were cleaned with high-pressure water jet to
maintain the sanitation standard operating procedures (SSOP).

Chitosan Solution Preparation
Chitosan was prepared from the waste carapace of mangrove
horseshoe crab (C. rotundicauda) according to previous studies
(Pati et al., 2018, Pati et al., 2020a) and dried at ambient
temperature (30 ± 2◦C). Irradiation of chitosan was performed
using cobalt (Co-60) source at doses of 10 and 50 kGy. The dose
rate used was 10 kGy/h in a gamma cell PX-30 irradiation facility.
The chitosan solutions were prepared by taking 10 g of horseshoe
crab chitosan and dissolving in 500 ml 2% acetic acid. Each of the
above solutions was prepared by stirring the samples for 10 min
at 60◦C for 1 h and the pH was adjusted to five using NaOH
(Xuan and Xuan, 2019).

Sample Dipping
Before coating the samples with chitosan, the collected
shrimp/fish samples were sub-grouped into five batches each
containing 100 g of sample. Batch A was used as control and
consisted of untreated seafood samples (no preservatives). Batch
B comprised of samples treated with 2% glacial acetic acid as a
chemical preservative method. Batches C, D, and E were treated
with different types of 2% chitosan solutions (0, 10, and 20 kGy).
Preservation was carried out by dipping the samples in respective
chitosan solutions for 1 h. After dipping, samples were allowed to
dry for 30 min in an aseptic condition before packaging.

Samples Packing and Storage
Samples were packed into air-sealed PVDC bags before they were
numbered and marked with the packaging date. The samples
were stored in a refrigerator at 4◦C and observed over a 15-day
period (Bharathi et al., 2019).

Characterization
Fourier-Transform Infrared Spectroscopy Analysis
The FT-IR spectra of dried samples of irradiated and non-
irradiated chitosan biopolymer were recorded using Thermo
NicoletTM 6700; Thermo Fisher Scientific, United States. The
observation of the compound was performed by preparing the
powdered samples into KBr pellet and dried before subjection
to ATR-attenuated FT-IR at 4,000–500 cm−1 with sixteen scans
being taken at 2 cm−1 resolution. Different functional groups
against the specific inverse peak of wavenumber (cm−1) had
been calculated for the identification of specific functional groups
present in the structure of non-irradiated and irradiated samples
of the chitosan compound (Jayadevan et al., 2018).

X-ray Diffraction Analysis
The powdered samples of irradiated and non-irradiated chitosan
compound were prepared by lyophilization and then subjected to
X-ray diffraction (XRD) (Panalytical Diffractometer, X’Pert Pro,
United States) at 0.025◦ (2θ) angle and 52◦–45◦ range with 1.25 s
scan time for 1 h with Cu Kα (λ= 1.5406 nm), 45 kV, 30 mA. The
crystalline structure and the lattice planes for the changes in the
irradiated compound were determined. Different lattice planes
against specific diffraction angles were calculated and observed
for the identification of the intrinsic details of the structure from
the relevant diffractogram (Baran et al., 2015; Sarkar et al., 2020).
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FIGURE 1 | Raw fresh shrimp and fish samples. (A) Penaeus merguiensis, (B) Pampus argenteus, and (C) Tenualosa ilisha.

Field Emission Scanning Electron Microscopy
Analysis
The irradiated and non-irradiated chitosan solutions were
prepared at 0, 10, and 20 kGy, the cast was then dropped over
the coverslip and visualized under scanning electron microscopy
(SEM) (Carl ZEISS SMT, Germany) at 20 kV (Bharathi et al.,
2019; Lahiri et al., 2021).

Shelf Life Analysis
Shelf life evaluation was conducted based on physio-chemical and
biological indicators. Physio-chemical indicators used were pH
and thiobarbituric acid reactive substance (TBARS). Total viable
counts (TVC) of microbes was adopted as a biological indicator,
while sensory evaluation was employed to evaluate the product
acceptability and correlate it with physiochemical and biological
parameters. Sampling was carried out on days 0, 10, and 15 for all
irradiated and non-irradiated samples.

pH Analysis
The pH of the sample was measured using the GB/T method
(GB/T 5009.45-2003) with slight modifications. Approximately,
10 g seafood sample was added to 90 ml of distilled water
and filtered. Samples were then incubated for 30 min at room
temperature. A digital pH meter was used to measure the pH
value (Khodanazary, 2019; Lee et al., 2019).

Thiobarbituric Acid Reactive Substance Analysis
Seafood samples (200 mg) were placed in a flask containing 1 mL
1-butanol. Then, 5 mL reagent (200 mg 2-TBA in 100 mL 1-
butanol) was added to the sample before gravity-filtering through

Whatman No. 1 filter paper. Test tubes containing the assay
mixture were vortexed and placed at 95◦C for 120 min in a water
bath before cooling using air temperature. Development of a pink
colored solution indicated that malondialdehyde (MDA) reacted
with TBA (Paparella et al., 2016). A spectrophotometer was used
to analyze the samples at 532 nm. TBA was calculated as mg
MDA/kg sample using Equation (3):

TBA =
(

50×
(

A s− A b
200

))
(3)

where As = absorbance of sample and Ab = absorbance of blank.

Total Viable Counts Evaluation
The TVC of microbes were calculated using the pour-plate
method (AOAC, 2012) where 25 g of each seafood sample
(in triplicates) were aseptically weighed and homogenized with
225 ml of sterilized 0.1% peptone water for 1 min. The
homogenized samples were diluted (1:10) in 0.1% peptone water
before 1 ml of the samples were plated onto plate count agar and
incubated for 48 h at 35–37◦C. Result interpretations were made
after colony-forming unit data (CFU/g) were log-transformed
(Zhang et al., 2019).

Sensory Evaluation
The sensory analysis of all the batches of meat samples was
carried out by 10 semi-trained panelists whom were requested
to score every batch of samples. Each panelist scored the
characteristics from 1 to 9 (9-point hedonic scale) in terms of
color, texture, flavor and overall acceptability of samples (9= like
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extremely, 5 = do not like or dislike 1 = dislike extremely)
(Ehsani et al., 2019).

Statistical Analysis
All experiments were run in triplicate and the data obtained were
subjected to statistical analysis (one-way ANOVA for comparing
results from the five different sample batches). Differences were
considered significant at p < 0.05. The difference between the
mean graphs was constructed using OriginPro8.5.

RESULTS AND DISCUSSION

Characterization
Fourier-Transform Infrared Spectroscopy Analysis
Functional groups were visualized from the wavelengths of
3,435 cm−1 (OH and NH2), 2,922 and 2,871 cm−1 (–CH),
1,835 cm−1 (–CONH amide I), 1,656 cm−1 (NH2), 1,603 cm−1

(–NH), 1,550 cm−1 (–NH), 1,245 cm−1 (amide-III), 1,160 cm−1

(–O), 1,085 cm−1 (–CO and –OH), and 1,030 cm−1 (–CO and –
OH) after FT-IR analysis on irradiated horseshoe crab chitosan
(Figure 2). Comparatively, the FT-IR analysis revealed functional
groups at 3,000–3,800 cm−1 (OH, NH2), 2,850 cm−1 (–CH),
1,645 cm−1 (–CONH–, amide I), 1,550 cm−1 (–NH, amide II),
1,570 cm−1 (CN), 1,300 cm−1 (amide III), 1,103 cm−1 (CO),
and 800 cm−1 (alkyl) wavelengths. Merging the present and
previous opinions (Wang et al., 2016), non-irradiated chitosan
has less functional groups and all functional groups are easily
detected by the FT-IR. Overall, irradiated chitosan possesses
additional –OH (3,070–3,750 cm−1), -NH (3,435.81 cm−1) and –
CH (2,988.94 cm−1) functional groups after γ-irradiation instead
of –NH groups at the peak wavelengths of FT-IR. With the
exposure of γ-irradiation on shrimp chitosan, the deacetylation
or degradation of polysaccharides allows free radicals to cross-
link and produce new functional groups within a crystalline
matrix (Ocloo et al., 2011; Younes and Rinaudo, 2015; Li and
Zhuang, 2020). This outcome causes the molecular weight of
chitosan to become less (Taşkın et al., 2014). While deacetylation
of chitosan is proportional and its molecular weight becomes
reduced with the increased dose of γ-irradiation from 10 to
20 kGy, the irradiated chitosan of C. rotundicauda (and also
Tachypleus gigas – c.a. Pati et al., 2020b) was assumed to have a
lower viscosity, have increased solubility and therefore possess
better antimicrobial capabilities (Ocloo et al., 2011; Xing et al.,
2016; Pati et al., 2020a).

X-ray Diffraction and FE-SEM Analysis
Horseshoe crab chitosan generally has a crystalline lattice
structure with 10.5◦, 20◦, and 27◦ angles (Muley et al., 2019;
Pati et al., 2020a). After 10 kGy irradiation, the horseshoe
crab chitosan has a constant 10.5◦ angled crystal lattice and
additional curvature, demarcated with 2θ = 10.5◦, will become
apparent after 20 kGy irradiation (Figure 3). While chitosan is a
biopolymer, γ-irradiation reduces fibrillar curvatures and shifts
the paradigm of its crystalline structures into a fixed 10.5◦ angle
which corresponds to the chitosan becoming compact (Rajeswari
et al., 2020). The angling from θ = 10.5◦ after 10 kGy irradiation

FIGURE 2 | Chitosan with irradiation at three different irradiations (0–20 kGy).

FIGURE 3 | X-ray diffraction (XRD) of chitosan with irradiation at three different
irradiations (0–20 kGy).

into 2θ= 10.5◦ with 20 kGy irradiation symbolizes the effect of a
crystalline structure becoming steep and re-structured, whereby
the increasing compaction results to reduction of its molecular
weight while this molecule develops into a much smoother
and defect-free form (Ling et al., 2018; Pati et al., 2020b).
Through a visual inspection, non-irradiated chitosan appears
much larger and coarser than irradiated chitosan because of its
molecular folding (Figures 4A–C). The exposure of γ-irradiation
is certain to reorganize chemical bond lengths, giving rise to
smaller pore size between the molecules (Muley et al., 2019).
However, since the horseshoe crab chitosan becomes compact
after γ-irradiation, it possesses more alkyl (–NH) and hydroxyl
(–OH) groups, whereby having bonds made between functional
groups depicts a stable form of crystal lattice (Ling et al., 2018;
Rajeswari et al., 2020).

Shelf Life Analysis
pH Analysis
The exposure conditions for chitosan were essential for its
chemical stability, particularly to arrest any underlying microbial
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FIGURE 4 | Field emission scanning electron microscopy of chitosan irradiated at three different irradiation ranges (A) 0 kGy, (B) 10 kGy, and (C) 20 kGy irradiation
source.

enzymatic activities. With the varying 0.1–0.5 pH (p < 0.05) in
refrigerated conditions, hilsa fish meat appeared to be slightly
acidic with pH 6.3 ± 0.9, the lowest compared to pomfret (pH
∼6.3) and shrimp meat (pH ∼6.9). Within 15 days after the
20 kGy irradiated chitosan coating, the pH of shrimp meat
increased by 23.18%, 18.75% in pomfret, and 26.98% in hilsa fish
(Figure 5). Comparatively, without chitosan treatment (control),
the pH of shrimp meat increased by 40.58%, 43.75% in pomfret,
and 55.56% in hilsa fish. All refrigerated samples showed an
increasing trend of pH for the first 5 days, an observation that
conforms to the dissolution of CO2 (Manju et al., 2007; da Silva
Santos et al., 2017; Cao et al., 2020). However, the increasing
trend of pH leveled off after 10 days of refrigeration suggests
that metabolic enzymatic activities within the meat and among
microbes have reached an inactive plateau (López-Caballero
et al., 2005). Therefore, the pH of meats would increase very
minutely after 10 days of cold-storage, regardless with or without
the addition of chitosan (Figure 5). However, the freshness, an
attribute of moisture and taste locking, pertains to the type of
preserving method.

Thiobarbituric Acid Analysis
The oxidation of fatty acids with three or more double
bonds results in malonaldehyde production and this compound
negatively impacts color, flavor, and odor food when stored for
long periods (Jeon et al., 2002). The detection of high TBA
beyond 2 mg malonaldehyde/kg in fish meat symbolizes the
effects of spoilage (Jeyakumari et al., 2016). In the present study,
all meat products without the chitosan coating and with acetic
acid coating registered more than 2 mg/kg TBA on day 0 while

with the γ-irradiated chitosan coating, shrimp meat contained
0.6 ± 0.03 mg/kg TBA, pomfret contained 0.26 ± 0.01 mg/kg
TBA and hilsa fish contained 0.31 ± 0.01 mg/kg TBA (Figure 6).
After 15 days, the control groups (acetic acid preservation and
without any treatment) recorded more than 2 mg/kg TBA in
the meat. Meanwhile, samples coated with 20 kGy chitosan had
less (0.38 mg/kg) TBA readings than the meats coated with 10
kGy chitosan (1.02 mg/kg TBA) after 15 days of refrigeration
(Figures 5A–C; p < 0.05). This analysis indicated that partial
dehydration from 15-day refrigeration allows some fatty acids to
oxidize in the meats but, the selection of appropriate preserving
agents such as natural (irradiated chitosan) against chemical
(acetic acid) is crucial to increase the shelf life quality of
the refrigerated meats (Fan et al., 2009; Guizani et al., 2014;
Hassanzadeh et al., 2017). The present findings thus show that
cold-storage alone as depicted with the control group (without
chitosan coating) is proven ineffective to reduce lipid oxidation
and therefore, reduces the quality of meat when stored for long
durations (Sneddon, 2009).

Total Viable Count
Non-treated meats would attract microbial inhabitants which aid
the rotting process. In the food industry, raw salmon (Salmo
salar), grass carp (Ctenopharyngodon idellus), and Wuchang
bream (Megalobrama amblycephala) filets intended for long-
term storage are added with chitosan so that delay to microbial
metabolism would decrease their proliferation rate (López-
Caballero et al., 2005; Gómez-Estaca et al., 2010; Souza et al.,
2010; Fernández-Saiz et al., 2013; Yu et al., 2017). This practice,
by using 10 and 20 kGy irradiated chitosan, maintained the TVC
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FIGURE 5 | pH value of samples (A) Penaeus merguiensis, (B) Pampus
argenteus, and (C) Tenualosa ilisha. Batch A: normal untreated, Batch B:
treated with 2% glacial acetic acid, Batches C, D, and E were treated with
different types of 2% chitosan solutions (0, 10, and 20 kGy). Value is provided
as mean ± SE (n = 3). The same letters (a–e) over the bar plot stands for
insignificant difference (p > 0.05).

of pomfret, and hilsa fish below 6.3 log CFU/g, an acceptable
food safety benchmark (Jeyakumari et al., 2016; Figure 7). It was
difficult to sustain minimum viable counts in shrimp because
on day 0, non-treated samples recorded 4.3 log CFU/g, acetic

FIGURE 6 | Thiobarbituric acid value of each samples (A) Penaeus
merguiensis, (B) Pampus argenteus, and (C) Tenualosa ilisha. Batch A:
normal untreated, Batch B: treated with 2% glacial acetic acid, Batches C, D,
and E were treated with different types of 2% chitosan solutions (0, 10, and
20 kGy). Value is provided as mean ± SE (n = 3). The same letters (a–e) over
the bar plot stands for insignificant difference (p > 0.05).

acid treated samples reached 5.7 log CFU/g, while chitosan
treated samples exhibited 4.36 log CFU/g viable counts. All
chitosan treated and non-treated shrimps had viable counts
that gradually increased within the 15-day refrigeration period

Frontiers in Marine Science | www.frontiersin.org 7 May 2021 | Volume 8 | Article 664961

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-664961 May 5, 2021 Time: 12:59 # 8

Pati et al. Chitosan Coating on Shelflife Extension

FIGURE 7 | Total viable counts of samples (A) Penaeus merguiensis,
(B) Pampus argenteus, and (C) Tenualosa ilisha. Batch A: normal untreated,
Batch B: treated with 2% glacial acetic acid, Batches C, D, and E were
treated with different types of 2% chitosan solutions (0, 10, and 20 kGy). Value
is provided as mean ± SE (n = 3). The same letters (a–e) over the bar plot
stands for insignificant difference (p > 0.05).

but, samples treated with chitosan (10 and 20 kGy) did not
exceed 8 log CFU/g in comparison to non-treated samples that
exceeded 10 log CFU/g (p < 0.05). Moreover, the rate (days) of
viable count growth was delayed in 20 kGy irradiated chitosan
than when 10 kGy chitosan was used to coat the meats, which
suggest that additional –NH and –OH groups in the further-
compacted crystal lattice of 20 kGy chitosan demanded more

FIGURE 8 | Sensory scores of samples (A) Penaeus merguiensis,
(B) Pampus argenteus, and (C) Tenualosa ilisha. Batch A: normal untreated,
Batch B: treated with 2% glacial acetic acid, Batches C, D, and E were
treated with different types of 2% chitosan solutions (0, 10, and 20 kGy). Value
is provided as mean ± SE (n = 3). The same letters (a–d) over the bar plot
stands for insignificant difference (p > 0.05).

microbial metabolic energy to break the bonds (Tsai et al., 2004;
Song et al., 2011).

Sensory Evaluation
The sensory quality of food products revolves with texture, odor,
gloss and an appeal (non-stale) to reach customer satisfaction.
During refrigeration, the non-treated and acetic acid treated
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meats changed their color from gray to gray–white with an odor
score that immediately reduced and ranged 4.71–4.92 in 5 days
before greatly reducing to <1.0 in 15 days (Figure 8). It was
different for hilsa fish, shrimp and pomfret that received the
chitosan coat because after 5 days, their odor scores were 6.39–
6.63 and the score only reduced to 5.04 (for 20 kGy irradiated
chitosan) and 4.83 (for 10 kGy irradiated chitosan) within 15 days
of refrigeration. It is understood that refrigeration alone is
ineffective after 5 days because microbial action to decay the meat
will produce a putrid odor (Yu et al., 2017). However, adding a
preservative such as (non- or irradiated) chitosan is sufficiently
promising to delay the decay of meats and this maintains their
odor score above five, which is the baseline score for safe-to-
consume shrimp and fish (Yao et al., 2015).

CONCLUSION

The effects of γ-irradiated horseshoe crab chitosan on the shelf
life of fish and shrimp were evaluated based on microbial activity,
pH, TBA, and sensory qualities. It is understood that (10 and
20 kGy) irradiated chitosan had the lowest molecular weight
(∼1.83 × 105 gmol−1), possessed additional –NH and –OH
functional groups and the 10.5◦ angles between bonds in the
crystal lattice maintained the chitosan within a compact structure
and assured this new polymer resistance against microbial action.
Overall, high dose (20 kGy) irradiation developed a more effective
chitosan polymer for preserving marine meats to successfully
extend the shelf life of marine meats beyond the capabilities
of refrigeration. The present findings indicate that horseshoe
crab chitosan benefits the postharvest industry during long-
term transportation of raw meats because coating foods with the
irradiated version of this polymer can maintain the freshness and
prolong the food shelf life for at least 15 days.
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