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In this study, the nonlinear local Lyapunov exponent and nonlinear error growth
dynamics are employed to estimate the predictability limit of oceanic mesoscale
eddy (OME) tracks quantitatively using three datasets. The results show that the
mean predictability limit of OME tracks is about 53 days for cyclonic eddy (CE) and
52 days for anticyclonic eddy (AE) in the Kuroshio Extension (KE). The predictability
limit varies spatially. The predictability limit of OME tracks is higher for the eastern
region (about 62.5 days) than that for the western part (about 46 days). The CEs (AEs)
predictability limit is relatively high in the southern (northern) region. Additionally, the
lifetime, amplitude, and radius of OME are closely related to the predictability limit.
The long-lived, large-amplitude, and large-sized OMEs tend to be more predictable.
The eastern region often generates long-lived and large-size OMEs, thereby obtaining
a higher predictability limit of OME tracks. Furthermore, the relationship between the
predictability limit and the smoothness of the OME tracks was investigated using a
metric to describe the track’s complexation. Usually, OMEs with high predictability limit
values often show extender and smoother trajectories. The effects of the surface ocean
circulations and the surface winds are also investigated. The strong and energetic
currents lead to a short limitation in the west region.

Keywords: mesoscale eddy, predictability limit, Kuroshio Extension, nonlinear local Lyapunov exponent (NLLE),
eddy tracks

INTRODUCTION

Oceanic mesoscale eddies (OMEs), which are ubiquitous all over the world ocean, are coherent
rotating structures of ocean-spanning tens to hundreds of kilometers and lasting a few days to
several months. OMEs could cause transports of mass, heat, salt, and nutrients across the ocean with
the magnitude comparable to the large-scale currents due to their nonlinearity (Chen et al., 2007;
Ferrari and Wunsch, 2009; Early et al., 2011; Xiu and Chai, 2011; Zhang et al., 2014); thereby, they
become critical for issues such as the water mass distribution (e.g., Zhang et al., 2014), the dynamics
of the general circulation (e.g., Hallberg and Gnanadesikan, 2006), and the air–sea interactions
(e.g., Farneti et al., 2010), etc. Additionally, the short-term ocean forecast at synoptic and up to
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intraseasonal time scales can be significantly affected by
OMEs (Hurlburt et al., 2009; Pinardi et al., 2011). Therefore,
understanding the predictability of OME propagation and
magnitudes is crucial for the short-term ocean forecast
and prediction.

Recently, the predictability of OMEs has been investigated in
some studies. Based on an oceanic assimilated system, Xu et al.
(2019) found that the generation, evolution, and propagation
paths of two anticyclonic eddies (AEs) can be well reproduced
when the observed amplitude is >8 cm or the nonlinear
parameter is >2 for about a month. In addition, a good initial
condition after assimilating observations can help improve the
quality of eddy prediction. Li et al. (2019) built up a predictive
model using the multiple linear regression method to predict
the OME tracks for 4 weeks in the northern South China Sea.
Moreover, the predictive model performance strongly depends
on the inherent difficulty of the trajectory forecast. Wang
et al. (2020) have tried to predict the OME properties and
propagation trajectories using machine learning methods. Their
forecast model has achieved a better performance according
to their evaluation for a 1–4-week forecast. They also found
that the prediction performance of the models improved when
OME amplitude, radius, and maximum circum-average speed
increases. The possible time scale of OMEs for predictions have
been tested and proposed before in the previous studies, but the
upper limit of the time scale of the OME propagations after their
generations still have not been investigated yet.

A method based on nonlinear local Lyapunov exponent
(NLLE) was proposed by Chen et al. (2006) and Ding and Li
(2007), which can quantitively estimate the predictability limit
of n-dimensional or a single variable within atmospheric and
oceanic systems. The NLLE measures the average growth rate
of nonlinear dynamic systems’ initial errors without linearizing
the equations. Compared with the traditional Lyapunov exponent
(LE), the NLLE is more suitable and accurate for quantitatively
estimating the predictability limit of a nonlinear chaotic system.
Several studies have applied the NLLE method to the study
of oceanic and atmospheric predictability, such as geopotential
height (Ding and Li, 2009), sea surface temperature (Li and Ding,
2013), and precipitation (Liu et al., 2016). The NLLE method
was recently used to estimate the predictability limit of tropical
cyclones (TCs) tracks (Zhong et al., 2018), which is analogous
to OME tracks, indicating that the method might be applied to
the trajectory dataset and to estimate the predictability limit of
particle tracks.

In the present study, the NLLE method has been adopted to
estimate the predictability limit of OME tracks in the Kuroshio
Extension (KE) region using eddy propagation datasets. It is
also the first time that the OME tracks’ predictability limit has
been estimated. Additionally, the factors affecting the length
of the limitation, including the OME properties and the large-
scale surface current of the surrounding environment, have
also been discussed here. The remainder of this paper is
arranged as follows; in The OME trajectory data and method, the
details of the datasets and method will be well discussed. The
results are shown in Results. Conclusion and discussion includes
concluding remarks and discusses the nonlinear parameter

of OME, OME datasets, the differences between previous
studies and eddy–eddy interaction. These results may help us
better understand the predictability limit of OMEs and further
build an observational reference for the operational prediction
for OMEs.

THE OME TRAJECTORY DATA AND
METHOD

Data
In this study, the trajectories of the OMEs for January 1993–
April 2015 derived from AVISO sea level anomaly from Chelton
et al. (2011) were employed as the primary dataset to compute the
predictability limit of the OME tracks over the KE region1, called
Chelton hereafter. The OME dataset contains the daily positions
of the OMEs using longitude and latitude, their amplitudes, and
radii. Two thousand seven hundred fifty OMEs with a lifetime
over 28 days occur in the KE region (30◦N–40◦N, 143◦E–175◦W)
during the study period.

We also used the other two OME datasets from Faghmous
et al. (2013) (called Faghmous) and Dong et al. (2011)
(called Dong) to cross-compare the results and to estimate
the uncertainties from the datasets. These two OME datasets
contain the same eddy features as Chelton but with a
weekly interval. We use the original time resolution of OME
datasets to calculate the predictability. A total of 3,330 and
3,503 OMEs are for Faghmous and Dong from 1993 to
2010, respectively. The differences in OME characteristics
among Chelton, Faghmous, and Dong have been primarily
evaluated by Meng et al. (2020). Because the input data,
the criteria of eddy identification, and the implementation
of the method are different from each other, the results
from these three datasets are not exactly alike. However, the
normalized spatial patterns of major characters are similar in the
target region.

The NLLE Approach
The NLLE of a single variable x on time t0 is defined as follows:

λ (x (t0) , δ (t0) , τ) =
1
τ
ln
|δ (t0 + τ)|

|δ (t0)|
, (1)

where λ depends on the initial state x(t0) of the reference orbit
in phase space, the initial error δ (t0) defined herein as the
difference in reference OMEs and its local dynamical analogs
(Zhong et al., 2018), and the time step τ. λ > 0 implies that the
distance between similar initial orbits increases with time, and
their correlation is weakened with time. The large value of λ

means the initial error grows more rapidly.
Figure 1 is a schematic diagram of the mean error growth

of a sufficiently small perturbation for a dynamical system
obtained by traditional LE (blue dash line) and NLLE (red solid
line), respectively. The NLLE differs from the traditional LE,
which only depends on the initial state x(t0) and time step τ

1http://www.aviso.altimetry.fr/en/data/data-access
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FIGURE 1 | Schematic diagram of the mean error growth of a nonlinear
dynamic system obtained by nonlinear local Lyapunov exponent (NLLE) (red)
and traditional Lyapunov exponent (LE) (blue) approach. The mean error
growth (y-axis) uses a logarithmic scale to amplify the differences between the
linear and nonlinear error evolutions. Tp is the time that NLLE is reaching
saturation status, which also stands for the predictability limit of NLLE
(adopted and modified from Zhong et al., 2018).

(Chen et al., 2006; Li and Ding, 2011). In the beginning, two
methods show a similar linear growth rate. The error growth
of NLLE started to deviate from the development of LE after
the linear rapid increasing period, then entered a nonlinear
phase with a much-decreasing growth rate, finally reaching a
saturation state when the growth rate approaches zero. When
the mean error growth comes to the saturation level with
constant error growth, all the initial information is lost, and
the prediction is not skillful. The predictability limit herein is
defined as the time at which error reaches the saturation level
(nonlinear stochastic states), Tp, so the predictability limit of
a system at initial state x (t0) can be quantitively determined
(Ding and Li, 2007; Li and Ding, 2011). However, the LE shows
that error is always increasing monotonously. The difference
indicates that when errors increase to some value, LE theory
is not applicable anymore. NLLE theory is required to describe
the error growth and obtain the predictability limit. Therefore,
the NLLE approach is more suitable for describing infinitesimal
error evolution with the long-time interval (Chen et al., 2006;
Ding and Li, 2012).

The ensemble mean NLLE over the global attractor of the
dynamical system is given by

λ̄i [δ (t0) , τ] = 〈λi [x (t0) , δ (t0) , τ]〉N (N →∞) (2)

where <>N denotes the ensemble mean of samples of sufficient
sample size N(N →∞), and global attractor contains all the
limit cases of the large-scale and long-term behavior of the
system. The mean relative growth of the initial error (RGIE) can
be obtained by

8̄i [δ (t0) , τ] = exp
{
λ̄i [δ (t0) , τ] τ

}
. (3)

Based on the nonlinear error growth theory (Li and Ding, 2011),
RGIE can be obtained as follows:

8̄i [δ (t0) , τ] P
→C(N →∞) (4)

where P
→ denotes the convergence in probability, and the

constant C is considered as the theoretical saturation value of
8̄ when sample size N tends toward infinity. According to the
definition, the predictability limit can be obtained to be Tp
in Figure 1.

Estimation of NLLE From Eddy Tracks
Dataset
Before computing NLLE using OME tracks, the analogous OMEs
must be found out first. Li and Ding (2011) has developed an
efficient algorithm based on local dynamical analogs (LDAs) to
calculate the NLLE and its derivatives using observational data.
For a chaotic system, the evolutions of two states are sure to be
analogous over a short time interval if they are analogous at the
initial stage (Lorenz, 1969; Wolf et al., 1985). The LDAs algorithm
aims to seek analogous initial states and evolution patterns from
the time series. Zhong et al. (2018) obtained the analogous TC
tracks using LDAs. The analogous TC tracks are determined
by the initial distance, evolutionary distance, seasonality, and
initial intensity. Then, the predictability limit of TC tracks is
measured by the divergence of the evolutionary tracks of two
initially analogous OMEs.

Following Zhong et al. (2018), the determination of two
analogous OME tracks is based on four factors: (a) initial distance
d0 = d (t0), which is the distance between reference OME and
analogous OME at the initial state (Figure 2); (b) the evolutionary
distance de, which can be obtained by

de =

√√√√ 1
K + 1

K∑
k=0

[
d(tk)

]2
(k = 0, 1 . . . , K), (5)

where de is the mean distance between two analogous OMEs over
the initial stage (from t1 to tK) after OMEs have formed; (c) the
polarity of OMEs, which have been classified into cyclonic eddies
(CEs) and anticyclonic eddies (AEs); (d) the intensity of OMEs,
which is defined as the maximum of sea surface height anomaly.
A minimal value of initial distance (d0) ensure that the genesis
location of two independent OMEs is exceptionally close, and
the small value of de ensure that the moving trajectories of two
OMEs are consistent. Because the different polarity of OMEs have
different physical characters and different spatial distribution
(particular in the study region, Ji et al., 2018), it is necessary to
seek analogous OMEs based on resembling polarity. However, no
polarity preferences were found in the predictability limit of OME
tracks in the following study. The conditions above are likely to
exclude the nonanalogous OMEs as much as possible, thereby
finding a truly local analog of the reference OME.

In the LDAs algorithm, the sum of d0 and de (dt) is used to
determine the analog of two OMEs,

dt = d0 + de (6)

If dt is sufficiently small, the two OMEs is analogous at the initial
time. The nearest neighbor of the reference OME can be chosen
if dt is the minimum.

For every reference OME, we could identify its analogous
OMEs if the total distance dt is small enough (Figure 2). The
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FIGURE 2 | The schematic diagram of the procedure to calculate the
nonlinear local Lyapunov exponent (NLLE) from the observational eddy track
data. The trajectory of an analogous oceanic mesoscale eddy (OME) of the
reference OME is denoted as the analogous trajectory. The absolute distance
error’s growth rate between the reference OME and analogous OME at each
time step (tk, k = 0, 1, 2, 3, . . .) is used to estimate the NLLE.

growth rate of the initial distance (error) at every time step,
tk(k = 0, 1, 2, 3, . . .), is denoted as follows:

λi (tk) =
1
tk
ln
d(tk)
d(t0)

,
(
i = 1, 2, 3, . . . ,N; k = 0, 1, 2, 3, . . . ,M

)
,

(7)
The above steps are repeated for each analogous OME pair. From
Equations (2), (3), and (4), we can obtain the approximation of
the mean RGIE as follows:

8̄ (tk) = exp
[
λ̄ (tk) tk

] P
→C,

(
k = 0, 1, 2, 3, . . . ,M

)
. (8)

Sensitivity Test of the Distance, the Time
Steps, and the Sample Size
There are three primary parameters in the NLLE method above:
the metrics of distance dt , the time steps of K for de, and
the sample size. Before analyzing the results, these parameters’
sensitivity to the predictability limit has been scrutinized at first.
Figure 3 shows the estimated predictability limit of OME tracks
as a function of the dt , K, and the sample size.

A sufficiently large number of samples are required when
applying the NLLE to estimate the predictability limit (Liu
et al., 2016). However, the number of observational OMEs is
finite. The OMEs track datasets are limited by the satellite
observation period, which is only about 20–25 years. To obtain
sufficient samples, one reference OME generally corresponds
to multianalogous OMEs within limits of dt , which forms
multianalogous pairs—on the other hand, increasing the criterion
of dt also may find more analogous OMEs.

In Figure 3A, the predictability limit decreases with dt
increasing from 50 to 110 km for every 10 km, which can
be explained by Equation (1). The increases in dt means the
increase in the initial error. As the initial error increasing, the
NLLE value becomes smaller, and then, the predictability limit
decreases. Here, we refer to the mean radius of the OMEs in the
KE region (about 80 km) as the dt value. In this situation, the
number of the analogous pairs we found reaches 2,791, which is

A

B

C

FIGURE 3 | The sensitive tests of predictability limits of the oceanic
mesoscale eddy (OME) tracks as a function of (A) dt (units: km), (B) K (units:
days), and (C) the minimum sample size. The blue points are for CE, and red
points are for AE.

a sufficient sampling based on the following results. Note that all
the error herein is the distance of the center point between two
independent OMEs.

According to the NLLE theory, two states are analogous at the
initial time if their evolutions in phase space are analogous over
a short time. The number of time steps, K, can help us exclude
local nonanalogous states as much as possible. Figure 3B shows
a gradual increase in predictability limit with the increasing value
of K. We take no more than 6% of the average lifetime of the
OMEs in the KE region as the value of K. A large K value weakens
the error growth rate in the initial stage. Here, the initial time
interval is 10 days.

The sample size is also a key parameter. The minimum sample
size for computing the mean value of RGIE at a time tk is
examined in Figure 3C. The predictability limit’s value becomes
stable between 200 and 500, increasing 50 for every step, which
means more than 200 samples must be used to get a stable value of
the predictability limit. Here, we set the sample threshold as 300.

Frontiers in Marine Science | www.frontiersin.org 4 July 2021 | Volume 8 | Article 658125

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-658125 June 26, 2021 Time: 19:13 # 5

Meng et al. Mesoscale Eddy Tracks Predictability

RESULTS

The Properties of OMEs
Before estimating the predictability limit of OME tracks, we first
examine the properties of OMEs in the KE region. According
to Table 1, the differences between AEs and CEs in numbers,
area–mean lifetime, amplitude, and radius are not significant.
However, we found a large contrast for the CEs and AEs in the
geostrophic distributions between northern and southern and
between the eastern and western parts of the KE region. Previous
studies have already pointed out that eddies’ lifetime longer than
50 weeks and shorter than 20 weeks are attributed to two different
generation mechanisms (Ji et al., 2018).

Figure 4 shows the spatial distribution of the mean properties
of OMEs in the central KE region for CEs (left panel) and
AEs (right panel) in 2◦ × 2◦ grids, together with zonal and
meridional mean curves. There is a smaller number of OMEs
around the jet stream, around 30◦N. Much more AEs tend to
occur in the northern part of the region. The long-lived CEs

TABLE 1 | The mean properties of the cyclonic eddies (CEs) and anticyclonic
eddies (AEs) in the Kuroshio Extension (KE) region and its four subregions, namely,
north (35◦N–40◦N, 143◦E–175◦W), south (30◦N–35◦N, 143◦E–175◦W), west
(30◦N–40◦N, 143◦E–160◦E), and east (30◦N–40◦N, 160◦E–175◦W) during the
period of 1993–2015.

Mean Number Lifetime (day) Amplitude (cm) Radius (km)

CE AE CE AE CE AE CE AE

All 1392 1358 128 139 15.3 14.5 88.0 91.8

North 820 649 119 154 11.7 17.0 86.1 96.7

South 572 709 139 124 18.3 11.3d 89.7 88.8

West 642 640 114 124 19.0 17.5 86.2 90.5

East 750 718 139 151 12.2 11.7 89.6 93.0

and AEs locate on either side of the southern and northern
areas of KE, CEs in the south part, and AEs in the north
region. Similarly, the large amplitude values for CEs and AEs
are also in the southern and northern regions. The mean radii

A B

C D

E F

G H

FIGURE 4 | The means properties of the oceanic mesoscale eddies (OMEs) from Chelton in 2◦× 2◦ grids for cyclonic eddies (CEs) (left panel) and anticyclonic
eddied (AEs) (right panel). Panels (A,C,E,G) are the occurrence number, lifetime (unit: days), amplitude (unit: cm), and radius (unit: km) for CEs, respectively. Panels
(B,D,F,H) are the same as panels (A,C,E,G) but for AEs. The black contours show the mean absolute dynamic topography from AVISO (MADT, unit: cm) during
1993–2015. The two dashed lines at 35◦N and 160◦E divide the area into four subregions. The right and bottom sides of each figure are the zonal and meridional
mean results. Blue and the red color represents CEs and AEs.
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A B

C D

E F

G H

FIGURE 5 | The oceanic mesoscale eddy (OME) trajectories with lifetimes shorter than 70 days for (A) westward OMEs and (B) eastward OMEs. Panels (C–F) are
the same but for 70–182 days and more than 182 days. Panels (G,H) are normalized trajectories of OME tracks for all cyclonic eddies (CEs) (blue) and anticyclonic
eddies (AEs) (red), respectively.

of OMEs are relatively larger around the central axis of KE
near 35◦N.

Additionally, the OMEs properties are also different between
the western and the eastern regions in the KE. The mean lifetime
of OMEs in the east of KE is 25 days larger than that in the
western part, and the radius shows the same trend (Table 1
and Figures 4C,D). Conversely, the mean amplitude of OMEs is
larger in the west of KE, with 18 cm in the west and 12 cm in the
east (Table 1 and Figures 4E,F).

We also investigated the characteristic of OME tracks for
AEs and CEs in Figure 5. We found that more than 74%
(2028) OMEs propagated westward, and only 26% (722) OMEs
had a net eastward displacement. The ratio is like the values
of Chelton et al. (2011) for the global domain, about 75 and
25%. The eastern propagation of OMEs is primarily caused
by the strong eastward currents in this area (Chelton et al.,
2011). To better see the tracks, we divided OMEs into three
groups based on lifetime: <70 days, 70–182 days, and more
than 182 days are shown in Figures 5A–F. The criterion is

according to both the average lifetime and Chelton et al. (2011).
The average lifetime is about 140 days in this region, and
we set half of the average lifetime as the short-lived criterion.
Chelton et al. (2011) used 182 days (26 weeks) as a criterion
to analyze relative long-lived eddy trajectories. It is also long
enough to represent the long-lived eddies in the KE region.
The number of each polarity is labeled on the top of each
panel. One notable characteristic is that the proportion of
the eastward OMEs is much less in the long-lived OMEs.
Another feature is that eastward CEs and AEs tend to occur
in the north and south of KE. This phenomenon is evident
in Figures 5B,D.

To measure the complexation of OME tracks, we define an
eddy complexity index (CI) of OME trajectory as follow:

CI = D/L (9)

where D is the distance from the initial position to the
termination position, and L represents the eddy trajectory’s
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A

B

C

FIGURE 6 | The mean error growth of all oceanic mesoscale eddy (OME)
tracks in the Kuroshio Extension (KE) region obtained datasets of (A) Chelton,
(B) Faghmous, and (C) Dong. The blue curves are for cyclonic eddies (CEs),
and the red ones are for anticyclonic eddies (AEs). The dashed line represents
the 95% level of the saturation value obtained by the mean value after the
60th day.

distance during the part of or entire lifespan. CI is a positive
number between 0 and 1. The more complex of the trajectory
corresponds to the smaller of the CI. Figures 5G,H are
normalized trajectories of OME tracks for all CEs (blue) and
AEs (red). We found that CEs and AEs tend to have poleward
and equatorward meridional deflections, respectively. This is
consistent with the characteristic of eddy propagations revealed
by other studies (e.g., Cheng et al., 2014). CEs and AEs have
similar values of CI, 0.22. The eddy trajectories are usually about
five times longer than the distance between the generation and
termination position in this region. This also indicates that the
predictability of CEs and AEs trajectories may have no significant
difference in the whole KE region.

We also investigated the characteristic of the analogous OMEs
only. The number of OMEs, which has found analogs, is 1593,
accounting for 58%. The properties of analogous OMEs show that
the spatial distribution of the analogous OMEs shares a similar
pattern (Supplementary Figure 1), and the probability density
function is identical (Supplementary Figure 2). Therefore,
selecting analogous OMEs could represent the total samples in
the KE region to estimate the predictability limit.

A

B

FIGURE 7 | Spatial distribution of the area means predictability limit (days) of
(A) cyclonic eddy (CE) and (B) anticyclonic eddy (AE) tracks in 5◦ × 5◦ grid
boxes.

Mean Predictability Limit of the OME
Tracks in the KE Region and Its
Subregions
Figure 6 shows the CE and AE tracks’ mean error growth
for the entire KE region from three datasets. Here, the mean
error growth represents the RGIE, which is defined as the ratio
of the real-time track error at the time of evolution to the
initial distance. Based on the NLLE approach and the LDAs
algorithm, the mean error growth of OME tracks can be obtained
through Equation (8) using three eddy tracks datasets. The
mean error of the OME tracks grow quickly at the initial stage,
then enters a nonlinear growth phase. After 60 days, the error
growth rate is almost zero, so the estimated saturation value
is defined by the average of the relative error growth after the
60th day.

To reduce the effects of sampling fluctuations, we define the
predictability limit as the time at which the mean error growth
reaches 95% of saturation value following previous studies (Ding
and Li, 2009; Li and Ding, 2013; Ding et al., 2016; Zhong et al.,
2018). According to the saturation error, we determine that the
predictability limit of OME tracks is 53 for CEs and 52 for AEs
from Chelton datasets (Figure 6A). It should be noted that the
saturation level mainly depends on the dynamical characteristics
of the nonlinear system itself, and error depends on the analogous
OMEs. Hence, it is, to some extent, a relatively objective criterion
to quantitatively determine the predictability limit.

To estimate the uncertainties of the predictability limit due to
datasets, we further calculated the values from both Faghmous
and Dong (Figures 6B,C). The predictability limits of OME
tracks obtained from these two datasets are primary in agreement
with the results shown in Figure 6A, with the predictability values
of 51/48 days for Faghmous and 53/53 days for Dong, <5% of
Chelton’s values. This also indicates that the results seem not
dependent much on the datasets or the methods to derive the
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A B

C D

FIGURE 8 | The same as Figure 6, but for the mean error growth of the oceanic mesoscale eddy (OME) tracks in the (A) eastern, (B) western, (C) northern, and (D)
southern parts of the Kuroshio Extension (KE) region for Chelton. The blue curves are for cyclonic eddies (CEs), and the red ones are for anticyclonic eddies (AEs).
The dashed line represents the 95% level of the saturation value obtained by the mean value after the 60th day.

A B

C D

FIGURE 9 | Mean tracks of the oceanic mesoscale eddies (OMEs) in the (A) East, (B) West, (C) North, and (D) South subregions. The blue curves are for cyclonic
eddies (CEs), and the red ones are for anticyclonic eddies (AEs). The value of the Complexity Index (CI) of each mean trajectory is also shown in each figure. Before
the slashes, the values are CIs for the first 60 days, while the whole lifetime after the slashes. The blue curves are for CEs, and the red ones are for AEs.

eddy tracks. Hereafter, we mainly use the Chelton to discuss the
predictability limit of the OME tracks.

We compute the spatial distribution of the OME tracks’
predictability limit obtained from Chelton (Figure 7). To
calculate the spatial distribution, we first quantitatively estimated
the predictability limit of the individual OME track. Then, the
individual predictability limit was then averaged on 5◦ × 5◦grids
based on the generation locations. The predictability limit in
the KE region (black box of Figure 7) ranges from 36 to
67 days and primarily affects by the genesis location of CEs
and AEs. The predictability limit of the CE (AE) tracks in
the southern (northern) part (20◦N–35◦N) is more significant
than those in the northern (southern) part (35◦N–40◦N). These
patterns are similar to the spatial distribution of number,
polarity, lifetime, amplitude, and radius (Figure 4). Therefore,

we speculate that the predictability limit might be related to
eddies properties.

We further divided the entire region into four subregions:
south (30◦N–35◦N, 143◦E–175◦W), north (35◦N–40◦N,
143◦E–175◦W), west (30◦N–40◦N, 143◦E–160◦E), and east
(30◦N–40◦N, 160◦E–175◦W), as the black box shown in
Figure 7. The mean error growth of the OME tracks in the
four subregions is shown in Figure 8. The mean errors grow
more rapidly and reach a saturation state faster in the western
region than in the eastern region (Figures 8A,B). The CE
and AE tracks’ overall predictability limit in the east region
of KE is 65 and 60 days, which are approximately 2 weeks
longer than that in the west, 52 and 40 days. Interestingly,
CE tracks’ mean error increases more quickly and rapidly
reaches a saturation level than that of AE tracks in the
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northern region, with the predictability limits of 54 and 66 days
for CEs and AEs, respectively (Figure 8C). However, the
situation is opposite in the southern region; CE tracks have
a larger predictability limit (56 days) than that of AE tracks
(42 days) (Figure 8D).

According to the analysis above, there is a significant spatial
pattern in the OME tracks’ predictability limit. To understand it,
we show the mean trajectories of all the analogous OMEs in four
subregions in Figure 9 and compute the CI of mean trajectories
for the first 60 days and the whole period. We can find that the
OMEs with smooth trajectories or large CI values tend to have
longer predictability limits. It is evident that trajectories for both
CEs and AEs in the eastern region are much smoother than those
in the western region (Figures 9A,B). The CIs in the eastern
region (0.82 for CEs and 0.93 for AEs) are also larger than those
in the western region (0.61 for CEs and 0.86 for AEs) during
the initial stage, even in the whole period. This can explain the
longer predictability limit in the eastern part. The complexity of
the western region’s trajectories might relate to the location close
to the boundary or the relatively stronger background currents
in this region. The CI also can explain the contrast between the
southern and northern regions (Figures 9C,D). The tracks of CEs
(AEs) in the northern (southern) part of the KE region have a
shorter predictability limit and lower CI value than that of the
southern region.

Predictability Limits for Different
Lifetimes, Amplitudes, and Radii
The above section shows that the predictability limit of OME
tracks vary in space. The predictability limit’s spatial distribution
shares some common features with OME properties’ spatial
distribution. The previous study of Early et al. (2011) suggested
that the zonal propagating speeds of OMEs are related to
their amplitude and size using a reduced gravity model, which
indicated that the trajectory or the predictability limit of the
trajectory of OMEs might vary with eddy properties. Therefore,
it is necessary to consider the connection between properties and
the predictability limit of OME tracks.

Figure 10 shows the predictability limits for different lifetimes,
amplitudes, and radii, while the mean error growths are shown
in Supplementary Figure 3 in the Supplementary Material. We
classified a lifetime into two groups: short lived (<20 weeks) and
long lived (>20 weeks). The classification criterion, 20 weeks, is
based on the different OMEs generation mechanism, according
to Ji et al. (2018). They found that the OMEs induced by flow
shear are small and have a short time scale, while the OMEs
generated by the development of meanders in the KE path are
strong and have the longest lifetime. The analogous OME pairs
for both short and long lifetimes are 1,560 and 237, respectively.
This result indicates that the long-lived OMEs tend to have a
longer predictability limit. According to the 95% saturation level,
the predictability limit of short- and long-lived CE (AE) tracks is
57 (51) days and 110 (120) days (Figure 10A), respectively.

All OMEs are also classified into two groups according to
the amplitude, namely, small amplitude (<8 cm) and large
amplitude (>8 cm) (Figure 10B), and the radius, namely, small

A

B

C

FIGURE 10 | The predictability limits of oceanic mesoscale eddy (OME) tracks
classified by different eddy properties, including (A) lifetime, (B) amplitude,
and (C) radius. All the values are obtained by the 95% level of the saturation
value received by the mean value of all OME tracks’ error growth after the
60th day. The blue bars are for CEs, and the red ones are for AEs (unit: days).

scale (<80 km) and large scale (>80 km) (Figure 10C). The
amplitude and radius of OME often change throughout life; thus,
the classification is based on the mean value during the entire
lifespan. The results also clearly showed that the strong and large-
size OMEs have the highest predictability limit. The predictability
limit values for strong or large eddies are almost twice as those for
weak or small ones.

We further investigated different categories’ mean trajectories
to understand the relationship between eddy properties and
their predictability of tracks (Figure 11). The start points are
the averaged location for each type, which is consistent with
the spatial distribution in Figure 4, the long life (short life),
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A B

C D

E F

FIGURE 11 | The mean trajectories of all cyclonic eddies (CEs) and anticyclonic eddies (AEs) for different (A,B) lifetime, (C,D) amplitude, and (E,F) radius. The value
of the Complexity Index (CI) of each mean trajectory is also shown in each figure. Before the slashes, the values are CIs for the first 60 days while the whole lifetime
after the slashes.

weak (strong), and small (large) eddies occurring in the eastern
(western) part of the region. In general, the eddies have a longer
life; the larger amplitude and the bigger size tend to have longer

A

B

FIGURE 12 | The spatial distribution of (A) annual mean sea surface height
(contour, units: cm) geostrophic current (vectors) from Mercator Ocean
analysis data from 1993 to 2006 and (B) annual mean sea surface wind from
National Oceanic and Atmospheric Administration (NOAA) from 1999 to 2009
(units: m/s).

predictability limit. The longer and smoother trajectories for
both CEs and AEs could explain for the larger predictability
limit. However, the metrics to measure the complexation of eddy
trajectories, CI, only works for CEs, not for AEs, particularly
during the initial period (first 60 days). We find that the CI
value is still not perfect for describing the complexity of the
OME tracks. However, we can still observe that the trajectory’s
movement characteristics are related to the predictability limit
through observation.

As shown in Figure 4, the longer lifetime OMEs usually
occurred in the eastern region. This is also consistent with the
geostrophic distribution of the predictability limit shown in the
previous section (Figures 7, 8). The OME tracks in the east part
of the target region tend to have a longer predictability limit.
However, the stronger eddies also have a longer predictability
limit, which seems contradicted with the spatial distribution. The
stronger eddies usually occur in the western part (Figures 4E,F).
This indicates that the relationship between the eddy properties
and the predictability limit is complicated, and factors other than
eddy properties may affect the limit.

External Environment of the KE Region
Besides the eddy properties, the OME trajectories are also affected
by the ocean and atmosphere’s large-scale motions. Figure 12A
shows the mean sea surface height (SSH, shaded) and the
geostrophic current (vectors) from Mercator Ocean reanalysis
data over 14 years, which is available on the Copernicus Marine
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A

B

C

FIGURE 13 | The standard deviation of the monthly mean (A) surface sea
level (units: m), (B) eastward, and (C) northward geostrophic velocity from
Mercator Ocean analysis data during the period of 1993–2006 (units: m/s).

Environment Monitoring Service (CMEMS) website.2 The red
curve is the approximate location of the central axis of the
Kuroshio current. We can find that the larger meridional gradient
of SSH, stronger surface currents, and the larger meander of
the Kuroshio current all appear in the western region. These
will lead the OMEs much easier to change their trajectories
and become unpredictable. The magnitude of surface wind in
the KE region (Figure 12B) is more than 7 m/s. Still, it is
relatively homogeneous in our study domain, indicating that
the mean surface wind may not affect the movement of OMEs
very much.

The mean currents in the KE region could be one of the
significant impacts on the OME tracks. To further illustrate the
unstable statement of KE currents, Figure 13 shows the standard
deviation of monthly mean SSH and velocities in both zonal
and meridional directions from 1993 to 2006. The whole KE
region has a large amplitude for SSH and speeds, with the largest
values occurring in the western part, more than 0.4 m for SSH
and 0.4 m/s for speeds. This may suggest that surface currents

2https://marine.copernicus.eu/

are more unstable in the west region and may lead to shorter
predictability limits.

CONCLUSION AND DISCUSSION

Conclusion
Based on the NLLE approach and LDAs algorithms, we estimate
the predictability limit in the whole KE region quantitively using
three eddy track datasets. The results show that the predictability
limits of CEs and AEs are 53 and 52 days in KE and vary in the
four subregions ranging from 42 to 66 days. The predictability
limit of OME tracks is higher in the eastern region (about
62.5 days) than that in the western region (about 46 days),
implying that daily OME tracks’ prediction is more challenging
in the nearshore region than in the opened sea area. Additionally,
the CEs (AEs) predictability limit is relatively high in the southern
(northern) region.

The predictability limit of OME also tracks closely related to
lifetime, amplitude, and radius. The long-lived, large-amplitude,
and large-size OMEs tend to be more predictable with more than
100 days, whereas short-lived, small-amplitude, and small-size
OMEs tend to be less predictable with the value of about 60 days.

We have proposed a metrics called the Complexity Index
(CI) to examine the OME tracks’ smoothness to understand the
predictability limit. It turns out that the OMEs with smooth
trajectories or large CI tend to have longer predictability limits
in most cases. We examined the differences in the function of life
duration and CI among four subregions and found that a shorter
predictability limit has a much rapid decrease for CI values.
However, the CI does not work well for AEs in the different
classification of OME properties.

Besides the properties of OME, the external oceanic and
atmospheric environment also can affect the predictability of
OME tracks. The Kuroshio axis is stronger and has larger
variability in the region close to the western boundary, which
will shorten the limit in this area. The external effects may
explain why the west subregion has strong eddies but a shorter
predictability limit. We also found that the surface wind may not
contribute to the instability much.

Based on our analysis, three kinds of factors may affect the
predictability limit of eddy tracks. The first factor is the boundary,
which would change the eddy trajectories when eddy gets close to
the boundary. The second factor is the characters of eddies, such
as the amplitude, the radius, and the lifetime. The stronger and
larger eddies would not be affected by the external factors and
will be more predictable. The third is the background currents or
winds. The former will interact with the eddies, and the latter will
directly force the eddies and change their path.

Discussion
In addition to the eddy features like the amplitude, the radius,
and the lifetime, we have also investigated the predictability limit
of eddy tracks based on different nonlinear parameters before.
However, the result is not shown in the paper. The results show
that CE/AE with a higher U/c tends to have a larger predictability
limit. The predictability limit of weak-nonlinear (U/c < 5) and
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strong-nonlinear (U/c > 7) CE tracks are 29 and 39 days,
respectively, but 33 and 90 days for AE. Therefore, the stronger
nonlinear eddies generally have a longer predictability limit.

The present study shows that the predictability limit of OME
tracks is not dependent on datasets, although the trajectories in
Figure 5 of Meng et al. (2020) look totally different. We found
that the average trajectories of these three datasets (Figure 5 in
Meng et al., 2020) almost overlap in the initial stage and begin
to diverge after about 200 days (or longitude less than −3◦). The
mean predictability limit of OME tracks is only about 50 days,
and therefore, the predictability limit mainly depends on the
initial stage of trajectories.

The predicted time scales in the previous studies are
approximately 30 days (Li et al., 2019; Xu et al., 2019; Wang
et al., 2020), while the predictability limits of the OME tracks
computed in the present study are more than 50 days. It seems
about 1.5–2 times greater than that in previous studies. We think
that two reasons perhaps cause the longer predictability limit
in the present studies. First is the study region being different.
This leads to the features of eddies, and the environment is also
different. Here, we study the KE region, while Xu et al. (2019) and
Li et al. (2019) investigated the South China Sea, and Wang et al.
(2020) focused on the whole global. Second, the previous studies
did not focus on the upper limit of predictability as to the present
study. In these studies, the eddy features may be predicted before
approximately 1 month. However, they did not try to explore the
upper limit. Additionally, there are only two cases in Xu et al.
(2019), which cannot be compared with the present study.

Although we discuss the relationship between eddy properties
and predictability and external environment, the effect of eddy–
eddy interactions are excluded. A recent paper by Ni et al. (2020)
pointed out that the interaction between these OMEs would
potentially affect trajectories and lead to moving randomly in
any direction at any latitude. An earlier study also has indicated
that eddy–eddy interactions on the eddy propagation help induce
the eddy trajectory curve or loop (Early et al., 2011). These
studies suggest that the eddy–eddy interaction might affect the
predictability limit of eddy tracks to some extent. The effects of
the eddy–eddy interaction on the results of the present study
should be investigated further.

This study helps us understand the predictability of OMEs.
These results cannot directly apply to the real operational
forecast; however, the predictability limit can provide a baseline
for forecasting in this region. In the future, model simulation
analysis will be needed to explore more in-depth both the

physical understanding and the impact of external factors on
the predictability.
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